N. G. DE BRUIJN and P. ERDÖS: Sequences of points on a circle.

(Communicated at the meeting of December 18, 1948.)

1. Introduction. We consider sequences $\{a\}$ of points a_1, a_2, a_3, \ldots on a circle with radius $1/2\pi$, in other words numbers mod 1. The numbers a_1, a_2, \ldots, a_n define n intervals with total length 1; denote by $M_n^1(a)$ and $m_n^1(a)$ the largest and the smallest length. Clearly

$$n M_n^1(a) \geqslant 1 \geqslant n m_n^1(a)$$
.

Analogously $M_n^r(a)$ and $m_n^r(a)$ denote the maximum and minimum length of the sum of r consecutive intervals, so that $n M_n^r(a) \ge r \ge n m_n^r(a)$. We put

$$\lim_{n\to\infty} \sup_{n\to\infty} n \, M_n^r(a) = \Lambda_r(a)$$

$$\lim_{n\to\infty} \inf_{n\to\infty} n \, m_n^r(a) = \lambda_r(a)$$

$$\lim_{n\to\infty} \operatorname{M}_{n}^{r}(a) / \operatorname{M}_{n}^{r}(a) = \mu_{r}(a)$$

and

$$\Lambda_r = \text{g.l.b. } \Lambda_r(a)$$
 , $\lambda_r = \text{l.u.b. } \lambda_r(a)$, $\mu_r = \text{g.l.b. } \mu_r(a)$.

We are able to determine

$$\Lambda_1 = 1/\log 2$$
 , $\lambda_1 = 1/\log 4$, $\mu_1 = 2$.

The problem of Λ_r , λ_r , μ_r is closely related to a problem concerning "just distributions" solved by Mrs van Aardenne-Ehrenfest 1). All we can prove is that $\mu_r \geqslant 1 + 1/r$ (and analogus inequalities for Λ_r and λ_r); we conjecture that $r(\mu_r - 1)$ is unbounded. From this the theorem of Mrs van Aardenne-Ehrenfest would follow.

2. A sequence which gives the best possible values of A_1 (a), λ_1 (a), μ_1 (a). Take $a_k = {}^2\log(2 k - 1)$, reduced mod 1. We show that a_1, \ldots, a_n occur in the following order

$$^{2}\log n$$
, $^{2}\log (n+1)$, ..., $^{2}\log (2 n-1)$ (2.1)

Namely, no two of the a_k 's and no two of the numbers (2.1) are congruent mod 1, but each number in (2.1) is congruent to just one a_k .

It follows from (2.1) that the lengths of the intervals defined by a_1, \ldots, a_n are

$$^{2}\log\frac{n+1}{n}$$
, $^{2}\log\frac{n+2}{n+1}$, ..., $^{2}\log\frac{2n-1}{2n-2}$, $^{2}\log\frac{2n}{2n-1}$,

¹⁾ Proc. Kon. Ned. Akad. v. Wetensch., Amsterdam 48, 266—271 (1945) = Indagationes Mathematicae, 7, 71—76 (1946).

and so

$$n M_n^1(a) = \frac{n \log \left(1 + \frac{1}{n}\right)}{\log 2}, n m_n^1(a) \frac{n \log \left(1 - \frac{1}{2n}\right)^{-1}}{\log 2}.$$

For $n \to \infty$, $n M_n^1(a)$ increases to the limit $1/\log 2$; $n m_n^1(a)$ decreases to the limit $1/\log 4$; $M_n^1(a)/m_n^1(a)$ increases to the limit 2. It follows that $A_1(a) = 1/\log 2$, $\lambda_1(a) = 1/\log 4$, $\mu_1(a) = 2$.

3. Lower bound for $A_r(a)$.

Let $\{a\}$ be a sequence, n a natural number, and suppose that ϱ is such that

$$k M_n^1(a) < \varrho$$
. $(n \leq k < 2n)$ (3.1)

Let the intervals determined by a_1, \ldots, a_n be I_1, \ldots, I_n , arranged in descending order of length. Denote the length of I_j by α_j ; so that

$$a_1 \geqslant a_2 \geqslant \ldots \geqslant a_n$$
; $a_1 + \ldots + a_n = 1$. . . (3.2)

Now put in the points a_{n+1} , a_{n+2} , ..., a_{2n-1} . Since any point "destroys" one I at most, there remains at least one interval of length $\geq \alpha_p$ undisturbed after a_{n+1} , ..., a_{n+p-1} have been put in $(1 \leq p \leq n)$. Hence

$$M_n^1(a) \geqslant a_1, M_{n+1}^1(a) \geqslant a_2, \ldots, M_{2n-1}^1(a) \geqslant a_n;$$

consequently, by (3.1) and (3.2),

$$\varrho\left(\frac{1}{n}+\frac{1}{n+1}+\ldots+\frac{1}{2\,n-1}\right)>1.$$

It follows that for at least one $k (n \le k < 2n)$ we have

$$k M_k^1(a) \geqslant \left(\frac{1}{n} + \ldots + \frac{1}{2n-1}\right)^{-1} = \sigma_n.$$

We have $\sigma_n < 1/\log 2$, $\sigma_n \to 1/\log 2$, and so $\Lambda_1(a) \ge 1/\log 2$. This holds for any $\{a\}$; the lower bound is attained for the sequence of section 2. Similarly we can prove that for at least one $k (rn \le k < (r+1)n)$ we have

$$k M_k^r(a) \geqslant \left(\frac{1}{rn} + \frac{1}{rn+1} + \ldots + \frac{1}{rn+n-1}\right)^{-1}$$

and so

$$\Lambda_r(a) \geqslant 1/\log\left(1+\frac{1}{r}\right) > r.$$

4. Upper bound for $\lambda_r(a)^2$.

Let $\{a\}$ be a sequence, n a natural number, and suppose that ϱ is such that

$$k m_k^1(a) > \varrho$$
 $(n < k \le 2 n)$ (4.1)

²⁾ The proof presented in this section was found by Mrs. VAN AARDENNE-EHRENFEST independently.

16 (48)

Let $a_{k_1}, a_{k_2}, \ldots, a_{k_{2n}}$ be the cyclic order of the points a_1, \ldots, a_{2n} on the circle (k_1, \ldots, k_{2n}) is a permutation of $1, \ldots, 2n$; put $k_{2n+1} = k_1$. If $k_i^* = \operatorname{Max}(k_i, k_{i+1}, n+1)$, then the interval $a_{k_i}, a_{k_{i+1}}$ is one of the intervals determined by $a_1, \ldots, a_{k_i^*}$. It follows that its length is less than ϱ/k_i^* . Hence

$$1 > \varrho \sum_{i=1}^{2n} 1/k_i^*$$
 (4.2)

We have $n < k_i^* \le 2n$, and any $k(n+1 < k \le 2n)$ occurs ε_k times as a k^* ; $\varepsilon_k = 0.1$ or 2. It follows that

$$\sum_{i=1}^{2n} 1/k_i^* = \sum_{n+1}^{2n} \frac{2}{k} + \sum_{n+2}^{2n} (2 - \varepsilon_k) \left\{ \frac{1}{n+1} - \frac{1}{k} \right\} \geqslant \sum_{n+1}^{2n} \frac{2}{k}.$$

Finally, by (4.1) and (4.2) we infer that at least for one $(n < k \le 2n)$ we have

$$k m_k^1(a) \leq \left(\frac{2}{n+1} + \frac{2}{n+2} + \ldots + \frac{2}{2n}\right)^{-1} = \tau_n.$$

We have $\tau_n > 1/\log 4$, $\tau_n \to 1/\log 4$, and so $\lambda_1(a) \le 1/\log 4$. The example of section 2 again shows that $1/\log 4$ is best possible.

Similarly we can show that for at least one $k (rn < k \le (r+1)n)$ we have

$$k m_k^r(a) \leq r \left(\frac{r+1}{n r+1} + \ldots + \frac{r+1}{n r+n-1}\right)^{-1}$$

and so

$$\lambda_r(a) \leqslant \frac{r}{r+1} / \log\left(1+\frac{1}{r}\right) < r.$$
 (4.3)

5. Lower bound for μ_r .

Let $\{a\}$ be a sequence. We first prove that, for $r \ge 1$, $n \ge 1$ we have

$$M_n^r(a)/m_{n+1}^r(a) \geqslant 1 + \frac{1}{r}$$
. (5.1)

We first suppose that r > 1. Let $I_1, I_2, ..., I_n$ be the intervals of the n-th stage, i.e. the intervals determined by $a_1, ..., a_n$. Let I_{k_0} be the one into which a_{n+1} falls, and let

$$I_{k_{-r+1}}, I_{k_{-r+2}}, \ldots, I_{k_0}, I_{k_1}, \ldots, I_{k_{r-1}} \ldots \ldots (5.2)$$

be consecutive on the circle 3).

Put $M = M_n^r(a)$, $m = m_{n+1}^r(a)$ and denote by M_1 the maximum length of the sum of r consecutive intervals from the set (5.2). Denote the length of I_{k_i} by β_i . Let γ_1 and γ_2 be the lengths of the parts into which I_{k_0} is divided by a_{n+1} .

³⁾ If 2r-1 > n the k_i are not all different.

(49)

Clearly at least one of the numbers $\beta_{-r+1}, \ldots, \beta_{-1}, \beta_1, \ldots, \beta_{r-1}$ (β_j say) is $\geq (M_1 - \beta_0)/(r-1)$; we may suppose that j > 0. Now we have

$$m \leq \beta_{j-r+1} + \ldots + \beta_{-1} + \gamma_1 + \gamma_2 + \ldots + \beta_{j-1}$$

and hence

$$m \leq M_1 - \beta_j \leq \frac{r-2}{r-1} M_1 + \frac{\beta_0}{r-1} \dots$$
 (5.3)

On the other hand it follows from

$$m \leq \gamma_2 + \beta_1 + \ldots + \beta_{r-1} \leq M_1 - \gamma_1$$

$$m \leq \beta_{-r+1} + \ldots + \beta_{-1} + \gamma_1 \leq M_1 - \gamma_2$$

that

Trivially we have $M_1 \leq M$. If $\beta_0 \leq 2 M_1/(r+1)$ we infer $m \leq M_1 r/(1+r) \leq M r/(1+r)$ from (5.3); if $\beta_0 \geq 2 M_1/(r+1)$ we deduce the same result from (5.4). This proves (5.1) for r > 1.

If r = 1, (5.1) immediately follows from

$$m \leq \operatorname{Min}(\gamma_1, \gamma_2) \leq \frac{1}{2} \beta_0 \leq \frac{1}{2} M.$$

Now suppose that n is a natural number and that for $n \in k \leq n(r+1)$ we have

$$M_k^r(a)/m_k^r(a) < \left(1 + \frac{1}{r}\right) / \left(1 + \frac{1}{k}\right)^2$$
. (5.5)

It follows, by (5.1) that

$$m_{k+1}^r/m_k^r < k^2/(k+1)^2$$
 $(n \, r \le k < n \, r + n)$

and also

$$m_{rn+n}^r/m_{rn}^r < r^2/(1+r)^2$$
. (5.6)

Trivially we have $m_{rn}^r \leq 1/n$; on the other hand, by (5.5)

$$m_{rn+n}^r > \frac{r}{1+r} M_{rn+n}^r \geqslant \frac{r}{1+r} \cdot \frac{r}{rn+n-1} \geqslant \frac{r^2}{(r+1)^2} \cdot \frac{1}{n}$$

This contradicts (5.6). Hence for at least one $k (n r \le k \le n r + n)$ (5.5) is not true. It follows that

$$\mu_r \geqslant 1 + \frac{1}{r}$$
. (5.7)

6. The inequalities (3.3), (4.3) and (5.7) are probably not best possible if $r \ge 2$. We conjecture that the expressions

$$r(\Lambda_r-1)$$
 , $r(1-\lambda_r)$, $r(\mu_r-1)$

tend to infinity if $r \rightarrow \infty$.

We owe some useful remarks to Mrs. T. VAN AARDENNE-EHRENFEST and Mr. J. KOREVAAR with whom we first discussed the above problems.