N. G. pE BruiN and P. Erpds: Sequences of points on a circle.
(Communicated at the meeting of December 18, 1948.)

1. Introduction. We consider sequences {a} of points a;, a,, a;....
on a circle with radius 1/2x, in other words numbers mod 1. The num-
bers a;, a;, ..., ap define n intervals with total length 1; denote by
M; (a) and m! (a) the largest and the smallest length. Clearly

nM;(a 1) =1 = nm! (a).

Analogously Mj (a) and m’ (a) denote the maximum and minimum length
of the sum of r consecutive intervals, so that n My (a) =r=n m/ (a).
We put

lim sup n Mj (a) = 4, (a)

n—+m

lim inf n m[ (a) =4, (a)
1o

lim sup Ms (a)/ my, (a) = e (a)

and
Ar=glb.A,(a) , A,=lub.i,(a) , wpr=g.lb.u,(a).

We are able to determine
Ay, =1llog2 , 4 =1/log4 , p,=2.

The problem of A,, 4, u, is closely related to a problem concerning
“just distributions” solved by Mrs vAN AARDENNE-EHRENFEST '). All we
can prove is that #, — 1+ 1/r (and analogus inequalities for 4, and i;);
we conjecture that r(u,—1) is unbounded. From this the theorem of
Mrs vAN AARDENNE-EHRENFEST would follow.

2. A sequence which gives the best possible values of 4, (a),
A (a), pi(a). Take ax=1log(2k—1), reduced mod 1. We show that
ay, ..., ap occur in the following order

dogn, Ylog(n+1),...,%log(2n—1). . . . . (2.1)

Namely, no two of the ax's and no two of the numbers (2. 1) are con-
gruent mod 1, but each number in (2. 1) is congruent to just one ay.

It follows from (2.1) that the lengths of the intervals defined by
a,..., ap are \

-Hzl “if-—--“*’gg: ok l"“gzrfﬂl

Zlog

1)  Proc. Kon. Ned, Akad. v. Wetensch., Amsterdam 48, 266—271 (1945) = Indaga-
tiones Mathematicae, 7, 71—76 (1946).
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1\t
n log (1_2‘;)

log 2

and so ;
nlog (l -’(-;)
log 2

n M, (a)=

, nm (a)

For n—>w, nM,(a) increases to the limit 1/log2; nm!(a) decreases

to the limit 1/log 4; Mn(a)/mn(a) increases to the limit 2. It follows that
4y (a)=1/log 2, ()= 1/log 4, p (a) =2.

3. Lower bound for 4,(a).
Let {a} be a sequence, n a natural number, and suppose that g is
such that
kMp@)<o. (n<k<2n) . . . . . (31
Let the intervals determined by a;,...,a, be I,,...,I., arranged in
descending order of length. Denote the length of I; by «;; so that

G =020 263 +...tep=L . . . (3.2)
Now put in the points @a41, @ns2, ..., @24-1. Since any point “destroys”
one I at most, there remains at least one interval of length = a,
undisturbed after apt1,..., ans+p-1 have been put in (1 << p=<n). Hence

Mu(@)=a, Mpsi(@=az.... Mini(a)= an:
consequently, by (3. 1) and (3. 2),
1 1 1
9(;+m+-~+§n—-ﬁ)>1-
It follows that for at least one k(n << k < 2n) we have’
1 1 1 K _
k My (a) = (r_: ++2n——_l) = 0n.

We have o, < l/log 2, 6,— 1/log 2, and so 4, (a) = 1/log 2. This holds
for any {a}; the lower bound is attained for the sequence of section 2.

Similarly we can prove that for at least one k(rn <<k <(r+1)n)
we have

r 1 1 1 =
kMk(a)?’(a—i_rn%-l +'“+rn—|—n—-l)

and so
A (a) = 1]log (l+%) >r.

4. Upper bound for 1.(a) ?).

Let {a] be a sequence., n a natural number,iand suppose that ¢ is

such that
km)(a) > e n<k<<2n). . . . . . (41)

2) 'The proof presented in this section was found by Mrs. VAN AARDENNE-EHRENFEST
independently.

4



16 (48)

Let ag,, ak,....,ax,, be the cyclic order of the points a;,...,a2, on the
circle (k;,...,k2n is a permutation of 1,...,2n); put kyppi=k. If
ki =Max (ki, kiss,n+ 1), then the interval ay,, a,,, is one of the
intervals determined by a;,...,ars. It follows that its length is less than
o/ki. Hence

2n
1>e Sk . . . . . . .. (42)

We have n< ki <<2n, and any k(n+ 1<k << 2n) occurs & times as
ak'; e=0,1 or 2. It follows that

2n n 2
Sum=Z1+ Ze—wlg-ll=32

Finally, by (4.1) and (4.2) we infer that at least for one (n<<k<<2n)
we have
2

2 2\1_
km}c(ﬂ)é(mﬁ'm—i“---'f‘ﬂ) =1,

We have 7v,>1/log4, v.—> 1/log 4, and so 1,(a) << 1/log4. The example
of section 2 again shows that 1/log 4 is best possible.
Similarly we can show that for at least one k(rn <k<(r+1)n)

we have
” r+1 r41 =1
""‘k{a)gf( P L +F+T——1)
and so
Ar(a){ /log(l-l— )<r. R . 5 )

5. Lower bound for u,.

Let {a} be a sequence. We first prove that, for r==1, n=>=1 we
have

M;(a)/m;+,(a);1+r1.. 6w ow o» o« f5:1)

We first suppose that 7> 1. Let I,, I,,....I, be the intervals of the
n-th stage, i.e. the intervals determined by a;,...,a.. Let It, be the
one into which a,;; falls, and let

Ik—."+1' Ik—-r-fz"”' Ikov Ik1|-¢-| Ik,-_l I (5' 2)

be consecutive on the circle ).

Put M = Mj(a), m =mp.,(a) and denote by M, the maximum length
of the sum of r consecutive intervals from the set (5.2). Denote the
length of Iy, by p;. Let y, and y, be the lengths of the parts into
which I, is divided by an1.

3} 1If 2r— 1> n the k; are not all different.
5
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Clearly at least one of the numbers f_,i1.....8-1, By ..... Br—1 (B; say)
is = (M,—8,)/(r—1); we may suppose that j > 0. Now we have

mI B+ .F8a+n+r+... 1+ 8w

and hence

+ﬁ.....(5.3)

On the other hand it follows from
m‘-—-<..,?2+ﬁl+"'+ﬁr—léMl_

m< P +...+ 80+ SM,—y;
that
mg‘_Ml—‘é'ﬁo- - . - - . . . . (5.4)

Trivially we bave M, < M. If f, < 2M,/{r+ 1) we infer
m<Mr/(1+0) < Mr/(l+r) from (53); if fo=2M,/(r+ 1) we
deduce the same result from (5.4). This proves (5.1) for r > 1.

If r=1, (5.1) immediately follows from

m< Min(y, 7)) <3<t M.

Now suppose that n is a natural number and that for nr <k<n(r+1)

we have
M,t(a)/-m;(a)<(1+%)/(1+%)Q. e « o« « (5:5)

It follows, by (5.1) that
mi, [ml <Kk +1)?*  (nr<k<nr-+n)
and also
Ml M <P+ . ... (5.6)
Trivially we have m” < 1/n; on the other hand, by (5.5)
r r - .
1+ rndn—1—(+1¢ n

This contradicts (5.6). Hence for at least one k(nr <<k <nr-}n) (5.5)
is not true. It follows that

r r
r —_—
Mein > 14r rntn 2

1
BBLAZ v s v e s v v BT

6. The inequalities (3.3), (4.3) and (5.7) are probably not best possible
if r==2. We conjecture that the expressions

I(Ar—l) ' r“_j-r) ' r(‘urfl)
tend to infinity if r—>co0.

We owe some useful remarks to Mrs. T. VAN AARDENNE-EHRENFEST
and Mr. J. KOREVAAR with whom we first discussed the above problems.
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