P. Erdős and J. F. Koksma: On the uniform distribution modulo 1 of sequences $(f(n, \theta))$.

(Communicated at the meeting of June 25, 1949.)

I. Introduction. In a former paper 1) we treated lacunary sequences. Now, using an other method, we consider general sequences. For notation and definitions, see 1). We prove

Theorem 1. Let $f(1,\theta)$, $f(2,\theta)$, ... be a sequence of real numbers. defined for each value of θ of the segment $a \le \theta \le \beta$, such that $f(n,\theta)$ for n = 1, 2, ... as a function of θ , has a continuous derivative f_{θ} and such that the expression

$$f_{\theta}'(n_1, \theta) - f_{\theta}'(n_2, \theta)$$

for each couple of positive integers $n_1 \neq n_2$ is either a non-decreasing or a non-increasing function of θ on $a \leq \theta \leq \beta$, the absolute value of which is $\geq \delta$, where δ denotes a positive number which does not depend on n_1 , n_2 , or θ . Then for almost all θ the discrepancy $D(N, \theta)$ of the sequence satisfies the inequality

$$ND(N, \theta) = O(N! \log^{1+\epsilon} N)$$
 $(\epsilon > 0)$ (1)

Theorem 1 is a special case of the more general

Theorem 2. Let $f(n, \theta)$ for n = 1, 2, ... denote a real continuous function of θ on $\alpha \le \theta \le \beta$ and let

$$\Phi(n_1, n_2, \theta) = f(n_1, \theta) - f(n_2, \theta)$$
 for $n_1 \neq n_2$

have a continuous derivative Φ'_0 which is $\neq 0$ and either non-decreasing or non-increasing on $a \leq \theta \leq \beta$. Put

$$A(M,N) = \frac{1}{N^{2}} \sum_{n_{1}=M+2}^{M+N} \sum_{n_{2}=M+1}^{n_{1}-1} \operatorname{Max} \left(\frac{1}{|\phi_{0}(n_{1}, n_{2}, a)|}, \frac{1}{|\phi_{0}(n_{1}, n_{2}, \beta)|} \right)$$

and assume that for some constant $\gamma \ge 1$

$$NA(M, N) \leq K_0 \log^{\gamma} N \ldots \ldots \ldots (2)$$

for all couples of positive integers M, N where K_0 is a positive constant. Then for almost all numbers θ in $\alpha \leq \theta \leq \beta$ the discrepancy $D(N, \theta)$ of the sequence $f(1, \theta)$, $f(2, \theta)$, ... satisfies the inequality

$$ND(N) = O(N^{\frac{1}{2}} \log^{\frac{\gamma+4+\varepsilon}{2}} N) \qquad (\varepsilon > 0).$$

¹⁾ P. ERDÖS and J. F. KOKSMA, On the uniform distribution modulo 1 of lacunary sequences, Proc. Kon. Ned. Akad. v. Wetensch., Amsterdam. 52, 264-273 (1949). (= Indag. Math. 11, 79-88 (1949).)

300 (852)

Remarks. 1. It is clear that the functions $f(n, \theta)$ of Theorem 1 satisfy the assumptions of Theorem 2. For if one ranges the N numbers

$$f(M+1,\theta), f(M+2,\theta), \ldots, f(M+N,\theta)$$

in order of magnitude, these numbers at each step increase with at least the amount δ and we find

$$\frac{\sum\limits_{n_2=M+1}^{n_1-1} \frac{1}{|\hat{f}_{\theta}'(n_1,\theta) - f_{\theta}'(n_2,\theta)|} < 2\sum\limits_{\mu=1}^{N} \frac{1}{\mu\delta} < \frac{2}{\delta} \log 3N.$$

hence

$$NA(M, N) \leq \frac{2}{\delta} \log 3N = O(\log^{\gamma} N) \text{ for } \gamma = 1.$$

- 2. As Mr J. W. S. CASSELS has shown us, he also proved Theorem 1. His very interesting method is different from ours. The proofs are completely independent from each other.
 - II. Some lemma's.

Lemma 1. Let $f(n, \theta)$ for n = 1, 2, ... denote a real continuous function of θ on $\alpha \le \theta \le \beta$ and let

$$\phi(n_1, n_2, \theta) = f(n_1, \theta) - f(n_2, \theta)$$
 for $n_1 \neq n_2$

have a continuous derivative ϕ'_0 which is $\neq 0$ and either non-decreasing or non-increasing on $\alpha \leq \theta \leq \beta$. Finally put

$$A_{N} = \frac{1}{N^{2}} \sum_{n_{1}=2}^{N} \sum_{n_{2}=1}^{n_{1}-1} \operatorname{Max} \left(\frac{1}{|\phi_{\theta}^{'}(n_{1}, n_{2}, a)|}, \frac{1}{|\phi_{\theta}^{'}(n_{1}, n_{2}, \beta)|} \right).$$

Then we have for $N \ge 2$, h > 0 (h not depending on n and θ)

$$\int_{\alpha}^{\beta} \left| \sum_{n=1}^{N} e^{2\pi i h f(n,0)} \right|^{2} d\theta \leq (\beta - \alpha) N + \frac{A_{N}}{h} N^{2}.$$

The proof of this lemma has been given by KOKSMA 3).

Lemma 2. If $u_1, u_2, ...$ is a real sequence and if D(N) denotes its discrepancy then for each integer $m \ge 1$, we have

$$ND(N) \leq K \left(\frac{N}{m+1} + \sum_{h=1}^{m} \frac{1}{h} \left| \sum_{n=1}^{N} e^{2\pi i h n_n} \right| \right),$$

where K denotes a numerical constant.

This lemma is an improvement proved by ERDÖS-TURÁN 4) of the one-dimensional case of a theorem of VAN DER CORPUT-KOKSMA 5).

²⁾ For litt. see 1) and also 5).

J. F. KOKSMA, Ein mengentheoretischer Satz über die Gleichverteilung modulo Eins. Comp. Math. 2, 250—258 (1935).

¹⁾ P. ERDÖS and P. TURÁN, On a problem in the theory of uniform distribution. Proc. Kon. Ned. Akad. v. Wetensch., Amsterdam, 51, 1146—1154, 1262—1269 (1948). (= Indag. Math. 10, 370—378, 406—413 (1948).)

⁵⁾ See J. F. KOKSMA, Diophantische Approximationen, Erg. d. Math. IV, 4 (1936), Kap. IX.

301 (853)

Lemma 3. If $f(n, \theta)$ denotes the function of Lemma 1, and if $D(N, \theta)$ denotes the discrepancy of the sequence $f(1, \theta)$, $f(2, \theta)$, ..., then

$$\int_{0}^{\beta} N^{2}D^{2}(N,\theta) d\theta \leq K_{1}(N \log^{2} N + A_{N}N^{2} \log N).$$

where K_1 depends on $\beta - \alpha$ only.

Proof. Putting m = [/N], we have by Lemma 2

$$N^{2}D^{2}(N,\theta) \stackrel{\text{def}}{=} K^{2} \left(N + 2 | N | \sum_{h=1}^{|N|} \frac{1}{h} | \sum_{n=1}^{N} e^{2\pi i h f(n,\theta)} | \right) + \\ + K^{2} \sum_{h=1}^{|N|} \frac{1}{h+1} | \sum_{h=1}^{N} k | \frac{1}{h} | \sum_{n=1}^{N} e^{2\pi i h f(n,\theta)} | \cdot | \sum_{n=1}^{N} e^{2\pi i k f(n,\theta)} |.$$

Hence

$$\int_{\alpha}^{\beta} N^{2} D^{2}(N, \theta) d\theta \leq K^{2} \left(N(\beta - n) + 2 |N| \sum_{h=1}^{\lfloor 1/N \rfloor} \int_{h}^{\lfloor 1/N \rfloor} \sum_{n=1}^{N} e^{2\pi i h f(n, \eta)} \middle| d\theta \right) + K^{2} \sum_{h=1}^{\lfloor 1/N \rfloor} \sum_{k=1}^{\lfloor 1/N \rfloor} \int_{h}^{\lfloor 1/N \rfloor} \left| \sum_{n=1}^{N} e^{2\pi i h f(n, \eta)} \middle| \sum_{n=1}^{N} e^{2\pi i k f(n, \eta)} \middle| d\theta$$

and by the CAUCHY-SCHWARZ inequality for integrals

$$\leq K^{2} \left(N(\beta - \alpha) + 2 \sqrt{N} \sum_{h=1}^{[1N]} \frac{1}{h} \left\{ \int_{\alpha}^{\beta} 1^{2} d\theta \cdot \int_{\alpha}^{\beta} \left| \sum_{n=1}^{N} e^{2\pi i h f(n,\theta)} \right|^{2} d\theta \right\}^{\frac{1}{4}} \right) +$$

$$+ K^{2} \sum_{h=1}^{[1N]} \frac{1}{hk} \left\{ \int_{\alpha}^{\beta} \left| \sum_{n=1}^{N} e^{2\pi i h f(n,\theta)} \right|^{2} d\theta \cdot \int_{\alpha}^{\beta} \left| \sum_{n=1}^{N} e^{2\pi i k f(n,\theta)} \right|^{2} d\theta \right\}^{\frac{1}{4}}$$

$$\leq K^{2} \left(N(\beta - \alpha) + 2 \sqrt{N} \sum_{h=1}^{[1N]} \frac{1}{h} \left\{ (\beta - \alpha)^{2} N + \frac{\beta - \alpha}{h} A_{N} \cdot N^{2} \right\}^{\frac{1}{4}} \right) +$$

$$+ \sum_{h=1}^{[1N]} \sum_{k=1}^{[1N]} \frac{1}{hk} \left\{ (\beta - \alpha) N + \frac{1}{h} A_{N} \cdot N^{2} \right\}^{\frac{1}{4}} \left\{ (\beta - \alpha) N + \frac{1}{k} A_{N} \cdot N^{2} \right\}^{\frac{1}{4}}$$

by Lemma 1. Hence by the CAUCHY-SCHWARZ-inequality for sums

$$\int_{\alpha}^{\beta} N^{2} D^{2}(N,\theta) d\theta \leq K^{2} \left(N(\beta-a) + 2 \sqrt{N} \left\{ \sum_{h=1}^{N} \frac{\beta-a}{h} \sqrt{N} + \sum_{h=1}^{N} \frac{\sqrt{\beta-a}}{h \sqrt{h}} \sqrt{A_{N} \cdot N} \right\} + \left\{ \sum_{h=1}^{N} \sum_{k=1}^{N} \frac{1}{hk} \left\{ (\beta-a) N + \frac{1}{h} A_{N} \cdot N^{2} \right\} \cdot \sum_{h=1}^{N} \sum_{k=1}^{N} \frac{1}{hk} \left\{ (\beta-a) N + \frac{1}{k} A_{N} \cdot N^{2} \right\} \right\}^{1} \right\}$$

$$\leq K \left(N + N \log N + \sqrt{A_{N} \cdot N^{2}} + N \log^{2} N + A_{N} \cdot N^{2} \log N \right)$$

 $\leq K_2(N+N\log N+\sqrt{A_N}N^2+N\log^2 N+A_NN^2\log N)$.

where K_2 only depends on K and $\beta - \alpha$.

Now if

$$\sqrt{A_N N^2} > A_N N^2 \log N$$
,

we should have

$$1 > |A_N|/N \log N$$

302 (854)

hence

$$A_N N^2 \log N < \sqrt{A_N} N^2 < N$$
.

Therefore

$$\int_{\alpha}^{\beta} N^2 D^2(N,\theta) d\theta \leq K_1 (N \log^2 N + A_N N^2 \log N).$$

Q.e.d.

Lemma 4. Let $F(M, N) = F(M, N, \theta)$ denote a function of θ on a segment $\alpha \le \theta \le \beta$ for each couple of positive integers M and N, such that

$$|F(M,N)| \le |F(M,N_1)| + |F(M+N_1,N-N_1)|$$
. (3)

for each triple M, N and $N_1 \le N$ and such that F belongs to the class L^2 over the segment. Let further

$$\int_{a}^{\beta} |F(M, N, \theta)|^2 d\theta \leqq K_3 N \log^{\alpha} N$$

 $K_3>0$ and σ , being real constants. Then for almost all θ in $\alpha \leq \theta \leq \beta$ we have

$$|F(0,N,\theta)| = O(N^{\frac{1}{2}}\log^{\frac{\sigma+3+\varepsilon}{2}}N) \quad (\varepsilon > 0).$$

This lemma is a special case of a theorem of GÁL-KOKSMA, the proof of which will appear before long 6).

III. We now prove Theorem 2.

Let M denote an arbitrary integer ≥ 1 and consider the functions

$$f(M+1,\theta), f(M+2,\theta), \ldots; \ldots \ldots \ldots (4)$$

these functions satisfy the assumptions of Lemma 1 and the corresponding number A_N is exactly identical with the number A(M,N) which we have defined in Theorem 2. Denoting the discrepancy of the sequence (4) by $D(M,N,\theta)$, we have by Lemma 3, applied to the sequence (4),

$$\int_{\pi}^{3} N^{2} D^{2}(M, N, \theta) d\theta \leq K_{1}(N \log^{2} N + A(M, N) N^{2} \log N) \leq K_{4} N \log^{1+\gamma} N$$

because of (2). Now it is easily seen from the definition of D(N), that if we put

$$F(M, N, \theta) = N D(M, N, \theta),$$

the relation (3) is satisfied. Hence Theorem 2 follows immediately from Lemma 4 with $\sigma=1+\gamma$.

⁶⁾ Cf. I. S. GAL et J. F. KOKSMA, Sur l'ordre de grandeur des fonctions sommables. C. R. Acad. d. Sc. Paris, 227, 1321—1323 (1948).