P. Erp0s and ]J. F. Koksma: On the uniform distribution modulo 1 of
lacunary sequences.

{Communicated at the meeting of February 26, 1949.)

§ 1. Asis well known one calls the sequence of real numbers u, s, ...
uniformly distributed modulo 1, if the number N’ of those among the
numbers

w— (], wy— ], . .. uy— g
which fall into an arbitrarily given part ¢ <u <p of the unit interval
0 < u <C 1 satisfies the condition
Na’

— = f—aqa, if N—= oo.

N

'

The difference % — (f—a) is always =<1 and for fixed N = 1 one calls
|

its upper bound, (if {a, f) is supposed to run through all couples with
0=ae<f=1), the discrepancy D(N) of the sequence. If

ND(N)=o(N), . . . . . . .. ()

it is trivial that the sequence is uniformly distributed modulo 1 and as was
proved by WEYL 1), inversively (1) is a consequence of the distribution
modulo 1, defined above,

One gets an interesting special case when putting

Un=~012, =LZwede ¢ » & = & s 2}
where

B L e s 5 5 98 €5 5 3 8

denotes an increasing sequence of integers. FATOU 1) already proved that
such a sequence is everywhere dense modulo 1 in the unit interval for
almost all values of 8, provided that the sequence (3) is lacunary, i.e. that
{or some positive constant ¢

i,,“}{l-{—ﬁ)ln (fl=1.2,...). T (4}
HARDY-LITTLEWOOD 1) and WEYL 1) proved that for each sequence of
integers (3) the sequence of numbers (2) is uniformly distributed modulo 1

for almost all 6. Hence for such sequences (1) holds. FowLER 1), Koksma 1)
and DREWES 2) deduced improvements of (1). In the special case

}'ﬂzznr

1) References in "Diophantische Approximationen”, Erg. d. Math. IV, 4 (1936) by
]J. F. Koksma (Kap. VIII and IX).

2) A. DREWES, Diophantische Benaderingsproblemen, Thesis Free University, Amster-
dam (1945).
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the problem is equivalent to the question how the digits 0, 1 are distributed
in the dyadic expansion of 6. Here KHINTCHINE 1) proved very sharp
results.

Generally speaking, the problem is somewhat easier to handle for lacunary
sequences (4) than in the general case (3). In this paper we consider the
case of lacunary sequences of numbers

un = f(n, 6),

which form a generalisation of the sequences defined by (2). The method
used in this paper leads to great difficulties, if one tries to apply it in the
general case. In a following paper we treat the general case with an other
niethod, which in the specialised cases which are considered in the present
paper would give a slightly less sharp result than we deduce here.

§ 2. In this paper we prove a general theorem in which as a special
case is contained the following

Theorem 1. Let § denote an arbitrary positive constant and w(n) a
positive increasing function of n—=1,2, ... with w(n) — <, if n— @,
Then for any sequence of positive numbers Ay, %, ..., which satisfy (4).
the discrepancy D(N) of the sequence (2) satisfies the inequality

ND (N)=o(Ntlog! N(loglogN)w(N)) . . . . (5

for almost all 6.

This estimate is sharper than all known results. The exponent % in the
factor Nt cannot be improved, as KHINTCHINE proved that in the special
case 1, == 2", we have

ND (N) = @ (N* Jlog log N).
Another application of our theorem is the following

Theorem 2. For almost all values of 6 =1 the discrepancy of the
sequence

885 O

satisfies the inequality (5), if w(n) denotes a positive increasing function
stch that w(n) — © asn— oo,

That the sequence #, 62, ... for almost all 8 is uniformly distributed
{modulo 1) had already been proved by Koksma 1), whereas the sharpest
estimate for the discrepancy of this sequence known till now was given by
DREWES 2),

§ 3. The theorems quoted above are contained in the following
Theorem 3, which itself is a special case of the main Theorem 5.

4
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Theorem 3. Let a<<b, 6 >0 be given real numbers. Let f(1,0),
{(2,0), ..., denote a sequence of real functions which are defined on
a =0 < b, such that

fn+LO=(140)f(n6)>0: fi'(n+1,0=(140)f;' (n,6) =0
=125 )
for all values of 6 on a <60 = b. Let w(n) denote an increasing [unction of
n=12,..., such that w(n) - o as n — 0.
Then for almost all 6 on a=6 =b the discrepancy in the uniform
distribution of the sequence

f(1.6), £(2,6)....

satisfies the relation (5).

Remark. It is clear that the sequences of the theorems 1 and 2 satisfy
the conditions of Theorem 3. In the first case we put without loss of
generality a— 0, b = 1 and in the second case we puta =1+ 4, b>a
and after application of Theorem 3, we let

d—=>0, b— oo,

The reader will find the deduction of Theorem 3 from Theorem 4 in § 8.

§ 4. For the proof of our main theorem we deduce a lemma (Lemma 2),
which has some interest in itself. For the special case, considered in
Theorem 3, it runs as follows:

Theorem 4. Suppose that the conditions of Theorem 3 are satisfied.
Let K denote a positive constant. Then for almost all 0 the [ollowing
statement is true: If N and k are integer such that 1 = k = NX, then

n=1

N
3 g2 kffmfﬂf = C(6) Nilogt N (log log N} w (N),

where C(0) does not depend on N or k.
The reader finds its deduction in § 9.

§ 5. Before we state the main theorem, we make some

Preliminary Remarks. Let N and r denote positive integers. Out of the
N integers n — 1, 2, ..., N, we can form N’ different r-tuples; such an

r-tuple we shall denote by (ny, ....n;). There are Ci' different r-tuples
among them for which n; = n, = ... = n,. Such a special z-tuple we shall
denote also by {ny,....n:}. The elements n, ..., nr of the r-tuple
{ny,....,n-} have a number of different permutations, which we shall
denote by A {ny, ..., n,}. Then we obviously have
Afn,...., T e T ()]
and
z” Aznl ,,,,, an:Nr.. % i . . = (7}
g o i
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For later purposes we put
Av—= B Apicentile » o « 5 = & (8

Ve Bpl

Definition. If {ny,...,n;} and {m4, ..., m:} are two different r-tuples
of the above kind, we say that the first is greater than the second:

{n,.....nri >{m1,...,mr},
if and only if for some 7 (1 <7 <)
He e o Be=y =g v 2e et

Condition A. Let g(x,0) forx=1,2, ..., N denote a function of 6 on
the segment a < 0 < b such that for each couple of r-tuples {n;, ..., nr} >
> {my, ..., mr} the function

A= (ny....nrimy, .o, mp; 0= _lg(ng,B)-— __Z_,‘lg(mg,ﬁ) .9

L=

has a derivative for a < @ < b, which is continuous, =% 0, and either non-
decreasing or non-increasing in the segment a = # = b. We then put

V=", o0 s Tps Mo oasmip) == % (10)
Min § @alrgss s ttrsma ot 8l Qolnns o va Rps Blys ovv o e BY s
By=N—" X > Ailng,...n A f{my,....med
e flp] > 0t M el (11)
WY Uty et Migevos M)

Now we state our main theorem:

Theorem 5. 1. Let a and b denote real constants with a<<b. Let
f(n,8) forn =1, 2 ... denote a real function of 6 on the segment a<6<b.
Let N, be a positive integer. Let r = r(N) and s = s(N) be positive in-
tegers which are defined for each integer N = N, such that

S(N)=N.
Let for each integer N = N and each integer 6 = 1, ..., s(N) the Ns func-
tions

go (2 6) =flo +(x—1)s, 6) (le, 2,...,N,:[NF°]+ 1)

5

be considered and let the condition A be satisfied with gs instead of g and
with N5 instead of N.

1. Putting
Byv=Max By, . . . . . . . . (12)
1=5=5
we assume that a non-decreasing sequence (1), v(2), ... of positive

numbers exists such that the series

o ( / s y=2r
2 s-{(b—a)r! N*+ By logNI?pr[N 5]4—1)6 . (13

n=2N, s y S

6
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converges. Then almost all numbers 6 of a <0 < b, have the property that
the discrepancy D(N) of the sequence f(1,0), f(2,0), ... satisfies the
inequality

ND (N)=K, s%—N%-w([N—s‘i]H) log N for N=N:,. (14)

where K, denotes a numerical constant, whereas N, denotes an index
depending on 6.

§ 6. We now prove

Lemma 1. Let N and r denote positive integers and let g(x, 0) satisfy
the condition A. Then for each fixed integer h =~ 0 we have

14

21
2: eZTrhg{x,'ﬁ}

x=1

dﬁ:(b—a)ﬂ;:-{-—z—ﬂBNN’”(|0|§1). . (15)
ah

ﬂ

Proof.
| N ( N r N r
3 erringixd)| | 3 g2mihg(xh 3T =2 hglx,6)
x=1 ‘ t =1 x=1
— b elrih(gln, i)+ ... +g(np,9) . > e-—z:miglnl,mﬂ-...+gtn,.,5'}'
(R oenyitp} (ypneeslly)

where both sums are to be expanded over all N7 r-tuples of integers
no=1,2,...,N.

Applying the preliminary remark of § 5, we write

N r
> ez:rz‘)‘nl,gf[:r,é,\‘| — r A {nl' Y nr€ eZmihigin )+ ... +gingH)

x=1 HLTEREY P

Z A ;nl S nr; e—z:xih(g[n.,GH...+g(n,.,9]l
g eenyfip |

2mhs Z glng J]- ‘ g(m B)g
= Z E Agn]..--,nr}Agml,....mr;e (E'—

e ey | |y i g

= 2 Anp.ondf+2 2 z

T TR It [ Ry eenllp] > ey, mp!

Alng...,ne}Almy, oo, me} cos 2z hP(6)
by (9). Hence by (8)
b
&/ b . (16)
42 Z’ Z Ain,. wnbAfmg,... mri cos2zhd(H) d6.

Vg Apl > 00,00 My

N ir
2 e?rihex9 ) df = (b—a) Al +

x=1
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Now choosing the new variable of integration u by the substitution

u=9(6),
we find
du—¢Q’ (6)db
and
b ¢
[cos 27h @ (0) - d6 = | cos27hu kA
] = “he 57 6)
a ¢ ta)
and therefore using BONNET's theorem and (10)
| b
: /‘cos 2nh¢(6) - do ‘ = n_hlﬁ
a
Hence by (16) and (11)
b
N {2r r
[ > erihgnn | g6 =(b—a) Ay + z—ii\L B (|9 =1).
J lx=1 i 7

a
Q.e.d.

Lemma 2. Let the conditions 1 of the main theorem 5 be satisfied.
11. Defining By by (12), we suppose that a non-decreasing sequence
w(1), w(2), ... and a non-decreasing sequence of integers A(1), A((2), ...
(A(N) =3, if N = N,) exist, such that the series

b s{(b—*a)r!A(N)—]—ZB}'vlogA(N}ng( [Ns_s-l +1)§'2’. (13a)

n=N,

converges. Then almost all numbers 0 of a <0 = b have the property that
for all integers h =1, 2, ..., A(N)

N ; | N—1 : #
‘ Eezm.ﬁf{n,&)__f_zsiN%w(|:—S——:I—J—1). if N=N;(6) . (17)
|n=1 |

Proof, Let N be a fixed integer = Ny. Let (A, o) denote a couple of
integers which satisfy the inequalities

1=h=A(N), 1

IIA
1A

Then the Lemma 1 with
glx, 0)=g.(x,.6)=f (0 + (x—1)s,6), N=N.:

b
a

because of (6) and (7).

learns

N, | 2r

3 antnes| d0=b—a)r! N+ By, N: . . (18)

x=1
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Now let S(N, h, 6) denote the set of all numbers 6 on a=< 6 =b for
which

Ny
x el g (x,4)
x=1

=Ny@™) . . . .. . (19)

Then by (18) we obviously find for its measure mS(N, h, o) the inequality

m S(N, h. 0) N7r gw(Na)Fr = (b_a) r.’qu + % BN, Ncrr

hence

mS(N,h, o ég —a}r!—|—%BN, %{W (N}

and therefore by

8

ES OB ;g (b—a)r/++ B*N“w( [N:S]+ 1){”.

Now let S(IN) denote the set
S(N)= 2 S(N, h, ),

(h,3)

N = [N“j +1 and (12):

where the summation is to be extended over all couples (k, ) which
satisfy 1 Sh < A(N), 1 £0=s5s. Then we have
G —2r
|+
2r

< si(b—a)r! A(N) + 2By log 4 (N)} %w ([Ns_s]+ 1) 2_

Each 0 of a <68 < b, which does not belong to S(N) (N =N,) has the
property that the inequality

s A% & -
éwa(Ns)<(I¥+1) w([I—\{s—l—\+l)

is valid for ali couples (A, ¢) which satisfy the inequalities

A(N) 1
mS(N)ég(b—a)rfsA(N )+sBy 2 22 ([
(20)

ZJ-’ o2l g5 (x,0)

1 éh;A(N} . 1=6=s.
Therefore we have for such a 6
EZSiN*w([ﬁg—l}—l— 1).
for all integers h =1, 2, ..., A(N).
Now as mS(N) satisfies (20) and as the series (13a) converges, almost
all numbers 6 of a <0 < b belong to at most a finite number of the sets

9

| N
\ > ez:cihf(n,ﬁ)
n=1

N,

)
2’ 2 ez:u‘h Eoix,5)

c=1 x=1

-
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S(N) (N = N, Ny +1,...). Therefore for almost all 8 of a6 < b an
index Nj can be found, such that

éZs*N*w([¥]+l).

whatever the value of the integer h = 1,2, ... A(N) may be. Q.e.d.

N
3 erihfin)

'n=1

§ 7. In order to prove the main theorem, we quote the [ollowing
theorem, which is an improvement proved by ERDOS-TURAN 3) of the one
dimensional case of a theorem of vAN DER CoORPUT-KOKSMA 1).

Lemma 3. If uy, u,, ... is a real sequence and if D(N) denotes its dis-
crepancy, then for each infeger m = 1, we have

N .
E eZm‘ hupy

=xt N . %
ND(N)=K) +1+kzlh

where K denotes a numerical constant.
Proof of the Theorem 5. Put
up=7Ff(n6), m—= [1-"’ﬁ], A(N)= [}"rﬁ],

Then (using Lemma 2) for almost all 6 we have by (17) and (21), if
NZz=Nj (9)

%, NC)

V¥l 2 [N—1
ND(N)=K N +K 3 + s Niw([T]-f-l)

=K, &Nty ([¥]+1)109N.
Q.ed.

§ 8. Proof of Theorem 3. Be w(N) the function of Theorem 3 and
let Ny be a sufficiently large integer. We shall prove that the functions

f(n,0) of Theorem 3 satisfy the conditions of Theorem 5, if we put for
N’ 2 NO

. 2
s(N)= ':]og(l =3) log log N:l
log N
log Vo ([YN]

where & denotes the constant of Theorem 3. Now for N = N, we consider
the s = s(NN) sequences

e O)=Fo+s—15.0) (1=0Zsix=1.2... N= [ N2 ] 1),

(22)

F(N)= |+ 1w =1ig N Vo) \

3} P. ERDOS and P. TURAN, On a problem in the theory of uniform distribution.
Proc Kon. Ned. Akad. v. Wetensch., Amsterdam, 51, 1146—1154, 1262—1269 (1948);
Ind. Math. 10, 370—378, 406—413 (1948).

1)
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By hypothesis we have (the prime meaning differentiation by 6):

f’(fn(l 1, 6):::—1+6’

hence for N 2 N,

loglog N
T Ot SO = (1 0> (1 4+ ) 90 = (og Y > £ 4 1.

Therefore if we take two r-tuples

{nl....,nr=>{m1..--,mri,

we have, using the notation of the Preliminary Remarks:

' (6)=g:(n,6)+ ...+ g:(nr, ) —gz(my, 6)— ... —g: (m, 6)
=g, (1, 0)—rg:(n:—1,0) > g (n:— 1,0 = f (1,a) =c, (23)
and we conclude that if we range the r-tuples {ny, ..., n-} in order of in-

creasing magnitude, the corresponding sums

g-(n. 6)+ ...+ g: (nz, 6)

with each step will increase by at least the amount ¢y, whatever the
value of 6 (a <6 < b) may be. Hence, if the r-tuple {ny, ..., n;} is fixed,
we have by (10) and (9)

1 ¥ 1 _14rlogN
Z X § ¥ (nyyeenrsmye. . mpm 1= — —= amis
My Rpl > | My, mp) Cp k=1 k Co
as there are at most NI < N7 r-tuples {my, ..., m:}.
Therefore we find by (11) and (6)
1+rlogN

By, =N;Tr! X Alnpuand= g‘ (1+rlogN)
0

Co ECTY P!

by (7). Hence we find by (12) a fortiori

N-—Z—r’logN<r’logN for N=N,.
Co

Thus we find that the general term of our series (13) is at most
{(b—a)sr" Ni+sclog? N} {w ([V NI+ Di-2r =

=c,s(log N)" Nt Vlog N™" { Vo (/N ™"
by (22) and therefore by (22)

2log N
———— . ¥ o 5
=c, sNt {To[YN])} "™ < N73, if N= N,

Hence, our series (13) converges.
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By hypothesis we further have fi19 2 (1 + 9) f(ag 20.

Repeating the proof of (23) with f” instead of {’ and g; instead of g,
we find @”(6) = 0. Hence ¢’(6) is non-decreasing.

From our result we conclude that for almost all 6 the inequality (14)
holds, i.e. because of (22):

ND (N)=K, Nt (log N)! (log log N)} Y (N), if N= N; (6).

Hence (5) follows immediately.

§ 9. Proof of Theorem 4. We shall use Lemma 2 and we put

2
A(N)=[NX], s(N)= [W log log N],r(N) = o
_[(K+2)logN e ‘

where K, 4 and w(N) are defined in Theorem 4. Then in exactly the same
way as in § 8 it follows that

By=r"logN for N=N,
and thus the general term of the series (13a) is at most
{(b—a) sr” NX - 517 2Klog? N} fp([YN] + 1)} =
=c,s(logN)” NX (:F;h?_g_ﬁ)_zr fo (YN}~
by (24) and therefore by (24)

. —[2‘+K]10—gN
< ¢35 NK{o([JN])} s oal < N-1, if N= N,

Hence, the series (13a) converges. From our result we conclude that (17)
holds for almost all @ on a <0 <), i.e.

N
3 eihfing

n=1

= K; Nilogt N (log log N)t @ (N), if N= Ny (6).

From this Theorem 4 follows immediately.

12




