
P. ERD& and J. F. KOKSMA: On fhe uniform distribution module 1 of 
Iacunary sequences. 

(Corzmunitated at the meeting of February 26, 1949.) 

3 1. As is well known one calls the sequence of real numbers ul, up, . . . 
uniformly distributed modulo 1, if the number N’ of those among the 
numbers 

u1- [Ul], uj - [u,], . * . , UN-- [u,], 

which fall into an arbitrarily given part a 5 u < j of the unit interval 

0 ~5 u < 1 satisfies the condition 

JSB 
N 

-a, if N+ w, 

The difference ‘x- (,%-a)’ ’ 
IN 

ts always 5 1 and for fixed N > 1 one calls 

its upper bound, (if (u, p) IS supposed to run through all couples with 
0 S a < p S 1 ), the discrepancy D(N) of the sequence. If 

ND(N)=o(N), . . . . . . . . (1) 

it is trivial that the sequence is uniformly distributed modulo 1 and as was 
proved by WEYL I), inversively (1) is a consequence of the distribution 
modulo 1, defined above. 

One gets an interesting special case when putting 

Un = ea, (n==l,2 ,... ). . . . . . . (2) 
where 

I., < 12 <. . . . . . . . I 1 . . (3) 

denotes an increasing sequence of integers. FATCXJ 1) already proved that 
such a sequence is everywhere dense modulo 1 in the unit interval for 
almost all values of 8, provided that the sequence (3) is lacunary, i.e. that 

for some positive constant 6 

~n+,~(l$cy., (n=l,2 ,..t ). . . . * . (4) 

HARDY-LITTLEWOOD 1) and WEYL 1) proved that for each sequence of 

integers (3) the sequence of numbers (2) is uniformly distributed modulo 1 
for almost all 8. Hence for such sequences (1) holds. FOWLER I), KOKSMA 1) 
and DREWES 2) deduced improvements of (1). In the special case 

rz, = 2”. 

I) References in “Diophantische Approximationen”, Erg. d. Math. IV, 4 (1936) by 
J. F. KOKWA (Kap. VIII and IX). 

2) A. DREWES, Diophantische Benaderingsproblemen, Thesis Free University, Amster- 

dam ( 1945). 
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the problem is equivalent to the question how the digits 0, 1 are distributed 
in the dyadic expansion of 19, Here KHINTCHINE 1) proved very sharp 
results. 

Generally speaking, the problem is somewhat easier to handle for lacunary 
sequences (4) than in the general case (3). In this paper we consider the 
case of lacunary sequences of numbers 

which form a generalisation of the sequences defined by (2). The method 
used in this paper leads to great difficulties, if one tries to apply it in the 

general case. In a following paper we treat the general case with an other 
method, which in the specialised cases which are considered in the present 

paper would give a slightly less sharp result than we deduce here. 

4 2. In this paper we prove a general theorem in which as a special 
case is contained the following 

Theorem 1, Let 6 denote an arbitrary positive constant and w(n) a 
positive increasing function of n = 1, 2, . . . with o(n) + 03, if n + 03. 
Then for any sequence of positive numbers A,, lb2, . . ,, which satisfy (4), 

the discrepancy D(N) of th e sequence (2) satisfies the inequality 

ND(N) = 0 (Ntlog: N(log log N)4 0 (N)) . . 1 . (5) 

for almost all 8. 
This estimate is sharper than all known results. The exponent $ in the 

factor N+ cannot be improved, as KHISTCHINE proved that in the special 

case A, - 2n, we have 

ND (N) = f-2 (W l’log log Iv). 

Another application of our theorem is the following 

Theorem 2. For almost all values of 0 2 1 the discrepancy of the 
sequence 

8, 82, 83, I . , 

satisfies the inequality (5), if o(n) d enotes a positive increasing function 

such that W(n) + ~0 as n -+ ~0. 
That the sequence 8,0*, . ,. for almost all 8 is uniformly distributed 

(modulo 1) had already been proved by KOKSMA I), whereas the sharpest 

estimate for the discrepancy of this sequence known till now was given by 
DREWES 2). 

5 3. The theorems quoted above are contained in the following 

Theorem 3, which itself is a special case of the main Theorem 5, 
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Theorem 3. Let a < b, 6 > 0 be given real numbers. Let f( 1, 0), 

f(Z O), . ..+ denote a sequence of real functions which are defined on 

a 5 8 S b, such that 

fe’(n+l,e)~(lt6)f~{n,8)>0; fTd’(n$1,8)~(1$8)~‘(n,8)~~ 

b = 1, 2,. * J 

for all values of 8 on a 5 8 < b. Let o(n) denote an increasing function of 
n = 1,2, . . . . such that o(n) + ~0 as n + 05. 

Then for almost all 9 on a -I 0 < b the discrepancy in the uniform 
distribution of the sequence 

f(l, 8), f(2,8), . . . 

satisfies the relation (5). 

Remark, It is clear that the sequences of the theorems 1 and 2 satisfy 

the conditions of Theorem 3. In the first case we put without loss of 
generality a = 0, b = 1 and in the second case we put a = 1 + 8, b > a 
and after application of Theorem 3, we let 

B-,0, b+m. 

The reader will find the deduction of Theorem 3 from Theorem 4 in 4 8. 

‘$ 4, For the proof of our main theorem we deduce a lemma (Lemma 2), 

which has some interest in itself. For the special case, considered in 
Theorem 3, it runs as follows: 

Theorem 4. Suppose that the conditions of Theorem 3 are satisfied. 

Let K denote a positive constant. Then for almost all 8 the following 

statement is true: If N and k are integer such that 1 5 k 2 NK, then 

; ezxi*f(@) Z C (8) Nt log” N (log log N)+ o (N), 
n=1 

where C (0) does not depend on N or k. 

The reader finds its deduction in 4 9. 

3 5. Before we state the main theorem, we make some 

Preliminary Remarks, Let N and r denote positive integers. Out of the 

N integers n = 1, 2, ,.., N, we can form Nr different r-tuples; such an 

I-tuple we shall denote by (nI, . . . . nr). There are Ci differx-rt r-tuples 

among them for which nI 4 n2 i . . . i nr. Such a special rctupie we shall 

denote also by {nl, . . . . nr}. The elements nl, . . . . nr of the r-tuple 

In It . . . . nr} have a number of different permutations, which we shall 

denote by A.{n,, . . . . nr>, Then we obviously have 

A In 1.. . . , nr]Zr! ‘ . . . . . . . (6) 

and 

In,, :n,1 A t 
nl,. . . , n,] = N’. . . . . . . (7) 

.. , 
5 
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For later purposes we put 

A&= L’ A2 In1 ,..., n,]b . . . . . . (8) 
;n,,....n,\ 

Dzfinition+ If {nl, . . . . nr} and {m,, ,.,, mr} are two different r-tuples 
of the above kind, we say that the first is greater than the second: 

In 1,. * . , nrj > {rnl,...,rn,)> 

if and only if for some z (1 5 z S r) 

nT> inI , n,=m, (p=7$ l,t-/-2 ,.+., 4. 

Condition A. Let 9 (x, 0) for x = 1,2, . . ,, N denote a function of 6 on 
the segment a < 8 < b such that for each couple of r-tuples (nl, ..,, nr} > 

> {ml, ..+, mr} the function 

~(@=$(nl,...,n,; rnl,....rn,:H)=~~~8(np,B)-~~~~(rnp.H) . (9) 

has a derivative for a d 8 5 b, which is continuous, + 0, and either non- 
decreasing or non-increasing in the segment a 5 8 2 b. We then put 

K=Y(nl,..,,nr;ml ,..., mr)= 

Min f&(ni ,..., n,:ml, . . . . mr;a),@)‘y(nl,. , . , n,; m,, , . . , m,; b)], 1 + ‘lo) 

BN=N-~ 2’ 
In,,...,nr~>I,,,,~,,r~A bl~***Jb~ * ~mlp-*fmrI (11) 

Y--l (nl, .I ., 72,; ml, *. .,m,). I 

Now we state our main theorem: 

Theorem 5. I. Let a and b denote real constants with a < b. Let 
f(n, 6) for n = I,2 . . . denote a real function of 9 on the segment a 505 b. 

Lef NO be a positive integer. Let r = r(N) and s = s(N) be posifive in- 
tegers which are defined for each integer N > No, such that 

S(N)SN. 

Let for each integer N Z NO and each integer (J = 1, . . ., S(N) the Nb func- 
tions 

g&,e)=f(a+(x-l)s,8) ! x=1,2 ,....N.=E]+l) 

be considered and let the condition A be satisfied with gn instead of g and 
with ND instead of N. 

II. Putting 

we assume that a non-decreasing sequence y (1 ), y(2), . . . of positive 
numbers exists such fhat the series 
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converges. Then almost all numbers 8 of a 5 0 2 b, have the property that 
the discrepancy D(N) of the sequence f ( 1, e), f (2, O), , , ‘ satisfies the 
inequality 

ND(N)ZK,s+.N+. y ([e]+l) IogN for NZN,. (14) 

where K, denotes a numerical constant, whereas No denotes an index 
depending on 8. 

$ 6, We now prove 

Lemma 1, Let N and r denote positive integers and lef g(x, 0) satisfy 
the condition A. Then for each fixed integer h $0 we have 

b 

i’l 

2 e2zihg(x,8) 

, x=1 
‘~d8=(b--a)A&+~BNN’(J(Ei~1). ’ U-9 

;I 

Proof. 

N 2r 
2 e2.ehg(X,s) = ( 

; ie 
Zxihg(x,O) r 

r 
2nihg(x,9) 

x=1 x 1 
H 

x$e- 
1 = (n z e2nih(g(nl,fi)f...+g(n,,9)) * 2 e-2nih(g(nl,b)+ . . . +g(n,,9), 

1,...,nr) (n,, . . ..nr1 

where both sums are to be expanded over all N’ r-tuples of integers 

nQ= 1,2 ,..., N, 

Applying the preliminary remark of 4 5, we write 

N 2r 
2 @hg(x,Y) = 

X=1 
; *,,. <,,,IA (nl, , . . , n,{ ez.zih(g(nl,9)+...+g(nr,Y)) 

b 

1; 

N 
2 $ni hgk@ 2r d@ = (b-a) Ah + 

x=1 

;-2 z 

b 

!’ 

+ (16) 
2 Afn,,...,n,IAlm,,...,m,) cos2zhQ(B)dB, 

;n,,...,n,l> ;m, ,... ;mfl 

a 

7 



84 (269) 

Now choosing the new variable of integration u by the substitution 

u = cp (B), 

we find 

and 

du = gf (e) de 

b Q: 0) 

.i 

cos 2nh Q (6) - de = 
s 

du 
cos 2zhu m 

a Q (Q) 

and therefore using BONNET’S theorem and (10) 

b 

cos2nh@(e),de Z--&6 

Henceby (16) and (11) 

Q.e.d. 

Lemma 2. Let the conditions I of the main theorem 5 be satisfied. 
11. Defining B> by (12), we suppose that a non+decreasing sequence 

Y(l). Y(2)* *a* and a non-decreasing sequence of integers .A ( 1) , A( ( 2), . , . 

(A(N) 2 3, if N 2 NO) exist, such that the series 

converges. Then almost all numbers 8 of: a 6 9 < b have fhe property fhaf 
for all integers h = 1, 2, . . . . A(N) 

N 
2 $nihf(n,5~ 5 &tNt 

n=1 
y ([y-j++ if NZNo”(e) + (17) 

Proof. Let N be a fixed integer >= &, Let (h, O) denote a couple of 

integers which satisfy the inequalities 

1 ShhA(N), lZiSSs. 

Then the Lemma 1 with 

~(~,e)=~~(x,e)=f(o$-(x-i)~,e), N=N, 

learns 
b 
- NC 

!i 

2 eZzihg~(X~f’) 2rdO Z b-a) r! N,’ + k BN, N,’ . ’ (18) 
x--1 

because of ‘(6) and (7). 

8 
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Now let S(N,h,o) d enote the set of all numbers 8 on a S 0 S b for 

which 

NW 
2 e2.aihg~(x~y) ZNjy(N,) . . . . . . (19) 

x=1 

Then by (18) we obviously find for its measure mS(N, h, CJ) the inequality 

mS(N,h,o)N:~y,(N,)j”~(b--a)r!N~+~BN,N:, 

hence 

and therefore by 

(b--a)rl++ B N//Y([+]+l)~r. 

Now let S(N) denote the set 

S (N) = j?) S (N> h, 4 
,* 

where the summation is to be extended over all couples (h, 0) which 
satisfy 1 < h < d(N), 1 < IS S s. Then we have 

mS(N)Z 
. (20) 

<,[(b-a)r!A(N) 

Each 8 of a < 8 < 6, which does not belong to S(N) (N > No) has the 
property that the inequality 

is valid for alI couples (h, a) which satisfy the inequalities 

lZhhA(N) , 1Z~Oss. 

Therefore we have for such a 8 

for all integers h = 1, 2, . . . . d(N). 
Now as mS(N) satisfies (20) and as the series (13a) converges, almost 

all numbers 8 of a I 6 < b belong to at most a finite number of the sets 

4 
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S(N) (N= No, No + 1, . . . ). Therefore for almost all 0 of a < 19 < b an 

index N,” can be found, such that 

~~e2rihfln.b)~C2SiN:~([~]+I). 

whatever .the value of the integer h = 1,2, . . . d(N) may be. Q.e.d. 

$ 7. In order to prove the main theorem, we quote the following 
theorem, which is an improvement proved by ERD~S-TURIN 3) of the one 
dimensional case of a theorem of VAN DER CORPUT-KOKSMA 1). 

Lemma 3. If LIP, U2, . . . is a real sequence and if D(N) denotes its dis- 
crepancy, then for each integer m 2 1, we have 

where K denotes a numerical constant. 

Proof of the Theorem 5. Put 

un = f(n) 8), m = [iNI, A (N) = [Y’N]. 

Then (using Lemma 2) for almost all 8 we have by (17) and (21), if 

N>N,‘(O) 

ZK, s+N+ w([~]il)logN. 

Q.e.d. 

9 8. Proof of Theorem 3. Be w (N) the function of Theorem 3 and 
let NO be a sufficiently large integer, We shall prove that the functions 
f(n, 0) of Theorem 3 satisfy the conditions of Theorem 5, if we put for 
N2No 

s(N)= ; 

(22) 
r(N)= + l;~(N)=]/logN2’1!1~ * 

where 6 denotes the constant of Theorem 3. Now for N > NO we consider 
the s = s(N) sequences 

s~(x,8)=f(a+(x-l)s,8) ZaZs: x= 1,2,..., N,= [qq+1). 

3, P. ERD~S and P. TUFJN, On a probIem in the theory of uniform distribution. 
Proc Ken. Ned. Akad. v. Wetensch., Amsterdam, 51, 1146-1154, 1262-1269 (1948); 
Ind. Math. 10, 370-378, 406-413 (1948). 
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By hypothesis we have (the prime meaning differentiation by 6’) : 

87 

f’ (n + l*e) s 1 + 8 

p (n, 8) ’ 

hence for N L No 

Therefore if we take two r-tuples 

In,, . . . , nr)> jm1,...,mrI* 

we have, using the notation of the Preliminary Remarks: 

qq8).=g6(n,,e)+... +&(n,,8)-g8:(m1,8)-...-g~(m,,e) 

Z gi (n,, e) - rgb (nr - l,O)>gk(n,-ll,e)Z~‘(l,a)=cO (23) 

and we conclude that if we range the r-tuples {nr, ..,, nr> in order of in- 
creasing magnitude, the corresponding sums 

& tnl. 4 + . . . + gb (nz. 6) 

with each step will increase by at least the amount co, whatever the 
value of 8 (a 5 8 I b) may be. Hence, if the r-tuple {nr, .,., nr} is fixed, 

we have by (10) and (9) 

z 2 I Y(n,,... nr; m,, ,. . ,rnr]-‘S L 2 
r 1_= 1 +rlogN, 

k=l k - CO ;n,,...,n r/> lm,,...,mr; co 

as there are at most IV,‘< Nr r-tuples {ml, . . . . m,) 

Therefore we find by (11) and (6) 

B~,zN;rr! ’ frlog N I”i,2 
CO 

A jn,,...,n,]=f-((I +rlogN) 
*. .,n,\ co 

by (7). Hence we find by (12) a fortiori 

B$Z$r!logN<r’logN for NZNO. 

Thus we find that the general term of our series (13) is at most 

[(b--a)sr’N++sr’log2N) {~,([Jmfl)j-~‘Z 
1- 

~2 cl s (log N)‘N+ . 1Jlog N-2’ [ I’~([ii~])~-~’ 

by (22) and therefore by (22) 

2 log N 

~5 cl s N+ j lie ([fm])l- - 
‘ou’,([’ NI) < N-~, if N ~ No. 

Hence, our series (13) converges. 

11 
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By hypothesis we Further have f&+r,8) 2 (1 + 6) f;;t,o) 1 0. 

Repeating the proof of (23) with f” instead of f’ and sz instead of Q;, 

we find Q”(0) > 0. Hence &‘(6) is non-decreasing. 

From our result we conclude that for almost all B the inequality (14) 
holds, i.e. because of (22) : 

ND (N) G K2 N+ (log N)b (log log N)% fmo, if N Z No” (6). 

Hence (5) follows immediately. 

9 9. Proof of Theorem 4. We shall use Lemma 2 and we put 

1oglogN ,r(N)= 1 I * (24) 

1 + l,y,(N)=JlogNZ w(N), 
) 

where K, 6 and a(N) are defined in Theorem 4. Then in exactly the same 
way as in 4 8 it follows that 

B lc5t’log N for NZNO 

and thus the general term of the series (13a) is at most 

{(b--a)sr’ NK+sr ‘*2Klog*N] j&N] + l)]-“‘S 
I- 

S c2 s (log N)’ NK (Tlog N)+ i o ([iNI) 1 -2r 
, 

by (24) and therefore by (24) 

-(2+K) log N 

<c,s.NK(4Wl) 1 log~(U’~l) < N-t, if NzNN,. 

Hence, the series (13a) converges. From our result we conclude that ( 17) 
holds for almost all 0 on a S 0 S b, i.e. 

$ $d hf(n,N s K3 Nt 1 og+ N (log log N)* w (N), if NZ No” (0). 
n=1 

From this Theorem 4 fo!!ows immediately, 

12 


