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Let fu(x) = a, + ax™ + ... + a, ™1, a;, =0, for
0 <i < k—1, a; real, be a polynominal of % terms. Denote
by O(fx(x)) the number of terms of f.(x)2. Put

Q(k) = min Q(/(%)),

where fi(x) runs through all polynominals having % non-
vanishing terms and real coefficients.

R ‘DE1Y) raised the problem whether Q(k) < % is possible.
Rényr, KaiMArR and REDEI?Y) proved in fact that lim inf

k—>co

Q(k)/E = 0, also that Q(29) < 28. Rény1?) further proved
that

lim —l- E‘ %=0.

n-sco M k=1 R

He also conjectured that
i 9
k—>o0 k
In this note we are going to prove (1), by a slight modifi-
cation of the method used by RENyI. In fact we shall prove
the following
Theorem. There exist constants 0 < ¢y and 0 << ¢; < 1,
so that

0. (1)

Qk) < ¢ k=, (2)
1) A. REénvi, Hungarica Acta Math. 1, p. 30—34 (1947).
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First we state two lemmas, both of which are contained in
RENYI's paper.

Lemma I Q(29) <28.

Lemma II. Qa.d) <Qa).Q). (Lemma II in fact
is almost obvious).

From lemmas I and II we immediately obtain that

Q(29) <28, (3)

or (2) is satisfied for integers of the form 29*. Assume now
! >2and 29' < k<29,
Put

t=[%],r+l:29‘. (4)

Let h{x) = a, + ax™ + ... 4+ ax"™, a; #0, be the poly-
nomial for which %(x)2 has Q(29%) < 28 terms. Consider now

F(x)=h(x)g(x), g(x)=b,+byx"r+bpx™"r+ . . . +b ", b; 0

where the &’s and s will be determined later. Let us compute
the number of terms of F(x). Clearly F(x) has exactly (» —1)
(s + 1) terms 4, x* where # == 0 (mod #,), further the constant
term and the coefficient of x*"3" can not be 0. By suitable
choice of the b’s we can clearly arbitrarily prescribe whether
the coefficient of x™r, | <wv < s is 0 or not (we only have
to solve equations of the first degree). Thus g(x) can be so
chosen that F(x) should have 2 +- (r — 1) (s 4+ 1) 4+ A terms
where 0 < A < s is arbitrary. Put

k—2}_

©)

s—]—lz[
r—1
Clearly by (4) s > »— 1. Thus

24+ @—0)(s+1) <k<24+(F—1)(E+1)+s.

Thus by what has been said before we can determine g(x)
so that F(x) = g(x)A(x) has & terms. But then by lemma II
F(x)? has not more than

(2s 4 2).28' < ¢, k' (by (4) and (5))
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terms (g(x)* has < 2s 4+ 2 terms). Thus our Theorem is
proved.

It would be interesting to determine the order of Q(k)
more accurately, RENYI?) conjectured that lim Q(k) = oo,
but neither of us could prove this as yet. *>

One final remark: Since RENYI proves that Q(29) < 28
for polynominals having rational coefficients, our proof
gives Q(%) < c, k'~ for polynominals with rational coefficients.
RENy1Y) asks whether Q(%) is the same if the coefficients
are rational, real, or complex.

{Ingekomen 14.7.°48).

2} Oral communication.
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Our first theorem concerns a composition theorem for
polynomials whose roots lie in certain sectors. It is an exten-
sion of a result of L. WEISSNER!) and can be proved by the
same method. Here we state it, and we give a short indepen-
dent proof, since it will be applied below.

The term sector is used here in the sense of an open point
set in the complex plane bounded by two %) half lines starting
from the origin. If S, and Sg are sectors with aperture e and
B, respectively, and if a - # < 2w, then the product S,Sg,
consisting of all points wyw, (w,eS,, w,eSy) is also a sector,
with aperture a 4 f. The sector consisting of all points
— w (weS) is denoted by —S.

Theorem 1. Put

M
Alz) = X a,z0 (ay #0)
X
B(z) = X b,2" (by # 0,
0
K
ge) = Znlad,z (K = Min (M, N))
0

Suppose that the roots of A(z) all lie in the sector S, (a < =)
and those of B(z) in Sg (8 < nt). Then the roots of g(z) all lic in
the secior S = — S Sp.

1) L. WeissNER, Polynomials whose roots lie in a sector. Am. Journ.

Math. 64, 55—¢0 (1942).
%) A single half line in case of aperture 2z,




