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The eyelotomie polynomial I, (x) is defined as the polynomial of
highest ecefficiont 1 whose roots are the primitive nth roots of unity.
It is well known that the degree of F(x) is p(n) and all its coeffi-
cients are integers. Further it is well known that I, (&) is given by
the following formula

Fy ()= r}:'[ (amfd — 1)),

Denote by A, the grestest coefficient of F, () (in absolute value).
For n<100,A,=1. For u=105,A,=2. 1. Schur proved that
limA,=ec. Emma Lehmer! proved that A.> ent® for infinitely many
n, and I proved that A,>exp{(logn)*®), for infinitely many u.*
Bateman® found a very simple proof that for a saitable ¢, and all »

(1) A, < exp(neeslesn),  (expz =e¢).
In the present note I prove that for snitable ¢: we have for infinitely
many n
(2) A, > exp (nelleslean) |
Thus (1) and (2) determine the right order of magunitude of log log A,.

The proof of (2) will be very similar to that of A,>-exp((logu)'¥),
but the present paper can be read without refersnce to the previous one.

v Hull, Amer, Math, Soo, vol. 42 (1836) pp. 389-3923
¥ Bull. Amer. Math, Soe., vol. 52 (1946) pp. 179-184.
8 To he published in Duli. dAmer. Madh, Soe.
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Since
ﬁﬁlFu(ﬂ}lé:‘-n{ﬂ"}-I- 1)
(2} will immediately follow from the following
TreorEM. For infiitely many n
i | Fy (2)] > exp (oo o)
[#]=1
Let m be large: denote by py<"ps, -+ the consecutive primes

=om. Define
i=P1 Paee Prs k=[N,

A well known theorem of Ingham* states that the number of primes in
(# ,m -+ w*®) is greater than w"3/(2 logm)=k. Thus

®) P
HMenee
(4} m*<<n < (m+ m¥8) or n= (L + o(L}}m" (since & Zm'%),
By 9(e,n) we dennte the number of integers <z which are relati-

vely prime to n. Put t= [Tfﬁ] . Then for r<2t we evidently have
() Y P Y = > a0009.
/

v Ap—1
Tat
frs g
EP= __E[P.P;]’

where the sammation extends over all distinet sets of primes taken »
at a time from gy, ey oo Pes
Now we have to prove a few lemmus :

Lesna 1. Let L ZsZpti®, dafine the interval I, as
(s4-1/4) p2i-t 2 (s 4 B4) pi=t . Then i @ is in 1, we have

sesm>atil 10( § 1)'
We have by the Sieve of Eratosthenes
3@, ) == — (@) + Bel@) — - — B (),

U Quart. J. Math, Ocferd Ser., vol. 8 (1957) pp. 255-266.
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(since X (#)= st (@)=---=0). Nowas in (4) ({f p>m is suffi
ciently large)

._ i - i "pirin 3 .
P <L<pop, <po<p (1 + me) Y g L4 O (ppth].
1 ' g BT

Heanee trivially
@
:‘;-.._
P'-' “Piﬂ—l I.. i :l

(sincesp, -~ p,  =spit + U(fr‘{“‘a’fﬂ}f*} = sp¥t 4o (pi).

Thug by um{-t"ting the square brackets ﬁre lw'idﬁnﬂyl have
: . A
q:(m,fj:vm{l—ﬂn + By— o -EsHH— (21_1) = ( o )—

~ (g ) = el — Bt B ) 2Bt 5 (5, )

2t—4
sinee Xy > Xy >+, and by (D)

(Eiﬂ) 4 (-2;;) i ﬂ-(éiz‘) {- (2;fi1)/39‘

Further

)fp?’{ 2. 108 (2 _l)f

z‘“{( )IP?‘{_(E _1/f

Thus finally

[u} kg Jgges gk o) L1/ &
(Rt L S () b +1'U(2r—1)

for sufficiently large py, which proves lemma 1.
Leyya 2. Define the interval L as ((s—14) - pi* ./_"m.{{s—l—l 4)pitY),
1zszpi™, Then if @ i in L

o, n) > AL | (E!—E

We have for the @ in T, (as in the proof of lemma 1)

9@, m) =z — D@+ —Bua(@) >ed — B+ - '—Esuj"
A A S e

\2t—2 —d (2; .0
ke
= (2:_—-2)
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since ns in the proof of lemma 1

*Bu < (o) <2 (o) P < (5, )

which proves lemma 2.
Lemma 3. Let pi'ZLaLpl. Then

?(m,u}}arlgl—-ﬂ (;;)

We have for pi~'ZxLpl (as in the proof of lemma 1)
o(w, n) = — Bi@) + o — B (@) >a(l — B+ -+ — L) —

ot e am oa( )

}r%l—ﬁ(zr)fl’:’—ﬂ(gr_g) >:Z£L)ug(2r) q. e. d.
Lemva 4, Let :p{"‘"g.egp{"‘. The

We have for pi—*<LaeZpi=* (as in the proof of lemma 1).
s(@,n)=a— By (@) + - + (@ > (1 = B+ - + Does) —

i (H‘rtﬂ) _'(ark—;) Bhiale o it B(Er—ﬁ)ﬂ

_m%ﬂ—ﬁ(&k ) q. e. .

Lot l=a<ay<---<agyys be the integers <n2 relatively prime
to m. The roots of F,(z) are clearly of the form

i = exp (2 wiafn),x; = exp(— Sniayn).
Put A = (p}* - 3/4) p3*' and denote by 1, the arc
1= fexp (2mi A/n) , exp(— 2xi A

Let o, ,i=1,2,---,U be the roots of F.(z) in I. Theso a
clearly correspond to the a; satisfying 1ZLa,Z(p!0+3/4)pt1. In

other words
U = o[(pi0 4 3/d) pii-t, n) = o (A ;n).
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Define the polynomial G, (2} of highest coefficient 1 and degree
w(n) as follows:

Golexp(+ 2nfifo(n)) =0 for 1ZLjZU,
G, Jexp(+ 2rayin)| =0 for j>U.

A theorem of Turdx-Rmsz! states that if a polynomial of degree
m assumes its absolute maximuom in the unit cirele at 2, and 2 is
the closest of itz root on the unit cirele, then the are (z,) is
arwin, equality only for #"—e™,x neal.

Now we estimate

G (1 L
©) M)
E, (1) =1

where .4 denote the roots of G.(z). (B) is evident since all but
the first U1 roots of F,(z) and G,(z) coincide. Next we write

1—y; 2
1—a,

(4] —ia [
u“" F'. = U R O
=1 |1 —uay

where in IT;,¢ is such that @ is in one of the intervals 1, 1.Zs= piit?
(for the definition of I, see lemma 1), in Ils, a; is in one of the I; (see
lemma 2), in s, pPZa<pl’ 2220 £26—-2, and in I, pi—*Z
La<pit 1 22r—1£31—1, Further we write

1 P § S 1 PO 1 e

where in ]li"’,u; is in gne of the I,. It follows from lemma 1 that
if @ is in any of the I, then g is farther from 1 than & and in
fuct the length of the are (ay, %) is greater than

o S Zx
lﬂ'tp(u} LQ.E—I) I'D"n Li‘—l)
A very simple calenlation then shows that (simee in I, 1—a<
<2r(a--1) pi-tin)
g B
o—1)

‘1-—&: 30 (s-+-1) it
The number of the a; in 1, is clearly greater than

1 1 1

L (1= g 4> L

i=1

|>1+

\ M. Russz, Jber, Deutschen Math, Verein. vol. 23 (1914) pp. B54-368 P, Tumix,
Avta Univ. Szeged. vol. 11 (1946) pp. 106-113,
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*h P e i
= IIP}(I -}-H—D(E:"_l)/ﬂa-;-quul)”ﬂ 1 '_
Ience
y - k a
(7) lng{:ﬂt"") 2 it llt_ﬁz—l__) 1 (E:‘.—l_j _

7 BO(+1)pit 2\ B0 (o4 1) pi-t

1 fﬁ f
= — I |
o) (2: -— 1)

ginge

o kg_l_,i P‘]F-—'I
(Ea— ) @1 =~ @r=11
Thus from (7)

e edugery koo
log(M) > B log (i ( 4
(8) og (M) > J log(M)>Za2 (" )
Now we estimate s, We write
Ny= 1 (1Y,
1<g p)itd

where in I, s in 1. From lemma 2 we obtain (s in the esti-
mation of Hi}) for the a in 1,

r ok
i
) ESS TN et S PO | ) L1y
|l a {.B_-_IH}PW_‘[ k Iﬁa_;-_. EE}Z)

The number of the a s in 1, in evidently < 5 'ﬁ'""" IMenece

; ‘{_ X Pfl—|
4(2E—~2)
(3 1/4) pit-*

or (as in the estimation of log H'ﬁ"'"}

1P =4 1—

log ' ~— 5 ) 11k
og I ~— (H 3 l#—1,
Hence finally
It
0 log (Tls) — 1_mﬂ_% y "
(9) og (1) IEEMM g(I) >—(,, _,)loap:

Now we estimate Il,. We write
=
Iy = 11 (ngY),
=l
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where in DY, P LaLpl®. Now |
A bl g
1§ = 1 (o (),

where in (), ¢ P"‘ltiﬁsﬁff-‘-l:l P, For the a; in H“{t} Wi
have from lenima 3 (as in the estimation of M, and I}

)

{ Pi =1

l—au
1—a

and the number of a's in fpitZaZ(t+1) ﬁ*"‘ is £p¥. Thus
(as in the estimation of II; and Ily)

log (14" (1)) >— 4( )f:
and henee
log (UF) >— 5 ) oz 1.
Thus finally

(10)  log(lg)>— alugpl[(g”"g)Jr(m’"_ Je ]

Z=N (zrée)hg‘“"

In the same way we obtain

(11) log (1) > — 6 (2:‘_ ;

)lﬂgiﬁ’l .
Thus we obtain from (8), (9), (10) and (11)

log (I1;) + log (1) + log (s) + log(IL) > log p, [(Ei l)f.fﬂm -

ke - &
= 13(2:_2)] W (2:;-2) BEPYLIR,

e
(.‘3',:—1)1']”}1

12 Gl

12 |G > ep| 21|,

sinee n has more than one distinet prime factor, and thus F, (1]=1.
‘Assume now that Gy, (z) assumes its absolute maximum in the unit

wirele at z. Without loss of generality we can assume that the mﬂ,
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part of 2z is positive. By the previeusly quoted theorem of Tirix-
-Rigsz' 2z, cannot lie on the are

[ exp (— i m) , exp (21'.1 %)}

Now we estimate G (2)/F, (). We have

Gu@)| _ o (o—pi)(z—g)

F. (20) aitu 1 (Zg—an) (fo— )

Now we make uss of the well known and elementary result that
(20—2)(20—z) increases as = moves away from z; towards 1. Henee

Ga(eo)| N |G| n |G—mei)|
Fu {gﬂ) u:l-rllll [Zn—iﬁ:l (En—ﬂ‘n] mEa fzﬂ—-“?:) {zn-%]

since for the a; in I, and the &, <p*' we cannot assume that g; is
farther from 1 (i. e. closer to zy) than =;. Further trivially

n{-’tl! ey
‘ Fu(z) *" (1+ 2y )uﬂ:p“ i En—ﬂn

The are (yf,::-.-] may (by lemma 2) be assumed to be less than
ﬁ“(mk_g) /:P(H] and sinee 2 is not on the arc, exp(—2xiUfy (n)),

exp (2r iUjy(n)), the are (zp,a) is greater than 2m p¥-1([p!"]—s+
+1/2)/n, if @ isin 1,. Thas for the a; in I, (by a simple ealeulation)

s * )
Hi—ay ar—2
=] ([ —n+172) P
The number of the a; with = in I, is clearly less than %-_pi"‘l. Tlus

[ 1 &
1 1 B 4( ) =2 ( )1 -
?-:'11 LT | { 2r—2 ;{afl" a—1/2 = 2t —2 B

ajln 1
x| <nl e o

im0l )< (als)

Similarly for the a < pi™!

lemmas 3 and 4). Thus
> lug(
Bt

1 Reference 1, p. 67.
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Hence finally
(13) log| Gy (20) | — log | Fu(zo) | < ‘*( o108 P1-

In fuet it is vory likely that |G, (zs)|<<|Fu(2e)|, bat (13) suffices
for our parpose.

Now we can prove our theorem. We obtain from |G, () |>]Ga(1)],
(12) and (13)

ke
log | (20)| > log | G (29)| —2(,,, ", lok 1 > loig] G (1) —

- E(zcia)h”’ = KM Uzi ) oo _E(Zrie)] &

}(Ei );_gu% e “t-—i)ﬂ_' 1;3;1} )’:“”'m'

Now from (4)

logn
10 log &

k= (1 + u[l}]%=(l +o(1))
or
logn log n

= 1 1 "
y=(L ol j:'lﬂluglﬂgn 20 loglog u

Hence finally
Log | (3)] > s ~isososd — it meogny . 6. d.

By the same method we could prove that there exist two consecu-
tive roots of F,(z),x and .. so that everywhere on (. 2:.)

10g | Fi (z0) | <— netosiec.
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