
ON THE NUMBER OF POSITIVE SUMS OF
INDEPENDENT RANDOM VARIABLES

P. ERDÖS AND M . KAC 1

1. Introduction . In a recent paper' the authors have introduced a
method for proving certain limit theorems of the theory of prob-
ability . The purpose of the present note is to apply this general
method in order to establish the following :

THEOREM. Let X1 , X2, . . . be independent random variables each
having mean 0 and variance 1 and such that the central limit theorem is
applicable. Let sk=X1-+2+ . . . +X,E and let N„ denote the number
of sk's, 1 :5=k :5=n, which are positive . Then,

N„

	

2
lim Prob .

	

< « _ - arc sin « 1 / 2 ,

	

0 <_ « < 1 .
n

	

a

This theorem has been proved in the binomial case

Prob . { X; = 1 } = Prob . { X; = - 1 } = 1/2

by P. Lévy3 who also indicated that it is true for more general
random variables .

However, the authors felt that their proof is of independent inter-
est, especially since it follows an already established pattern .,

2 . The invariance principle . We first prove the following :
If the theorem can be established for one particular sequence of

independent random variables Y1, Y2, . . . satisfying the conditions
of the theorem then the conclusion of the theorem holds for all se-
quences of independent random variables which satisfy the con-
ditions of the theorem . In other words, if the limiting distribution
exists it is independent of the distributions of the individual X's .

Let
(1 if s > 0,
j
l0 if s S 0,

Received by the editors March 6, 1947 .
1 This paper was written while both authors were John Simon Guggenheim

Memorial Fellows .
' P. Erdös and M . Kac, On certain limit theorems of the theory of probability, Bull .

Amer. Math . Soc. vol . 52 (1946) pp . 292-302 .
' P. Levy, Sur certain processus stochastiques homogènes, Compositio Math . vol. 7

(1939) pp. 283-339, in particular, Corollaire 2 on pp. 303-304 .
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and note that Nn

	

IP(s,.) . Let now

n;= [j k] ,
and put

We have
1 ~k

	

n;

E( I Dn I) < - L.r E E( I Y (Sn ;) - '(Sr) I )
n i=1 r-ni_,+1

and we wish now to estimate E(I¢(sn;)-1,/(sr)I) for ni_1+1=<=r=<ni .r=<ni.
Notice that

E(I

	

¢(s,.) I) = Prob. { sn ; > 0, sr 5 0 }

Prob. IS,, 5 0, sr > 0 }
and that for e > 0

1/2Prob . { Sni > 0, S'. 5 0 } = Prob . Is,,, >- en' , s r 5 0}

112+ Prob. {0 < s n , < eni , sr 5 0 }
1/2< Prob . { s n, - sr >= en{ }

{/2+ Prob. {0 < s n ; < en } .

By Chebysheff's inequality

Prob . { Sni - sr > eni
1/2

} <
n ; - r

e 2ni

and hence

Prob . { Sni > 0, Sr S 0 } S
n,

	 - r + Prob . {0 < Sni < € n,~$ } .
e 2n:

In exactly the same way we obtain

Prob. { Sni < 0,' sr > 0 } 5 n,
	 - r + Prob. { - en, 1/2 < sn, < 0 }

e 2n;

and thus (for n;_1+1 <=rSni)

Dn = 1E E (+ #(Sn ;) - Y' (Sr) )
n ie1 r=n ;_,-{-1

j=0,1, . . .,k,
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E(I T (Sni) - ''(Sr) I )

	

ni

2 r +

	

1/2

	

{

	

1/2
5 2

		

Prob. { - eni < s„ < en ; } .
eni

2

	

k 1

	

ni
E(I Dn I ) < 2 E - E (ni - r)

ME 2

	

ni r = ni-1+1

1

	

k

	

1/2

	

1/2
-E (ni - ni_i) Prob. { - eni < sni < eni }
n i-i

1

	

(ni - ni_1)(ni - ni_1 - 1)

ne e {a 1

	

ni

1 k 1/2

	

1/2
- E (ni - ni-1) Prob. { - eni < Sni < eni }
n

= R(n, e, k) .

We note that, letting n--> oo while keeping k and a fixed, we get

1 k 1

	

r

	

s

	

1 +log k
lim R(n, e, k) =

	

- +

	

e-" /zdu <

	

ke2

	

+ e
n-1~

	

kE i=1 8

	

s

(using the central limit theorem) . Let S>0 ; we have

Prob . { I Dn I ? a } <= R(n, e, k)/S

or, recalling the definition of D n ,

1 E 9'(Sr) - 1 E (ni - ni_1)Y'(Sni)
n r=1

	

n i=1

We have furthermore

1 n

	

l

	

1 n

	

l
Prob . ~- ¢(Sr) < a } = Prob . ~- E 1 '(s,.) < a, I Dn I < S }

n rs1

	

n r=1

In the same way we obtain

> $~ <
R(n,

e'
k)

S

n
+ Prob. ~- E 1I/(sr ) < a, I Dn I >_ 4n r=1

1 k

	

)
<_ Prob . ~- F, (ni- ni_1)'P(Sn i) <a+S}

n ti=1

R(n, k, e)

S
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1 n

	

l
Prob .

	

< a }
n r .i

(

	

k R(n
>= Prob. {nE (n; - n,_i)¢(s,,;) < a -

	

, e, k)

Combining the above inequalities we have
k

	

R(n
Prob . 1

	

(n; - n ;_1),P(s,,,) < a - g~ -	
, e, k)

n i- 1

	

S

(1)

	

5 Prob .
~Nn

< a}
n"

k R(n

'S "'
k)l

5 Prob . - E (n; - nj_1)¢(s,,;) < a + S} +	
n i_1

Let now G1, G2, • • • be independent, normally distributed
random variables each having mean 0 and variance 1 and let
R;=G1 + • • • +G;. It then follows, almost immediately, from the
multidimensional central limit theorem that

1 k

	

l
lim Prob . ~- E (n; - n,_1)1'(s,,) < 0t

n ,-1

1 k

	

l
= Prob. ~- E,&&(R;) < p

I
= pk((3) .

k aal

If in (1) we let n- * oo while keeping k, e and S fixed we obtain

1 +logk

	

e

	

(N„

	

l
pk(a - S) -	- - S lim inf Prob . {- < a}

ke 2S

	

S

	

n-•m

	

nn

5 lim sup Prob . Nn
< a }

n-nn

1 + log k

	

e
S pk(a + S) +	

ke 2 S

	

+ S .

(2)

Notice that the above inequality holds for all random variables satis-
fying the conditions of our theorem . Thus if for some particular se-
quence Y1, Y2 ,

	

• we can prove that

N„

	

2
lim Prob . - < a = - arc sin al/2 = p(a),

	

0 <= a < 1,
nom

	

n

	

7
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then, making use of (2), with a replaced by a-6 and` by a+S we
get at once

1+logk

	

a

	

1+logk

	

e
p(a - 6) -

	

kegs - b < pk(a) < p(a + 6) + ke2S + b

Making use of (2) again we are led to

1 + log k

	

2e
p(a - 26) - 2

	

ke2S

	

6 < lim inf Prob
.

lim sup Prob .
n-0

Prob. { Y1 < u }

Nn
n < a>
Nn
n < aI

1 + log k

	

2e
p(a + 26) + 2

	

ke2S

	

+ 6

Since this inequality holds for all k, e and S we can put, for instance,

e = k-1ls6 = k-111o

and obtain, by letting k-> oo ,
Nn

-
lim Prob. - < a = p(a) .
n-, -

	

rL
Use has been made of the fact that p(a) is continuous for all a . The
invariance principle stated at the beginning of this section has thus
been proved .

3 . Explicit calculations for a particular sequence of random vari-
ables. Having established the invariance principle we could appeal
to P. Levy's result concerning the binomial case and thus complete
the proof of the general theorem . We prefer, however, to work with
another sequence of independent random variables because we feel
that the calculations are of some independent interest and because
they again emphasize the usefulness of integral equations in proving
limit theorems 4

We consider independent random variables Y1i Y2,

	

such that

1

	

u
_ _2 J e-ivldy, 9=1,2, . .,

and we set s; = Y1+ • • • + Y; .
It should be noted that although E(YY)O1 we are justified in
4 See M. Kac, On the average of a certain Wiener functional and a related limit

theorem in calculus of probability, Trans. Amer . Math . Soc. vol . 59 (1946) pp. 401-414.
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using the Y's inasmuch as N„ is independent of the variance of the
Y's as long as the variance is different from 0 . In fact, N„ remains
unaltered if one multiplies all the Y's by the same positive constant .

We are going to calculate

0„(u) = E(exp (uN„)) = E (exp (uE ¢(si) 1 1 .

Setting

p(y) = 2 -1 exp (- I y I )
we have

4n(u) = J
. . . f_exp (

.0

	

u

	

y
)l

.p(yl) . . . p(y,,)dyl . . . dyn

or, introducing the variables

S1=y 1 ,

$2 = Y 1 + Y2,

Sn=y1+y2+ •+ Y.,

cb,.(u) = J

	

. . .
J

exp (u E +p(s ;))
~

	

;=1

	p(S1)p(S2 - S1) . . . p(s„ - sn_1)dsjdS2 . . . ds,, .

We also introduce the auxiliary functions
m

	

ao

	

n
F„(u, s„) = J

	

. . .

	

exp u

	

+p(s;))
Co

	

;=1

.p(Sl)p(S2 - S 1) . . . p(s„ - s„_1)ds1 . . . ds,.-1,

and

F1(u, s 1) = exp (u¢(sl))p(s1) .
We have, for n> 1,

F„(u, s,.) = exp (ui(sn))
J p(s„ - s,.-1)Fn-1(u, s„-1)ds,_1

or, in more convenient notation,
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Thus the series
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Fn(u, s) = exp (u4'(s))
J

p(s - t)Fn_1 (u, t)dt.

¢ n(u) =
J

F,(u, s)ds

F,(u, s) < exp (Re u) max I Fn_ 1 (u, t) ~ .
- .<I<m

I Fl(u, s) I S exp (Re u)

F,,(u, s) I S exp (n Re u) .

W

G(u, s; z) = E Fn (u, s)zn- I
n-1

converges for sufficiently small I z I .
Using (3), we obtain, almost immediately,

G(u, s ; z) - expp (u¢(s)) p(s)
= exp (ut(s))

f-.0 p(s - t)G(u, t ; z)dt

or

exp (- up(s))G(u, s ; z) - 2_1 exp (- I s I )
(5)

	

= z (' °°
2

	

exp (- I s- t i )G(u, t ; z)dt .

For s > 0 we have

Z

	

e
e-nG(u, s ; z) - 2-le-e = - e-e

J
e 1G(u, t ; z) dt

2

+
2

eef e-0G(u, t ; z)dt .
e

It is easily seen that, for sufficiently small I z I , G(u, t; z) is an ab-
solutely integrable function of t .

Differentiating (6) twice with respect to s we are readily led to
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d 2G

ds 2
+ (zeu - 1)G = 0 .

In the same way we get for s<0

d 2G
d$2+(z-1)G=0 .

Thus we get

G = A exp ((1 - zeu) 1 I 2s) + B exp (- (1 - zeu) 1 / 2s),

	

s > 0,

and

G = C exp ((1 - z) 1 / 2s) + D exp (- (1 - z) 1 " 2 s),

	

s < 0,

where A, B, C, D are functions of u and z. Since G is an integrable
function of s we must have A=D= 0.
Thus

From the absolute integrability of G and the integral equation (5)
it follows that

exp (- uP(s))G(u, s ; z)

is continuous for all s and, in particular, for s=0 . This observation
yields

(9)

	

Be- u = C.
Rewriting (6) in the form

e--"G(s) - 2-le," =
z

e- °
J

Oe'G(t)dt-}
z

e_

	

d e°G(t)dt
2

	

2

	

0

z

	

°°
-}-

	

e"
J

e-°G(t)dt
2

and substituting expressions (7) and (8) we get after a few ele-
mentary transformations

z

	

z
1+(1-2) 112

	

1-(1-zeu)h12
	 B

This together with (9) yields

(7) G = B exp (- (1 - zeu) 1 / 2s), s > 0,

(8) G = C exp ((1 - z) 1 " 2s), s < 0 .



19471 POSITIVE SUMS OF INDEPENDENT RANDOM VARIABLES

	

1019

B

	

z) 112 - (1 - zeu)112
e u

	

C = (1 - z) 1 i 2 - (1 - zeu) 1/2

z(eu - 1)

	

z(eu - 1)

and thus G is completely determined .5
In particular, we get

G(u, s; z)ds

(1 - z) 1 1 2 - (1 - zeu) 1 / 2

	

eu

	

1
z(eu - 1)

	

C(1 - zeu)112 + (1 - z) 1

On the other hand (see (4))

J ~G(u, s ; z)ds = E (0 n(u)zn-1
co

	

n=1

1

and hence g5 n(u) is the coefficient of z- 1 in the power series expan-
sion of

(1 - z) 1 / 2 - (1 - zeu)1i2

	

eu

	

1
z(eu - 1)

	

[(1 - zeu) 1/2 + (1 - z)1/2 ]'

A simple computation gives finally

E(exp (uN n) _ 10 n(u)

1
_

		

1, C1/2,kC_1/2,1(- 1)1+ 1 (1 - eku)(1 + e (1+1)u) .
e u - 1 k+1-n

Setting

u=-
n

we obtain the characteristic function of Nn/n.
For large k and l we have

1

	

1

	

1
C112,k ^' (- 1)k-1 2k

- 1 (7rk)1/2I

	

C_1/2'1

	

1)1
(7rl)1/2

'

and it is easily seen that, in the limit n-~ cc , we can use these asymp-
totic expressions in the sum .

s Having found an explicit expression for G it is not too difficult to find explicit
expressions for F,,(u,s) and verify the recursive relation (3) . Since this recursive rela-
tion together with the formula for F1(u, s) determine G uniquely one might substitute
the verification process for the derivation of the formula for G .
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Thus

lim E (exp \ n N-))

1

	

n
E 1

	

1

7r(1 - eiE/n) k=1 2k - 1 (k(n - k))Ii 2

' (1 - e%Fk/n)(1 -F eiM-k/n+1/n))

1

	

(' 1 (1 - e°zx) (1 + e i ( 1-X) )

	

1 (' I

	

dx
ifx	

27riE o

	

x(x(1 - x))1/2
	 dx

- 7r o
e

	

(x(1 - x))Ii 2

I

	

2
= fo eiExdC arc sin x112) .

We complete the proof by appealing to the continuity theorem for
Fourier-Stieltjes transforms.

= lim
n--

SYRACUSE UNIVERSITY AND
CORNELL UNIVERSITY
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