SOME PROPERTIES OF PARTIAL SUMS OF THE
HARMONIC SERIES

PAUL ERDOS AND IVAN NIVEN

It has been proved that D s_,.k~! cannot be an integer! for any pair
of positive integers m and n. More generally, D _s_o(m~kd)~! cannot
be an integer.? We prove two theorems of a similar nature,

THEOREM 1. There is only a finite number cf integers n for which one
or more of the elementary symmetric functions of 1, 1/2,1/3, - - - J1/n
1is an integer.

ProOF. Let ) ;.. denote the kth symmetric function of 1, 1/2, 1/3,

++ -, 1/n. Since each term of E:‘,ﬂ is contained k! times in the ex-

pansion of (14+1/2+ - - - +1/n)* we have, for k>3 log #n and # suffi-
ciently large,

1 1/2 1 k 1 1 L
Z<( +1/ +k. + 1/n) <( +k0rgn) "
k. : .

1,

where the second inequality arises from the usual comparison of log n
with the harmonic series, and the third inequality is implied by the
hypothesis k>3 log #.

Henceforth we take £ <3 log #. By a thecorem of A. E. Ingham?®
there is a prime between x and x-+x%3%, This implies that there is a
prime p between 1+#1/(k+1) and n/k for k <3 log n and n sufficiently
large. Hence Y _z. contains the term

11 1 1

Now (k!, p) =1 since k<n/(k+1), and hence no other term in )z
has a denominator divisible by p*. So if 2 x.=a/b, we know that
p*| b and pla, which proves the theorem.

By a similar but more complicated argument we can prove the same
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L Cf. Pélya-Szegd, Aufgaben und Lehrsiize aus der 4nalysis, vol, 2, Berlin, 1925,
chap. 8, p. 159, problem 250,

2 Cf, T. Nagell, Eine Figenschaft gewissen Summes:, Skrifter Oslo, no. 13 (1923)
pp. 10-15.

3 On the difference between consecutive primes, Quart. J. Math, Oxford Ser. vol. 8
(1937) p. 256. This result is actually stronger than n:cessary for our use here. The
classical estimates will suffice.
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result for the elementary symmetric functions of 1/m, 1/(m-1),
---,1/n,and of 1/m, 1/(m+d),1/(m+24d), - - -, 1/(m+nd).

It should be noted that D 3 is an integer; we know of no other
integral case. Theorem 1 can be proved without the use of the prime
number theorem, and this proof could be used to determine the bound
on #, above which the result of the theorem holds. For smaller values
of 1, 3 . could be checked, but the proof is complicated and the
limits would be large.

THEOREM 2. No two partial sums of the harmonic series can be equal;
that is, it 1is not possible that

) Im+1/m+1)+---+1/n
={/e+1/(z4+ 1)+ - + 1/5

Proor. We assume that n <x. Clearly if (1) has a solution, then
any prime divisor of one of the denominators must divide another.
Hence by Bertrand’s postulate we can be certain that y<2x—1,
since otherwise a prime p >#n would be one of the denominators on the
right side of (1).

LeMMA. Any solution of (1) must satisfy y<x+x'2—1.

To prove this we use a theorem of Sylvester and Schur* which
states that if # >k, then in the set #, n+1, - - -, n+k—1 there is an
integer containing a prime divisor greater than k. In our case
x>y—x-41, so that there is a prime p>y—x-+1 which divides one
and only one (say ¢p) of the integers x, x+1, x+2, - -+, v. Also p
must divide one (say bp) of the set m, m+1, m-+2, - - + [ n, and cer-
tainly not more than one, since n —m <y —x. Then 1/ap and 1/bp are
the only terms in equation (1) whose denominators are divisible by p,

and since
1/bp — 1/ap = (a — b)/abp,

we conclude that p must divide a—b, whence a—b=p and a=p+1.
This implies that

y2apzpP+p>y—z+ 1)+ y—=z+1

or
r—1>(y—z+1?

which proves the lemma.
Next we obtain estimates for the expressions in (1). First we note
that

¢ Cf. Paul Erdés, J. London Math. Soc. vol. 9 (1934) p. 282.




250 PAUL ERDOS AND IVAN NIVEN [April

LD (H_l) 1 (1 1)
o =lo —)—log(1— —
Eb=1 © ] 2k

2
T + E 2j + D@k
Solving for 1/k, and summing the result for k=m, m-+1, - - + |, n, we
obtain
1 1
- o v A
il 221r=z-l-1 _ i i 2
m — S =@+ DeRm
and similarly
1 1 1
I
~ log 2y + 1 i i 2

2e—1 = 5 Qi+ DEREH
Now (1) and our assumption that #» <x imply that for any j=1,

2
2 97 L 1V(7 B 271
v (27 + )2k
is greater when summed over k=m, m+1, - - -, n than over k=x,
x+1, - - -, ¥ and so, comparing the right sides of (2) and (3), we see

that
(2n + 1)/@m — 1) > 2y + 1)/2x — 1).

Thus, ignoring the sum on the right side of (3), we may write
(2n+ 1)2x— 1) I 2

4 lo, < POTD LT o M

& S am - D2y +1) E, E (27 + 1D(2k)%i42
The infinite sum on the right can be replaced by 4/3 times the first
term, since each term is more than 4 times the next. The numerator
of the fraction on the left exceeds the denominator by at least 2,
since both are odd, and hence the left side exceeds

1
1 1 .
5 ( tm— 0w+ ) Gm =Dy £ D

Thus we have
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i n 2-4/3 1 1 1 = 1
) DG TD En 3087 omt E.:.. ?"97»55 &

But the last sum has fewer than xV2 terms (by the lemma) and each
term is not greater than 1/x. And since (2m—1)(2y+1) <4my, in-
equality (5) implies that

1 1 xl.lrg
s < [ ——
dmy Im® =«
or
(6) Imxll? < 4y,

Butalso1/m=s1/m+ - - - +1/n<x'?-(1/x) =1/x"?, so that x** <m,
which together with (6) implies that 9x <4y, which contradicts the
lemma. This completes the proof of Theorem 2.

In conclusion, we observe that 1/2+1/34+1/4=1/12 (mod 1).
Whether the sums in equation (1) are congruent (mod 1) for infinitely
many values m, n, %, y is an unsolved problem.
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