ON THE HAUSDORFF DIMENSION OF SOME SETS
IN EUCLIDEAN SPACE

PAUL ERDOS

Let E be a closed set in n#-dimensional space, # a point not in E.
Denote by S(x) the largest sphere of center x which does not contain
any point of E in its interior. Put ¢(x)=ENS(x). (4 denotes the
closure of 4.) Denote by M} the set of points for which ¢(x) contains
k or more linearly independent points (that is, points which do not
lie in any (k—2)-dimensional hyperplane). M is defined for k <n+1.
In a previous paper I proved that M, has n-dimensional measure 0
and conjectured that M, has Hausdorff dimension not greater than
n+1—k. In the present note we shall prove this conjecture. In my
previous paper I also proved that M,41 is countable, but the proof
there given applied only for the case n=2; now we are going to give
a general proof.

Let R be any set in n-dimensional space. Let x & R. We define the
contingent' of R at x (contgg x) as follows: The contingent will be
a subset of the unit sphere. A point z of the unit sphere belongs to
contgr x if and only if there exists a sequence of points y;, ¥, - - -
in R converging to x so that the direction of the vector connecting x
with y; tends to the direction of the vector connecting the center of
the unit sphere with 2. First we state the following lemma.

LeMMa. Let there be given a set R in n-dimensioncal space. Assume
that for every x, contgr x does not contain any point of the intersection of
the unit sphere with a k-dimensional hyperplane going through its center
(the hyperplane can depend on x). Then R is contfained in the sum of
countably many surfaces of finite (n—k)-dimensional measure.

This lemma is well known.?

THEOREM 1. Let k <n-+1. Then My is contained in the sum of count-
ably many surfaces of finite (n+1—k)-dimensional measure. If
k=n-+1, then My is countable?
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Remark. This clearly means that the Hausdorff dimension of M
(k<n+1)is not greater than n+1—%.

Let us first consider the case k=n-+1. Assume that x& M,41. Let
2;E¢(x),4=1, 2, - - -, n+1, and assume that the 2's are linearly in-
dependent. Denote by f(x) the maximum value of the volume of the
simplices determined by the z's (since ¢(x) is closed the maximum is
attained). Define now N.+1(® = N to consist of all the points x & M1
for which f(x) Z¢. It clearly will be sufficient to show that V is count-
able (for everv ¢). In fact we shall show that N is isolated (in other
words no x& N is a limit point of N —x), that is, we shall prove that
for every x € N contgy x is empty. If this would not hold then N would
contain an infinite sequence of points y; coverging to x so that the
direction of the line connecting x with y; would converge to a fixed
direction. Let Z; be a point of ¢(x) which is closest to y;, and let 4;
be the (unique) hyperplane through Z; perpendicular to the segment
xv;. It is easy to see that as j— =, 4; converges to a limiting hyper-
plane A. Moreover it is easily seen that the set ¢(y;) is ultimately
contained in any preassigned neighborhood of A. Thus for large
enough j, the volume f(y;) must be less than ¢, an evident contradic-
tion; this completes our proof.

Next we prove our theorem in the general case. Let Xk <# and define
M to be the set of all points x for which the makximum number of
linearly independent points in ¢(x) is exactly &. It will clearly be suffi-
cient to show that M{ is contained in the sum of countably many
surfaces of finite (n+1—k)-dimensional measure. Let x & M}/, and let
f(x) be the maximum volume of the k-dimensional simplices formed
from the points 2;, 1 <k+1, where z: E¢(x). xEM,' @ =N’ if f(x)=c.
Let x€EN’, and 3, 1<k+1, be the points which determine a simplex
of maximal volume. Then a simple geometrical argument (similar to
the previous one) shows that contga+ x consists only of the directions
through & which are perpendicular to the hyperplane determined by
the 2;'s, ¢ <k+41. Thus our theorem follows from the lemma.

Let E be a closed set, x& E. Denote by g(x) the distance of x from
E. It has been proved* that g(x) has a derivative —cos a in every di-
rection (x, ¥), where « is the smallest angle formed by the direction
(%, ¥) with the direction (#, ), 2 in ¢(x). Clearly if x €E the derivative
of g(x) can be 0. We shall show that the derivative of g(x) is 0 for
almost all points of E.

¢ Mises, C. R. Acad. Sci. Paris vol. 205 (1937) pp. 1353—1355. See also Golab,
ibid. vol. 206 (1938) pp. 406-408 and Bouligand, ibid. vol. 206 (1938) pp. 552-
554.
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Let x €E. Denote by S(x, €) the sphere of center x and radius e.
Denote by G(x, €) the greatest distance of the points of S(x, €) from E.
We are going to prove the following theorem.

THEOREM 2. For almost all points of E (that s, for all poinis of E
except a set of n-dimensional measure 0)

lim G(x, €)/e = 0.

It is well known that almost all points of E are points of Lebesgue
density 1. Let x be such a point, and suppose that

lim G(z, €)/e 0.

This means that there exists an infinite sequence ¢; and points z;,
2,E5(x, €:), .0, such that the distance of z; from E is greater than
ce;, where ¢>0. But this clearly means that x can not have Lebesgue
density 1. This contradiction establishes our theorem.
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