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Let E be a closed set in n-dimensional space, x a point not in E. 
Denote by S(X) the largest sphere of center x which does not contain 
any point of E in its interior. Put 4(x) = Ens(x). (X denotes the 
closure of A.) Denote by Mk the set of points for which 4(x) contains 
k or more linearly independent points (that is, points which do not 
lie in any (k -2)-dimensional hyperplane). Mb is defined for k 4 n + 1. 
In a previous paper I proved that Mz has n-dimensional measure 0 
and conjectured that Mk has Hausdorff dimension not greater than 
n+l -k. In the present note we shall prove this conjecture. In my 
previous paper I also proved that M,,+l is countable, but the proof 
there given applied only for the case n = 2 ; now we are going to give 
a general proof. 

Let R be any set in n-dimensional space. Let xGR. We define the 
contingent’ of R at x (contgs 3~) as follows: The contingent will be 
a subset of the unit sphere. A point z of the unit sphere belongs to 
contgs 3c if and only if there exists a sequence of points yl, ~2, * * * 
in R converging to 3~ so that the direction of the vector connecting x 
with yi tends to the direction of the vector connecting the center of 
tha unit sphere with a. First we state the following lemma. 

LEMMA. Let there be given a set R in n-dimensional space. dssume 
thatfor every x, contgR x does not contain any $oint of the intersection of 

the unit sphere with a k-dimensional hyperplane going through its center 
(the hyperplane can depend on x). Then R is contained in the sum of 
countably many surfaces of finite (n - k)-dimensional measure. 

This lemma is well known.* 

THEOREM 1. Let k <n+ 1. Then Mk is contained in the sum of count- 
ably many surfaces of finite (n+l - k)-dimensional measure. If 
k =n+l, then Mk is countable.” 

Received by the editors September 24,194s. 
1 G. Bouligand, Introduction d la gbmetrik z’n$n&ssimaie dire&. Also Saks, 

Theory of the integral. 
* Saks, ibid. pp. 264-266 and pp. 304-307. Also Roger, C. R. Acad. Sci. Paris 

vol. 201 (1935) pp. 871-873. 
1 For n=2 this theorem is proved by C. Paw, Revue Scientifique, August, 

1939. 
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Remark. This clearly means that the Hausdorff dimension of Mb 
(kSn+l) is not greater than n+l -k. 

Let us first consider the case k = n+l. Assume that xEM,,+l. Let 
z;@(x), i=l, 2, - * * ‘ n+l, and assume that the s’s are linearly in- 
dependent. Denote by f(x) the maximum value of the volume of the 
simplices determined by the z’s (since d(x) is closed the maximum is 
attained). Define now N,,+l(+) = N to consist of all the points xEM,,+i 
for whichf(x) Zc. It clearly will be sufficient to show that N is count- 
able (for every c). In fact we shall show that N is isolated (in other 
words no xEN is a limit point of N-x), that is, we shall prove that 
for every xEN contgN x is empty. If this would not hold then N would 
contain an infinite sequence of points yi coverging to x so that the 
direction of the line connecting x with yj would converge to a fixed 
direction. Let Zj be a point of 4(x) which is closest to y,, and let Ai 
be the (unique) hyperplane through Zj perpendicular to the segment 
xyi. It is easy to see that as j--, ~0, A j converges to a limiting hyper- 
plane A. Moreover it is easily seen that the set +(yj) is ultimately 
contained in any preassigned neighborhood of A. Thus for large 
enough j, the volume f(yj) must be less than c, an evident contradic- 
tion; this completes our proof. 

Next we prove our theorem in the general case. Let k 5 n and define 
M,’ to be the set of all points x for which the maximum number of 
linearly independent points in 4(x) is exactly k. It will clearly be suffi- 
cient to show that Md is contained in the sum of countably many 
surfaces of finite (n+ 1 - k)-dimensional measure. Let x E Md , and let 
f(x) be the maximum volume of the k-dimensional simplices formed 
from the points zi, i$k+l, where ziE+((~). xEMb’(@= N’ if f(x) hc. 
Let xEN’, and z;, iSk+l, be the points which determine a simplex 
of maximal volume. Then a simple geometrical argument (similar to 
the previous one) shows that contgnrp x consists only of the directions 
through x which are perpendicular to the hyperplane determined by 
the G’S, iSk+l. Thus our theorem follows from the lemma. 

Let E be a closed set, xgE. Denote by g(x) the distance of x from 
E. It has been proved’ that g(x) has a derivative -cos Q! in every di- 
rection (x, y), where (Y is the smallest angle formed by the direction 
(x, y) with the direction (x, z), z in 4(x). Clearly if xEE the derivative 
of g(x) can be 0. We shall show that the derivative of g(x) is 0 for 
almost all points of E. 

4 Mises, C. R. Acad. Sci. Paris vol. 205 (1937) pp. 1353-1355. See also Golab, 
ibid. vol. 206 (1938) pp. 406408 and Bouligand, ibid, vol. 206 (1938) pp. 552- 
5.54. 
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Let xEE. Denote by S(x, e) the sphere of center x and radius e. 
Denote by G(x, e) the greatest distance of the points of 3(x, E) from E. 
We are going to prove the following theorem. 

THEOREM 2. For almost all points of E (that is, for all points of E 
except a set of n-dimensional measure 0) 

limG(x, l )/E = 0. 
It is well known that almost all points of E are points of Lebesgue 

density 1. Let 3c be such a point, and suppose that 

lim G(x, E)/E # 0. 

This means that there exists an infinite sequence E; and points zir 
ziES(x, ei), ei-+O, such that the distance of ZJ from E is greater than 
cei, where c>O. But this clearly means that x can not have Lebesgue 
density 1. This contradiction establishes our theorem. 
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