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ON THE DISTRIBUTION FUNCTION OF ADDITIVE FUNCTIONS

By P. Erniis
(Heceived February 24, 1045}

Let fim) be a real valued number theoretic function. We say that it is addi-
tive if for (my, ma} = 1, fimy-ma) = flmy) + flme). Denote by N(f; ¢, n) the
number of integers m = » for which fim) = ¢. The function ¢{¢) is ealled the
distribution function of f(m) if $(— =) = 0, ¢{=) = 1 and for every — = <
< o

yle) = lim Mi
—ar "
Clearly (¢} is non-decreasing,
Wintner and I' showed that a necessary and sufficient condition for the exist-
ence of & distribution function iz that both

e .
1) ZJ: .
2 3 e o .
o »

where ["(p) = fip) for | f(p) | = 1 and f'(p) = 1 otherwise,

It can be noted that the existence of the distribution funetion does not depend
on the values fip™), & > 1, and that the existence of the distribution funetion
eannot be destroyved by the behavior of f(p) on a sequence of primes # where
2 1 < o,

Let us now assume that »_.(f'(p))"/p diverges. The distribution funetion
of course does not exist. We define F(m) by Fim) = fim) — [fim)]. ([a] de-
notes the greatest integer = @.) We shall prove the following

Taeorem 1. Let fip) — 0 a5 p — = and assume that E,U'[p}jﬂ-’ p==. Then
the distribution funetion of Fim) is . In other words the density of integers m for
whick

Fim) = ¢

equals ¢.  {T'o obtain Theorem I, it is of course sufficient to assume that f{p) —
0 (mod 1)).

The proof of Theorem 1 depends on methods similar to those used in our joint
paper with Kae® (we will refer to this paper as 1), and on a result of Berry.'
The proof will be given later.

1 Amer. Journal of Math, (1930} Vol. 61, p. 713-721.
# Thid, (1040) Vol. 62, p. T38-7432.
1 Trans, Amer. Math. Soc, (1941) Vol 40, p. 122-136.
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If we do not assume that f(p) — 0, the situation becomes rather complicated.
First it is clear that the distribution function of F{m) does not have to be z.
Put f{p) = &, f(p™) = 0. Then it follows from the prime number theorem that
Yr) =3 0sx=<}evlx)=1,4=r=1 Iff(p) = e airrational, it can be
shown that the distribution funetion of F{m) is again 2. The proof is not easy
and we do not discuss it here,

It ean be conjectured that F(m) always has a distribution function. This
if true must be very deep, sinee it contains the prime number theorem

Next we assume that »_.(f'(p))/p < = and 2_f'(p)/p diverges. Then we
have

TavoreEm II. Pul

o(m) = fm) — T %’.

Then fim) has a distribution function, and the distribution function 15 confinuous
and sirictly fnereasing i (— o, 4 =),
We can prove the following slightly stronger

TrEoreM L1, Let fim) be additive.  Assume that a conslonf ¢ exists such that
o we put fim) — elogm = ¢im), Yim) will satisfy the conditions of Dheorem I ;
then

o(m) = f(m) — ¢ log m —Zﬁ:ﬂxj“j i E_-f‘—ghw ofl)

has o distribution funciion.

Theorem III iz essentially idenfical with Theorem II. The eonverse of
Theorem III is probably true, i.e., that if fim) — 2., (f(p))/p has a distribu-
tion funetion, then

i |
fim) = ¢log m + ¢(m), Ew—%ﬂ{ =,
a

At present we can prove this only if f{p) > 0.

We omit the proof of Theorem II sinee it is similar to that given in a previous
paper.' In a previous paper’ we proved that a necessary and sufficient condi-
tion for the eontinuity of a distribution function is that Z;q,ﬂ,‘ulf’p diverges.
(We of course assumed that 2, /'(p)/p and 23, (f'(p))*/p converge.) We can
prove the following more general

Trrorem IV, Let f(m) be an additive function such that 35 wl/p diverges.
Then lo every e there exisis a § sueh thal if 0, < a2 < -+ < 8: = nds a sequence of
tndegers with | fla;) — flaj) | < e then 2 < 8n for n sufficiently large.

I ddded tn preof.  An example of Wintner shows that this conjecture is false. His ex-
ample in fact shows that not even 1/n E:‘_I Flm) exiats, Bee The Theory of Measure
in Arithmetical Semigroups, 1944, p. 48, 11 his.

* London Math. Boo, Journal {1938 Vol, 13, p. 119-127. The result in question iz a spe-
cial case of & result of P. Lévy.
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We shall deduee Theorem IV from

Toaeorem V. Let the additive function be swch that there extsl two constants ¢
and c: and nfinitely many n, go that there exists a; < oy < -+- < 0 = 0, T > an,
L fla) — fla) | < ea. Then there exists o constand ¢ such that if we write

@) = fip) — clog p,

(T (p)/p)* converges.

In other words, f for many integers the values of f{m) are close together,
then f{m) is almost equal to ¢ log m.  If fim) satisfies the conditions of Theorem
V we shall say that it is findlely disiribuled,

The converse is also true. In faet if

+ 3
@ =cgp+m, TP <

then for every ¢; < 1 there exists ¢, such that for every n there exists a sequence
<ty < o <o ZEnx>em|fla) —fla)| <.

From Theorem V, we shall deduece the following two results:
1} if fln + 1) = fin) for all n, then fin) = ¢ log n.
2) fln+ 1) — f(n) — 0 f(p) = 0 for infinitely many p, then f(n) = ¢log n,

The following result probably holds, but I cannot prove it: Assume that
fin + 1) — fin) < ¢ for all n. Then

Jin) = elog n + e(n), |eln) | < e for all n.

The converse is clearly true,
I also conjecture the following results:
1} if fin + 1) = f(n) for almost all # (ie., all n except for a sequence of den-
sity 0), then f(n) = ¢ logn
2) if fin + 1) — f(n) — 0 when n runs through a sequence of density 1 then
fln} = ¢ log n.
We shall give the proof of Theorems IV and V in full detail.
By applying the law of the iterated logarithm we obtain the following
Trreorem VI.  Let f(m) be an additive function | f(p) | < ¢, 2., (f(p)/p)* = =.
Let

ra= P " pan P "

Denote further by N {(d, n) the number of infegers m S n such that for at least one
u > d

> fp) > Au + (1 + &) V2B, log log B, .

i
pzu

Put
Yoo sip = N, W) = UHa),

n=x Tk
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Then

lim &7 (d) = 0.

d—+ag
Stmilarly of we denote by NT(d, n) the number of infegers m = n such that for at
least one u > d

2 fip) > Au + (1 — &) \/2B, Tog log B,

B m
pu

then 1im¢_..9?11 Nid, ) = 1, for every d.
If we apply Theorem VI for f(p) = 1 we obtain the following results:
The density of integers m which have divisors d with
w(d) > log log d + (1 — €) /2 log log d log log log log d

is 1. (vin) denotes the number of different prime factors of n.) To every ¢
and 5 there exizsts a oy such that the density of integers m having at least one
divisor d > dy with

v(d) > log logd + (1 + €) /2 log log d log log log log d

l: <4. We can express these results roughly by stating that for almest all
integers m = pf'pi* - - p&* we have for large k

EFHI—JF { ]}k < c'”””,
Weo omit the proof since it is very similar to that of 1.

In a previous paper’ [ proved the following results: Let f(m) be an additive
funetion such that 2 ,f(p)/p converges and ) pmml/p = =. Then the
density of integers for which fim + 1) > fim)is . [ alsoshowed that this holds
for p{m) and din). By using the results of [, together with the method used in
that paper, we obtain the following

Tueorem VII. Let flm) be an addifive function with | f(p)| < e
Zﬂ,},‘,ﬂ I/p = =. Then the density of tntegers with flm 4+ 1) = flm) 78 3.
If Xsmea 1/p < =, then the density of integers with fim + 1) > fim) is < &
and equads the density of tntegers with fim) << flm + 1).

The funection fim) = log m shows that Theorem VII does not hold for all
additive functions. But it very likely holds under very mueh more general
conditions than | f{p) | < ¢. 1 did not even suceeed thus far in making a plau-
sible guess for a necessary and sufficlent condition. Does Theorem VII hold
for f{p) = (log p)°, o # 12 Also does it hold for fip) = p? If Theorem VII is
true in this ease, we can easily show that the density of the integers, for which
the greatest prime factor of n 4 1 iz greater than the greatest prime factor of u,
is 4. At present I cannot decide these questions. We can prove, though, that
if flp} = (log p)™ a #£ 1 then f(n)/{log #)" has a distribution funetion.

¢ Journsl Cambridge Phil. Soc, (10361, Vol. 32, p. 530-540.
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Let f(n) be additive. Letm — = n— =, n —m — =, Consider

= Mm, n}.

Hartmann and Wintner® pmved that a necessary and sufficient condition that
lim M{m, n), m — =, n — =, # — m — = cxist is that f(n) be
uniformly bounded. Consider now

f) — liﬂ_k} = Mim,n) — M1, n).
T k=l

I jin) = elogn + ¢(n), | ¢n) | uniformly bounded, then M{m, n} — M{1,n) —
0. It ean be shown that the converse is true.  In other words, if Mim, n) —
M1, ny — 0 then fin} = clogn + eln), |eln) | < e

Clearly we could formulate several questions of thiz type, e.g., involving
almost periodic properties of f(n). We discuss one more such problem:

Taeorem VIIL. Let fin) = ¢ log n + eln), (| eln) | wniformly bounded
Do l/p = =), Letm— o, n— =, n—m— =, Then the number of
tntegers in the fnterval (m, n) for whick f(zr 4+ 1) > [flx) equals

in — m) + ofn — m.

We omit the proof since it is very similar to that used in a previous paper.’

Is the converse of Theorem VIII true? At present we cannot answer this
question.

One fnal remark. Let n — 2o, m — o, n — m/log log log n — =. Then
for Euler’s ¢ function lim M{m, n) = lim M(1, n}. A similar result holds for
Theorem VIII. In fact the distribution funetion of o(n} in {m, n) iz the same
as its distribution function for (1, n). The same result holds for e(n}.* It can
be shown that the condition 5 — m/log log log n — = is the best possible.

Analogous questions can be wsked for v(n) and d(n), but so far the results
here are very unsatisfactory.

Proor oF Tuesorem [, First we introduce some notations:

1) fuulm) = ‘}: J(p).

T ]
»lm

2} q.,,,=max\ﬂ'p}l,uEpébf-q—rﬂij'u—*m},
D g -y U

3:' -i'lu.l' -
sz psv [P LEpEY P

T v
8 e =R

i Duke Journal (19423 Vol, 9, p. 112-114%
7 Journal Cambridge Phil. Soc. (1%36) Vol. 32, p, 530-540.
# [*. Erdds, London Math. Soe_Journal (1935) Vol, 10, p. 125-131.
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5) 8.y denotes the density of integers m for which

Auvse +ZV2B., £ fuslm) S Auy + yv/2B,.,
6) D.,. denotes the density of integers for which
fuwlm) = ¢ (mod 1).
7)) Kim) = :.Il'llm 7.
PET
8) D.,(a;) denotes the density of integers with K,(m) = a; and

fu.n{m} =¢ [:mﬂd 1}

9} Alw, v, ¢, n) denotes the number of integers m = n with
Sumim) = e (mod 1).

To shorten the proof we will refer to I wherever our proof follows I elosely.
Lemyma 1. We have

1 ¥
gy — Tzf '3_!! de < 3.76ey..
w u

Proor. Lemma 1 is an immediate consequence of a result of Berry (just as
Lemma 1 of I is a consequenee of the central limit theorem).
Lemua 2. Let w — = and v > w sufficiently large. Then

Deue— .

Proor. Let r — o= sufficiently slowly. We obtain from the central limit
theorem that .

1
{I} 'iﬁr.m.u.v + ar.—oo,'u.u ~ 2 T‘;_'ﬂ f 'E_l! dx — l}, AS T —» o,

Consider now the integers 2, 2 4+ 1, --- 2 + £ in the intlerval
(Au.u — I"\-"ZB“.“ AI.'H + ry 233,@} {S‘i-uﬂe Bt.;- =& 00, k_"' m:h
Then by (1)

k=1 k
E D; 5 D:.u.u = aD. + I'J{l}
i

gl
where D; denotes the density of integers for which
z+i = fusim) Sz 414 e
By Lemma 1 we have

1 g
D.-st e dz + ¢ euns le| < 3.76
"

i
where u and v are determined by

'-]'Il.l + #ivEBu,u - + t.: -'-‘11.!.-1! + "rv(zﬂu.t =z + £ + e
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Thus a simple caleulation shows that », — w; — 0 and hence we easily obtain
that D; — 0. Thus
k=1

D,we = 2 D, + a(1).
Al

Now determine &, from 4, . + A 2B, = ¢+ 1+ 1. Then it is easy to see

that
) L:x e
f ; e dx
LT

Clearly from (1)

=g P . 1 r \
ETnf e d:t:-".—fﬁ‘[ e dr+ o(l) = 1.
vef T g T r
Hence finally from (2}

b1

Dn.-!l-.l.' == E D; -+ a':lj —* L, q;E'.d..
L L]
LEmma 3.
lim B, = ¢.

Proor. As in the proof of Lemma 2 we c¢an show that if v tends to infinity
sufficiently quickly

Now trivially

P | e
o

Thus we obtain
IiITI Dr.‘.l..n = ]imz D*'l:a'i} =G

w—+a ay

which completes the proof of Lemma 3.

From now on the proof is practically identical with that of I. Let & tend to
infinity sufficiently slowly and put n = . B

Lemma 4. The number of integers m = n for which K.m) = a; < vVE
= n"'v equals

[l )
a; log »°

Proor. This is Lemma 3 of 1. (y is Euler's constant). B
Lesva 5. The number of integers m = n for which K(m) > n''Vie is o(n).

(1 + (1))
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Proor. Lemmea 4 of [.
LEass 6.

tim LAt 0, 0, ) =6

—am Th
Proor. Follows from Lemmas 3, 4, and 5 as in I Lemma 5 followed from
Lemmas 1, 3, and 4.
Leama 7. Lef t, — = sufficiently slmoly then for every e and 5 and sufficiently
large n the number of infegers m = n for which

| firmlm) — flm) | > e

18 less than wn.
Proor. We evidently have

3 | finln) — fom) | < 0 35 D
@ =

sEpEn

=n max |fip)| El < 2n max |fip)| logt, < emn
p=v P e

ginee f(p) — 0 only if 4, — = sufficiently slowly. Clearly (3) implies Lemma 7.
Now we can prove Theorem 1. It follows from Lemma 6 that it suffices to
ghow that for every g the number of integers m = n for which

4] Jiml =¢ and fi,.{m) = ¢ {mod 1)
oar
(5) fim) > ¢ and fuglm) = ¢  (mod 1)

is < 2gn for sufficiently large n. We split the integers satisfying (4) or (5) into
two classes, In the first class are the integers for which

| flm) — .Irlu{mjl > e

By Lemma 7 the number of integers of the first class is < yu. For the integers
of the second class we have

¢ — = fiuim) S e+ e

Hence by Lemma 6, the number of the integers of class 2is = gn too, (i.e. these
numbers belong to A(1, », ¢ + ¢ n) — A{ly, ¢ — ¢ 1)) and this completes the
proof of Theorem I,

Now we prove Theorem V. First we prove that the condition of Theorem V.
implies that the values of fim) are finitely distributed. Put

+rl
fip) = elog p + fT(p), s G ;P” ey



DISTRIBUTION FUNCTION g

For simplicity we assumed that (f"(p)) = 1 and f*(p™) = /7 (p} (in other waords
we do not have to consider {™(p)), Put

Fim) = 2 fHp).

ol
Denote
_y o
A, ﬂ; et
We have
Eff(m:rha Z{f{m}j—m Zr (m) + nd2 .
Now
2 Mm) = X [g]fﬂ'p] =% I (o)
nE® PN

by .=
+0 (2 i) = n4, +{I(Iﬂgﬂ).

pEW

Since (f*(p)) = 1. Further

g (" lm))” = Eh[ ]f @@+ X [ Jff’rf »

i
Fpyad ;
= ¥ Ej‘{p}ﬂq‘a +n z (7 (p)) +0 (fi! log log :H.)
naan nEn P log n
H + o
- ﬂ(zf {P}) i X fip) 3 f w}-l-ﬂ:'n).
pEn pem P onip<g=Ea q
Now
> P 5 LO_5im+
bope mipgEa
where in 2.,
I—:I.'i' < o 5 ...:|,ltr"-lr
For the p in .,

f (9 < ellog log n — log log n'™ L N ST T er,
wipggzn
since | 77(g) | < ¢ and from 2_{fT(g)) /g < = it follows that for every 5 >0,

2w s | (@ |/ converges.
Alzo
ettt
) e
peni-1a® P 2r
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Thusg
Cer

EF < F:
hence finally
(6) X e X o< Ti<e

pevh nlpsgsn r
Thus
g (77 (m))* = nA + On).

Hence

“Zl:l (fT(m) — A < ain

which shows that for every & < 1 there exists & ¢y such that for more than en
integers m = n
|f+lfm} - Ani < 3.
Henee for more than es integers m £ n
[flm) —clogn — 4. | < &

which completes the proof.

The proof of the sufliciency will be very much harder. 'We have to distinguish
several cases:

Casg 1. There exist two sequences of primes p., g, with

limpi/g: = ¢,1 < ¢ < o, f(p) — flgd — =, Ll/pi = 2l/q = .

We shall show that in Case 1 f{m) is not finitely distributed. Assume that
ay <t < -0 <=, | fla) — fled | < e Weshall show 2 = a(n).

Choose & = k¢ large. Then the number of integers = #n divisible by a
i Pe > K does not exceed

T o B g

pisky Dild = 7
Let r be & large number which will be determined later. Choose I; so that
1 :
r< X = <r+ 1 minflp) — fg) > a.
pialhydn) N

Suppose the interval (&4, li1) has already been defined. We define (&, 1)
a5 follows:

min z (fip) — flgN > 2 max  (fip:) — flg)),

Pkl P iks—gali—32
(M

1
ro< — <7+ L
pielkqds) [H
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Clearly these conditions can be easily fulfilled. Of course we have
- Zji & ol e AN e B

¢ denotes a small number which can be muade arbitrarily small, and which does
not have to be the same in different cases,

Let ¢ = j where j will be determined later. Denote respectively by d, «(x)
and d, ,(z) the number of divisors of r among the p's and among the ¢'sin (b, ;).
It follows from the method of Turdn® that if r is sufficiently large then for all
integers m = n, with the possible exception of en integers

r{l — € < dps(m) <1l + &;er(l — € < dylm) < or(l + ).
Let now ay < @g < +++ < a; S n be a sequence of integers with
[flaw) — fla)] <eorD < flow) < D 4 ¢;.

Assume that no e, s divisible by a pyge and that for § £ §

8 r(l —e¢ <dpila,) <r(l 4+ €;er(l — € < dyila) <or(l + 6.

The number of a’s which do not satisfy this eondition is less than (j + 1) en.
Now we define the new sequence b --- bl i =1, 2, --- j as follows: Let p be
any prime in (k. %). If p(a,, consider all the integers of the form ({a./p)q.
Thus we obtain the sequence b, - - bi*'.  All the b’s are clearly = ((1/¢) + e)n.
Next we show

1 ; ,
{B) y$>I(E_i)ri=lr2:"'j-

From (8) it follows that to each a, correspond at least #(1 — «), b)*''s and each
bl oeeurs at most or(l 4 € times. This proves (%),
Now we prove that these j sequences are disjoint. In other words

pait! g plish < e =7, U=y, v S Y.
It will suffice to show that
FIBEY 5= f(b™.

Clearly
bl auﬂ, el s L)y Bl = a,g_:, ek, Lah
Thus
1) <D+ — min (f() - 1),
JO) > D — max  [fip) — fig)l.
Py it

T Thid. (1934) Vol. 9, p. 274-276. Bee also ibid {1936) Vol 11, p. 125-133.
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Now by definition
min (fp) = flg) > 2 max (f(p)—flgh > max (f(p) =fa)) +er.

Jﬂ{#;l.ht'l pelkipty,

Thus
F®) > fipl) de. biF £ DR
Henee
[ ol e cEEE y;{(é+e)n<:u,
Thus
ix(l—i)f-:n, z«:ﬂiﬂ-::m
£ J

for sufficiently large 7, this completes the proof of ease 1.

Clearly the ease f(p;) — flg:) — — = can be dealt with similarly.

Case II. Next suppose that there exist sequences p; , g; with lim p;/g;, = ¢,
1<e¢< o fip) — flg) =0, 2 1/pi = 2 1o = =,

Let i’ < af" < --- < all! = n, nlarge, 11 > cn, | fla) — fla) | < a.

We will show that this assumption leads to a contradiction. In other words
fin) 1= not finitely distributed, '

Define (k;, &} as before. We can assume as before that a, divides no pag.
and that

r(l — t;' =< dp.l{ﬂu} = T':I.]- + ﬁ}i {!F(l — & < da.l{au:' < erfl + f:'+

As previously if p; | @, we consider (@ /pidg, g0 e (B, &), Thus we obtain @ new

sequence of integers i < af” < .-+ < a'¥ where as in case 1 22 > m(1/c — €)

and all the a'™ arelessthan n(1/c + ). Repeat the same process for the at* ete.
We repeat this operation j times (jlarge) and order all thea!”, i Sz, ,r=jina
sequence by < b < -0 < b, < w. Clearly for every m > n/¢’ the number of
the b = m is > ea m. Also since f(p;) — flg) — 0 we have (for sufficiently
large #y)

[flb) — flby) | < 26,
We can assume that

1= & (tprime).
AT ey 4
For if not, sinee 3 (f'(p))*/p diverges, we would immediately obtain from [
that f{m) 15 not finitely distributed.
Without loss of generality we can thus assume that 2 ae, 1/t = . Let
A be large (its dependence on ¢; will be indicated later). We choose j so large
that

—1 -2 R
firr=ae, |
fat
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This choice of j is obviously possible, if we only took r to be sufficiently large.
Binee f{t) > 2e; the quotient of twao B's can not be an integer composed entirely
of the £'s. We will show that this leads to a contradiction. The proof will be
similar to that used in a previous paper.'”

Denote by d{m) the number of divisors of m among the ¥'s greater than n/c’.
Clearly

> dim) = [E] > cujn,
Hije=] biznlel 'E?,:

where ¢; depends on ¢y . The quotient of two ¥s s never composed only of the

t’s therefore the quotient of two integers of the form m /b, is also never composed

entirely of the t's. Alsom/b; < ¢'(m = n). Denote now by d¥(m) the maxi-

mum number of divisors of m which are £ ¢ and the quotient of no two is en-

tirely composed of 5. We clearly have

dlm) = d™(m).
Thus

(10) g R i

From here on the proof follows very closely that of Lemama 2 of my paper
“(n the density of some sequences of numbers”, London Math. Soc. Journal,
{1937) Vol. XII p. 9-10, so that it will be sufficieni to give only an outline of
the argument,

We have to show that (10) iz {alse. Put

uz:] d"(m) = Z:. + 2
where Y, is extended over the m less than A divisors among the £'s, and Dy is
extended over the other m's. On p, 10 of the above article I prove that for
sufficiently large A
2 <en, 2 <en
]

1
which proves that (10} is false. This contradiction shows that f(m) is not finitely
distributed in case 2.
Case 3. There exists a sequence p; and g; with p,/g; — ¢, 1 < ¢ < = fip,) —

Slg)—=d 1 <d < =, 3 1/pi= 3 Vg = =.
Suppose that fim) iz fAnitely distributed, then

d
wim) = flm] + log ¢ hog m

ig elearly also finitely distributed, and
P{P‘:’} = P(Ql’j —{,

1 London Math. Boc. Journal (1937) Vol. 8, p. 7-11.
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If E{w{p'}}zfp = = then we are back in case 2 and ¢(m) cannot be finitely
distributed. Thus

E‘Lff::w

which completes the proof of Theorem V,
Now we prove Theorem IV, If the conditions of Theorem IV are satisfied
fim} is certainly finitely distributed, thus there exists a constant ¢ such that

# 3
flm) = clugm—i—;u{m},zq% e,

Assume first ¢ = 0. Then Theorem IV would follow from Theorem [T, but
since we suppressed the proof of Theorem II we will give the proof of this case.
Let then fin) be an additive function with

¥ 4
(11) > el gf’:'} < w.
We shall show that to every e there exists o 6 such that f a; < g2 < v < a,
= n iz such that
(12) D<jfla) <D+3s

then x < en, and this will prove Theorem IV for ¢ = 0.

The proof follows very closely the argnment used in my paper “‘On the density
of some sequences of numbers 111" London Math, Soc. Journal (1938} Vol
13 p. 119-127. Put

fulm) = % f(p), k large,

PE P

Let f{m) satisfy (11)., We assume for sake of simplicity that | f{p) | < e.
Levma 8. The number of integers m = n for which

nEn
o = sy = 3 1P| > 5
B P
iz less than en for k sufficiently large | & = 8(e), k& = kie) | .
We have
n nEA 2
2 sim) — fulm) = 2 ﬂf—”})
timl axor

= 3 [ftm) = film) [ = 244 | 2 flm) = fulm)| + ndia,

(A*.. = 3 4@

[ T
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Now

3 1) — fulm) | = 3 [g].ffpn =

Pk

and by (11} and (6) for k sufficiently large

3 1m —sim P = 3 [2 |0 + T [2] o

= X Zimfi + m 4 oln)

Prspmmesn P
priq

wn[?“@]z—ﬂ > @) > 10y o)

p=py P pram P onip<eza P
= ndl. +2m +olniin—0ask— =)
Thus

2‘:1 (fim) — falm) — Ann) < 2om + ofn)

which proves the lemma (with ¢ = 3n/3%).
Levma 9. The nuwmber of integers with

e —q < film) <e+ 9

iz < en for large k.

The proof follows Lemma 2 of “Density 111" London Math. Soe. Journal
Vol. 13 (1630) p. 124,

We now split the integers satizfying (12) into two classes. In class I are the
integers with D — Ay — & < film) < D — 4, + 6. And in the second
class are the other integers. By Lemma 9, the number of integers of the first
class is < en, and by Lemma 8 the same holds for the integers in class 11, this
completes the proof.

Remank. The above proof shows that in Theorem I the distribution func-
tion iz continuous if it exists. This is the mest difficult part of the proof of
Theorem 11.

Apmume next ¢ # 0. We then have

i a
f(m) = e logm + p(m), Z“';E,f—” <

Thus ¢ip) — 0 exeept for a sequence g, with z /g < =,

We prove the following Lemma: Let p be the primes where possibly @ sequence
gwith 2, 1/g < = has been omitled. Then to every ¢ there exists a op > 1 auch
that iff @y < @ < v+ < a. = n, x > on, n sufficienily large, then there exist ay
a;, Pi, pywith

@y iy

i F3
s E#Mmodpa, o # modpy, :;—mz.

i
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Choose & large. Then there elearly are at legst ney/2 integers gy not divisible
by any p; > k, and ¢ > k, we consider only these a's. Choose [ large

L deton T — b DL
byt P
We can assume (hy the method of Turdn)® that for at least ne, /4 a's, for suffici-
ently large [

(13) (I —eloglogl <  wela) <, (1 + eloglogi

where v,{z;) denotes the number of divizors of a; among the pin (& ), Clearly
we ean alzo assume that for all bat ne /8 of the a's, en < 05 {5 small), We
consider only the @, satisfying these conditions. Let us denote them by a, <
fda € ovv e =Dy, = one /B

Conzider all the integers of the form

r;—;, E<p<l, a; = 0 (mod p).

Denote these integers by &, Iy, -+ b, . Clearly

E.';;;:{Ll.' {:.E

Suppose that if we have
o _ 6
peoopi
Then elearly bip can be an & only if p lies in some interval (g, , w, (1 4 e}),

up L+ e < niby
Thus

[ L. E n
2y < Zy el o O = o) < e 2y ooy

5 {:pj < (1 +fll'pj.

- n

{r:fz

ampginil)

< eae log log ¢,

3

zlog;

.

since a simple caleulation shows that

u

2

=R

n
~ log log 1.

n

z log =

But by (13)

gmm>%mma

This contradiction establishes the lemma.
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Assume now that (12) helds with & > en. By our lemma we obtain

Z=2 >0 +e)p, 2 #0modp),

% # 0 (mod ) |e(p:) | < e |elp)| <.

But then we have
fa,) — flag) = fip:) — f(p))
= e(log p: — log py) + wlps) — elp) > clog (1 +a) — 29 > &,

which contradiets (12). This eompletes the proof of Theorem IV.

Remank: It is easy to see that our lemma would not hold for every zequence
of primes with 2 1/p; = =.

We can state Theorem IV roughly as follows: If ¥ iona 1/p = = the dis-
irtbution funciion triez fo be condinuoua whether ¥ erials or nol.

We state a few results without proof.

Tarorew 1X. Let fim) be additive. | fip)| < ¢, 2. Spl/p = =. K any
given number. Then f(z), fla + 1), --- flx 4 &) are independent and have
Gausstan distribulion.

The proof is very similar to that of I.

TaeoneM X. Assume thal

fim) = elogm + elm), 2 fw’;m) e

Then glm) = fim + 1) — flm) has a distribution function. The distrilution
funelton 18 continuous if and only of E,r,.,],.m 1/p = = and then the inlegers
with gim) = O have density 1,2,

I 2 oo 1/p < =, denote by D{(x) the distribution function of g(z).
Then

lim Diz) = lm Dz

Eel I 31} F LI ]

Diz) = Ofor z < 0 holds if and only if ¢(m) = 0, f{im) = ¢ log m.
We omit the proof since it is similar to that used in a previous paper.”
Now we prove
Toreoren XI1. Adssume fim + 1) = fim). Then fim) = clog m.
Let m be odd, m < n < 2n. Then

Sim) = fin) £ j2n) = A{2) 4 fin).
Thus fim) is finitely distributed. Hence

fim) = elog m 4 ¢lm), Y "P"'El‘f}' oy

W Ibid. (1938) Yol. 13, p. 119127,
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Then by Theorem X if ¢(m) is not identieally 0, we have for infinitely many m,
glm + 1) — g(m) < — §

which contradiets fim + 1) = f{m}. Thus ¢(m)} = O for all , which completes
the proof.

By & much more complicated argument we can prove Tazores XII, Let
flm) be additive and assume that there exisis a conatant ¢ and infinitely many ng
such that for every ny there exisls a sequence @y < ap < +++ < ax = ng, with flay)
= flag) < 0« E flas), 2 > em. Then

fin) = elogn 4- ¢(n), 2, L
elpls P
It is easy to see that the converse of Theorem XIT is true.
We do not give the proof of Theorem XII.
Taeorem XIII. Let f(m) be additive, flm + 1) — fim) — 0, then fim) =
¢ log m.
Denote by Py < Py < .- the primes and their powers, Put

S(Py)
105 F.‘I

Denote by oy < po <€ + -+ the primes. First we assume that for infinitely many
primes p; there exists an « such that

¢ = lim sup

Put p{* = ) and order the ¢ by
fl@y) _ f(GQs)
log : = log Qs =

gince lim Q) Jog @ = ¢ and f(Q))dog @ > ¢ somewhere we must have an
inequality, assume that the first inequality occurs for @;. Put

f@)

No=Qi-Qy - O, k > i, £ = log Q.
{
{:*-I'%Eg%, s<a<a forkz=j.

We evidently have
JiNG) —fNy— 1) 2 culogNe + (60 — &) log 1
— ¢ log (Nx — 1) > 8, for a fixed & > 0

which contradicts fim 4+ 1) — fim) — 0.
Assume next that there are only a finite number (perhaps none) of p, with
Jip?9

logpit =
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Denote these primes by py, pa, -+~ py, pI* = Qi, 1 =1, 2, -+ j. Assume
first j # 0. In this case we elearly have

— e < < o,
Pl:lt. J"f, = Q’;Qg R Q;. DBE]'_I.E Ty h:.?

_ Jns) _ Jlm)
(e, Ny) = 1, log n; 2 log m

Clearly there exist infinitely many such n;. Let n; be large. Let r be the
least prime > N;. Choose u so that

aN; — u =0 (mod r), but n.N; — » = 0 (mod 7).
Clearly w < 2r. Put

for all m < n,, (m, Njy = 1.

Jind
= = <e.
Gt log n:’ Gl

Also 'Fha-'ll-’J - U =ryr < h, {:I", T = 1, henee C]EEI]:G"
frz) = fir) + flz) = e log rz.

Henee finally
JNj) — finN; — u) > &, for some fixed § > 0.

This contradicts fin + 1} — fin) — 0.
Thus we can assume that for all Q; ,

l{fé% = ¢ (¢ = 4= iz possible now),
Define n; by
f{ﬂ.‘) I(m:]
lﬂgn.—g]ogm’ &
Now for the last time we again distinguish two cases. First there exists a ); with
Ja)
log Q. < C.

Clearly lim sup (f(n.))/log ny = ¢. Put @, = ¢f determine u by n; — u =
0 (mod ), n: — u # 0 (mod ¢*™"), we can choose u to be < 2¢.. A simple
computation shows that if n; is large
fin) = fin; —w) > & forafixed § > 0,
this contradiets fin + 1) — fln) — 0.
Thus for all g, f{Q:))/log Q: = ¢, or f(m) = ¢log (m); this completes the proof.
It seems likely that if

L3 1sm 4+ 1) — smy | =0

fim) = ¢ log m.
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Taeorem XIV, Let f(n) be additive and suppose thal
Mim, n) — M{l,n) -0,— o, M— o0, 0 —m—w

then fin) = ¢ log n 4+ oln), o(n) uniformly bounded.
If f(n) satisfies the condition of the theorem we certainly must have

(14) | i) — M(1,n) | <e
Let n, zatisfy
fing = fim) for m = n;.

We can assume that there exist infinitely many such n; (if need be, we replace
fim) by — flm)). We obtain from (14) that there exist gn; integers m = n;
with fim} = fin;) — e:. Thus fim) is finitely distributed, hence

¥ ]
fin) = ¢ log i + #ln), Eif-f—ll < =,

and a simple calculation shows that ¢(n) must be uniformly bounded.

Before concluding we consider additive funetions which are not necessarily
real valued. We state without proof the following results:

Tueorem IV, Let fim) be a complex valued additive funelion such that
zm, o 1/ p diverges,  Then to epery e there extsts o § such that of @ < @, < -+
< a, = n i3 a seguence of tnlegers with (| flay) | — | flag | ) < ethen x < 8n for
n suffictently large.

Treonem V'. Let f(m} be additive, compler valued, and such that there exis
fwo constants ¢, and oy and thfindfely mony n, so that there exist oy < ag < + -+ <
a: 2 n, x> om, ([ fla) | — |flaj|) < e. Then there crists a constant ¢
such that if we wrile

I*@) = fp) — clogp, I*(p) = ¢(p) + ih(p)
we have
(15) X, (@) ©, 3 W) _ 5 7@
" P 3 P wEm P

We can of course interchange g{p) and kip).
It can be shown that if (15} is satisfied, the condition of Theorem V is5 also
gatisfied, in other words (15) is a necessary and sufficient condition,

Usrversity oF MicEigan.
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