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Let f(m) be a real valued number theoretic function. We say that it is addi-
tive if for (m l , m2) = 1, f(m1.m2) = f(m1) + f(m2 ) . Denote by N(f; c, n) the
number of integers m _< n for which f(m) <= c . The function ,1&(c) is called the
distribution function of f (m) if

	

oo ) = 0, 11&(x) = 1 and for every - oo <
c < 00

(c) = lim '~'( .f ;c, n)lim.	

Clearly ¢(c) is non-decreasing .
Wintner and I 1 showed that a necessary and sufficient condition for the exist-

ence of a distribution function is that both

where f'(p) = f(p) for I f(p) j <= 1 and f(p) = 1 otherwise .
It can be noted that the existence of the distribution function does not depend

on the values f(p"), a > 1, and that the existence of the distribution function
cannot be destroyed by the behavior of f (p) on a sequence of primes r where
Y, 1/ ri < - .

Let us now assume that Ep(f'(p))2/p diverges. The distribution function
of course does not exist . We define F(m) by F(m) = f(m) - [f(m)]. ([a] de-
notes the greatest integer <_ a.) We shall prove the following

THEOREM I . Let f(p) - 0 as p-> o c, assume that Ep(f'(p))2/p = oo . Then
the distribution function of F(m) is x . In other words the density of integers m for
which

F(m) < c

equals c . (To obtain Theorem I, it is of course sufficient to assume that f(p) -*
0 (mod 1)) .

The proof of Theorem 1 depends on methods similar to those used in our joint
paper with Kae2 (we will refer to this paper as I), and on a result of Berry!
The proof will be given later .

2

I Amer. Journal of Math . (1939) Vol . 61, p . 713-721 .
Ibid. (1940) Vol . 62, p. 738-742 .

a Trans. Amer. Math . Soc . (1941) Vol . 49, p . 122-136 .
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1) Ef'(p) <
P P

2)
p

(f'(p))2 < x
P
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If we do not assume that f(p) - 0, the situation becomes rather complicated .
First it is clear that the distribution function of F(m) does not have to be x .
Put f(p) = 2, f(p) = 0 . Then it follows from the prime number theorem that
,k(x) _ ?, 0 S x < 2, ¢(x) = 1, z < x < 1 . If f(p) = a, a irrational, it can be
shown that the distribution function ofF(m) is again x . The proof is not easy
and we do not discuss it here .
It can be conjectured that F(m) always has a distribution function . This

if true must be very deep, since it contains the prime number theorem . 3 4
Next we assume that Ep(f'(p))2/p < - and Ef'(p)/p diverges. Then we

have
THEOREM II . Put

w(m) = f(m) - E f'pp) .
Then f(m) has a distribution function, and the distribution function is continuous
and strictly increasing in (- -o, + -o) .
We can prove the following slightly stronger

THEOREM III . Let f(m) be additive . Assume that a constant c exists such that
if we put f(m) - c log m = ~(m), V1(m) will satisfy the conditions of Theorem II;
then

~C(m) = f(m) - c log m - E ",(p) = f(m) - En f(p) + c + 0(1)

has a distribution function .
Theorem III is essentially identical with Theorem II . The converse of

Theorem III is probably true, i .e ., that if f(m) - Ev (f(p))/p has a distribu-
tion function, then

f(m) = c log m + P(M),

	

~°
(p)2

< 0 .
P p

At present we can prove this only if f(p) > 0 .
We omit the proof of Theorem II since it is similar to that given in a previous

paper.' In a previous paper' we proved that a necessary and sufficient condi-
tion for the continuity of a distribution function is that Efop r #ol/p diverges .
(We of course assumed that ~~,, f'(p)/p and F,, (f'(p)) 2/p converge .) We can
prove the following more general
THEOREM IV. Let f(m) be an additive function such that Ef(p),eo1/p diverges .

Then to every e there exists a a such that if a, < a 2 < . . . < a,, < n is a sequence of
integers with I f(a;) - f(a ;) I < e then x < Sn for n sufficiently large .

-Added in proof. An example of Wintner shows that this conjecture is false . His ex-
ample in fact shows that not even 1/n EML, F(m) exists . See The Theory of Measure
in Arithmetical Semigroups, 1944, p . 48, II bis .

4 London Math . Soc . Journal (1938) Vol . 13, p . 119-127 . The result in question is a spe-
cial case of a result of P . Lévy.
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We shall deduce Theorem IV from
THEOREM V . Let the additive function be such that there exist two constants c1

and c2 and infinitely many n, so that there exists a 1 < a2 < . . . < ax =< n, x > c1n,
f (ati ) - f (aj) I < c2 . Then there exists a constant c such that if we write

f+(p) = f(p) - c log p,
EP(f,+(p)/p)2 converges .

In other words, if for many integers the values of f(m) are close together,
then f(m) is almost equal to c log m. If f(m) satisfies the conditions of Theorem
V we shall say that it is finitely distributed .

The converse is also true . In fact if

f(p) = c log p + f+(p),

	

E
(f'+ (p)) 2 < ~,

P

	

p

then for every c1 < 1 there exists c2 such that for every n there exists a sequence
a1 < a 2 < . . . < az =< n, x > c1n, I f(a=) - f(a,) I < c2 .

From Theorem V, we shall deduce the following two results :
1) if f(n + 1) >= f(n) for all n, then f(n) = c log n .
2) f (n + 1) - f (n) - 0 f(p) $ 0 for infinitely many p, then f (n) = c log n .

The following result probably holds, but I cannot prove it : Assume that
f(n + 1) - f(n) < c1 for all n . Then

f(n) = c log n + p(n), I (p(n) I < c2 for all n .

The converse is clearly true .
I also conjecture the following results :

1) if f (n + 1) >_ f (n) for almost all n (i .e ., all n except for a sequence of den-
sity 0), then f (n) = c log n

2) if f (n + 1) - f (n) - 0 when n runs through a sequence of density 1 then
f(n) = c log n.

We shall give the proof of Theorems IV and V in full detail .
By applying the law of the iterated logarithm we obtain the following
THEOREM VI . Let f(m) be an additive function f(p) I < c, EP (f(p)/p)2 = oo .

Let

E f(p) = An ,

	

z (f(p)) 2
= Bn .

P<'n P

	

Pin

	

P

Denote further by N E (d, n) the number of integers m <= n such that for at least one
u > d

E f(p) > Au + (1 + e) 1'2B u log log B. .
PI"
P<_u.

Put

lim sup 1 Nf (d, n) = U+(d) .
n-0 n
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Then

lim U+(d) = 0 .

Similarly if we denote by NE (d, n) the number of integers m 5 n such that for at
least one u > d

E f(p) > Au + (1 - e) -v/2B.u log log Bu
P1"
P<u

then lim,,

	

1 NE (d, n) = 1, for every d .
n

If we apply Theorem VI for f(p) = 1 we obtain the following results :
The density of integers m which have divisors d with

v(d) > log log d + (I - e) 1/2 log log d log log log log d

is 1 . (v(n) denotes the number of different prime factors of n.) To every e
and n there exists a do such that the density of integers m having at least one
divisor d > do with

v(d) > log log d + (1 + e)1/2 log log d log log log log d

i s <rl . We can express these results roughly by stating that for almost all
integers m = pi"p? ° . . . pk" we have for large k-

<~k(k-e)

	

~k(1+<r
C

	

pk<C

We omit the proof since it is very similar to that of I .
In a previous paper s I proved the following results : Let f(m) he an additive

function such that E p f(p)/p converges and Ef(P,,o 1/p = oo . Then the
density of integers for which f(m + 1) > f(m) is 2 . I also showed that this holds
for v(m) and d(n) . By using the results of I, together with the method used in
that paper, we obtain the following
THEOREM VII . Let f(m) be an additive function with I f(p) I < c,

Lf~(P)#o 1/p = c . Then the density of integers with f(m + 1) ->_ f(m) is 12 .

If L.rf(n),o 1/p < c, then the density of integers with f(m + 1) > f(m) is < 2
and equals the density of integers with f(m) < f(m + 1) .

The function f(m) = log m shows that Theorem VII does not hold for all
additive functions . But it very likely holds under very much more general
conditions than I f(p) I < c . I did not even succeed thus far in making a plau-
sible guess for a necessary and sufficient condition . Does Theorem VII hold
for f(p) = (log p) ° , a 5P46 1? Also does it hold for f(p) = p? If Theorem VII is
true in this case, we can easily show that the density of the integers, for which
the greatest prime factor of n + 1 is greater than the greatest prime factor of n,
is 2 . At present I cannot decide these questions . We can prove, though, that
if f (p) = ( log p)", a 5,1- 1 then f (n) / ( log n)' has a distribution function .

I Journal Cambridge Phil . Soc . (1936), vol . 32, p . 530-540 .
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Let f (n) be additive . Let m --' oc, n -~ cc, n - m --~ . Consider

	 1 	f (k) = M.(m n)n - Mk-,
Hartmann and Wintner' proved that a necessary and sufficient condition that
lim M(m, n), m - x, n -o, n - m exist is that f(n) be
uniformly bounded . Consider now

	1	Z f(k) - -E f(k) = .11 (m, n) - X11(1, n) .
n - m. 4	n k_1

If f(n) = c log n. + y(a), ! ~p(n) ! uniformly bounded, then M(m, n) - 11f (1, n)
0 . It can be shown that the converse is true . In other words, if M(m, n) -
111(1, n) - 0 then f (n) = c log n +

	

I ~p(a) I < c .
Clearly we could formulate several questions of this type, e .g ., involving

almost periodic properties of f(n) . We discuss one more such problem :
THEOREM VIII . Let f(n) = c log n + p(n), (,p (n) 1 uniformly bounded
E tP)#a 1/p = x) . Let m --~ --,n. -# cc, n - -m. -* oc . Then the number of
integers in the interval (rn, n) for which f(x + 1) > .l'(x) equals

2"(n- m)+o(n-m) .

We omit the proof since it is very similar to that used in a previous paper .'
Is the converse of Theorem VIII true? At present we cannot answer this

question .
One final remark . Let n 00 , m - cc, n - m/log log log n Then

for Euler's p function lim 111(m, n) = lim M(1, n) . A similar result holds for
Theorem VIII . In fact the distribution function of p(n) in (m, n) is the same
as its distribution function for (1, n) . The same result holds for 0(n).' It can
be shown that the condition n - m/log log log n - x is the best possible .

Analogous questions can be asked for v(n) and d(n.), but so far the results
here are very unsatisfactory .
PROOF OF THEOREM I . First we introduce some notations :

1) fuAm) = 7" f(p) .
u<- P<v

j) 19N

2)

	

max!f(p)I U :-5P<__v(~ -4 Oifu - oc) .

3) 4

	

=

	

f(p)

	

B =

	

(f(p)) '
11,2

)5),5

	

P

	

uS~i<v

	

p

llu m

Em, , =

s Duke Journal (1942) Vol . 9, p . 112-119 .
' Journal Cambridge Phil. Soc . (1936) Vol . 32, p . 530-540 .

8 P. Erdös, London Math. Soc. Journal (1935) Vol. 10, p. 128-1:31.
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5)

	

denotes the density of integers m for which

A,,,,, + x \/2B,,,, < f.,,, (m) < A .,,, + y -\/2B u ,,,

6) D,,u ,,, denotes the density of integers for which

fu,-(m) < c (mod 1) .
7) K.(m) _ I pd .

palm
p<y

8) D„(a ti ) denotes the density of integers with K u(m) = ai and
f,(m) 5 c (mod 1)

9) A (u, v, c, n) denotes the number of integers m < n with
frs,,)(m) < c (mod 1) .

To shorten the proof we will refer to I wherever our proof follows I closely .
LEMMA 1 . We have

1

	

v -22
Sx 1/ .u,v - uz

	

e dx < 3.76ea u

PROOF . Lemma 1 is an immediate consequence of a result of Berry (just as
Lemma 1 of I is a consequence of the central limit theorem) .
LEMMA 2 . Let u --> oo and v > u sufficiently large. Then

Dc,u,,, -* c .

PROOF . Let r --> oo sufficiently slowly . We obtain from the central limit
theorem that

(1)

	

6,, u, + 5,, u , ,,5,,u, r v 2 ir 1/2
J

e z2
dx -> 0,

	

as r . oo .
dr

Consider now the integers z, z + 1, . . . z + k in the interval

(Au,,, - r 1/2B, , Au ,,, + r 1/2Bu,u)
Then by (1)

k-I

	

k
D, < D,.u,,, < E D; + o (l)

=o

	

i=o

where DL denotes the density of integers for which

z + i < f,-(M) _< z + i + c .

By Lemma 1 we have
1

	

~i _2
D; _ ;J2

lei

e x dx + c eu ,, ,

	

c < 3.76
~

where u and v are determined by

A u,,, + u ; -,/2B u ,,, = z + i,

	

Au,,, + v -\/2B u , n = z + i + c.

(Since Bu ,,, -> co, k - oo) .



(2)

Thus we obtain

Lim D,,,,,, = lim j D„(a;) = c,
v-co

	

a;

which completes the proof of Lemma 3 .
From now on the proof is practically identical with that of I . Let t„ tend to

infinity sufficiently slowly and put n = v t T

LEMMA 4 . The number of integers m <- n for which Kv(m) = a; < v"tr
= n1-'v equals

e-7 n
(1 + o(1)) a, log v'

PROOF . This is Lemma 3 of I . (y is Euler's constant) .
LEMMA 5. The number of integers m <= n for which K(m) > n',Vtr is o(n) .

DISTRIBUTION FUNCTION
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Thus a simple calculation shows that v; - u= ---> 0 and hence we easily obtain
that Di - 0. Thus

k-1
E D, + o(1) .
a=o

Now determine A; from A .,,, + Xt 1/2B,a , v = z + i + 1 . Then it is easy to see
that

J Ys
e, $ dx

e' 2 dx

Clearly from (1)

k-1 1

	

r ;

	

1

	

+r

	

2Z

1-2

	

e' dx=ii2

	

ex dx -+-o(1)~1.
Q=o 7r

	

u ;

	

r

	

-z
Hence finally from (2)

k-1
E D; + o(1) -> c,

	

q.e .d .
i=o

LEMMA 3 .

lim D,,1,,, = c .

PROOF . As in the proof of Lemma 2 we can show that if v tends to infinity
sufficiently quickly

lim D„(a;) =

	

II ( . -
/

.a <u p
Now trivially
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PROOF . Lemma 4 of I .
LEMMA 6 .

lim 1 A(1, v, c, n) = c .
n-a n

PROOF . Follows from Lemmas 3, 4, and 5 as in I Lemma 5 followed from
Lemmas 1, 3, and 4 .
LEMMA 7 . Let t„ -* x sufficiently slowly then for every e and 7? and sufficiently

large n the number off integers m <_ n for which

j fu .v>(m) - f(m) I > e

is less than fin .
PROOF . We evidently have

fl ,,, (in) - f(m) I -<_ n E
1f(p)

m=~

	

Paz P

n max I f(P) I E -
v<_P<n

	

P=v p

since f(p) - 0 only if tz,

	

oo sufficiently slowly . Clearly (3) implies Lemma 7 .
Now we can prove Theorem I . It follows from Lemma 6 that it suffices to

show that for every n the number of integers m < n for which

(4)

	

f(m) < c

	

and f(1,v)(m) > c

	

(mod 1)

or

(5) f(m) > c

	

and f 1.v)(m,) < c

	

(mod 1)

< 2n max I f(p) I log tv < e,tn
U a P < n

is < 27?n for sufficiently large n . We split the integers satisfying (4) or (5) into
two classes . In the first class are the integers for which

I f (?n) - fl, ,(m) I > e .

By Lemma 7 the number of integers of the first class is < rtn . For the integers
of the second class we have

(3)

	

n 1

c - e < f, .v(m) - c + e .

Hence by Lemma 6, the number of the integers of class 2 is S nn too, (i .e . these
numbers belong to A(1, v, c + e, n) - A(lv, c - e, n)) and this completes the
proof of Theorem I .
Now we prove Theorem V . First we prove that the condition of Theorem V

implies that the values of f(m) are finitely distributed. Put

	 +(P)), <
f(p) = c log p + f+(p),

	

~ (f	



For simplicity we assumed that (f+(p)) < 1 and f+ (p a) = f . (p) (in other words
we do not have to consider f+'(p)) . Putt

f- (m) = Ef +(p) •
P1-

Denote

An - E .t + (p)
p5n p

We have
n

	

n

	

n

Y. (f+(771) - An)2 =

	

(f 1(70)) 2 - 2A n E f+(7n) + nAn .
m=1

Now
F

E f+(7n) = E n f 4"(P) = n E
f(p)

p<n P

	

0571 P

+ 0 ( f+ (p)) = nA n + 0
„< n

	

lo

7t

g n

Since (f (p)) < 1. Further

(f
+(m))

2 =

	

:
[ n]f+(p)f+(q) +

	

Lp] (f
+(p)) ?

pq < n
P~q

1 z

	

( .f+(p)) 2

	

nloglog n
- f(p)f(q) T 71

	

4- 0	
pq<n pq

	

p<n

	

p

	

log n
pllq

=
n

z f±(p))2 _ n

	

f +(p)

	

f, (q + 0

p-n(

	

(71) .

P

	

p»/n p nlp<q<n q
Now

where in F-r

DISTRIBUTION FUNCTION

f (p)

	

f+ (q) = E1 +
Y2 +

. . .
p>1/" P n/ p<q-<n q

n1_1 / 2 r < p
:!~

n l--1J2r+1

For the p in Y,.

f+(q) <
n/p<q<n q

since 1 f+(q) I < c and from Z(f+(q))2,'q < - it follows that for every S > 0,
I:if+(q) I >a I f +(q) 1 /q converges .
Also

e(log log n - log log 711-1/2r+1
) + o(1) < er,

,r N
f ~(p) < c

p=nI-1,2'

	

p

	

2r

9
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cer
r <

f+(p) E f+(q) < E 2* < e .

PZ~

	

n~P<Q:5 n

	

r

(f-(m)) 2 = nAn + 0(n) .

n
E (f* (m. ) - An) 2 < c1n
m=1

which shows that for every ca < 1 there exists a c3 such that for more than can
integers m 5 n

f+(m) - An' < c3 .

Hence for more than c2n integers m <_ n
f(m) - clog n - An I < c4

which completes the proof .
The proof of the sufficiency will be very much harder . We have to distinguish

several cases :
CASE 1 . There exist two sequences of primes pi , qi, with
lim pi,/qi = c, 1 < c < -, f(pi) - f(qi) -* -~, !rl/pi = F,1/qi

We shall show that in Case 1 f(m) is not finitely distributed . Assume that
a, < a2 < . . . < a , _<_ n, f (a,) - f (a ;) < c l . W e shall show x = o(n) .
Choose k, = k,(E) large . Then the number of integers S n divisible by a

pigi , pi > k1 does not exceed

Z n >nE 12 <en.
Pi>k, pigi

	

i>k i a

Let r be a large number which will be determined later . Choose h so that

r < E 1 < r + 1, min f (pi) - f (qi) > c, .
Pie(ki'l1) Pi

Suppose the interval (k i_ 1 , l i_1) has already been defined . W e define (k i , li)
as follows :

min

	

(f (p i) - f(qi)) >

	

2 max
Pi,QieRf, , i)

	

Pi.Qis(ki-, . 1 i-3)

r< E 1 <r+1 .
P1E(ki .Ei) pi
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Clearly these conditions can be easily fulfilled . Of course we have

cr(1 - e) < E
q
< c(r + 1)(1 + e)

e denotes a small number which can be made arbitrarily small, and which does
not have to be the same in		different cases .

Let i < j where j will be determined later . Denote respectively by dp,i(x)
and dq , i ( x) the number of divisors of x among the p's and among the q's in (ki, l i) .
It follows from the method of Turán9 that if r is sufficiently large then for all
integers m <_ n, with the possible exception of en integers

r(1 - e) < d,i(m) < r(1 + e) ; cr(1 - e) < dq,i(m) < c?-(l + e) .

Let now al < a2 < . . . < ax < n be a sequence of integers with

[f(a,R) - f(a„)] < cx or D < f(a .u ) < D + cl .

Assume that no a. is divisible by a pkgk and that for i _<_ j

(8)

	

r(1 - e) < dp ,i(a,,) < r(1 + e) ; cr(1 - e) < dq,i(au) < cr(1 + e) .
The number of a's which do not satisfy this condition is less than (j + 1) en .

Now we define the new sequence bl i) . . by( ; ) i = 1, 2, . . • j as follows : Let p be
any prime in (k i ,li ) . If p ( a u , consider all the integers of the form (a„/p)q .
Thus we obtain the sequence bi' ) , . . . b Y ) . All the b's are clearly _<_ ((11c) + e)n .
Next we show

yi > x
\c

From (8) it follows that to each a,, correspond at least r(1 - e), bi i) 's and each
bv i) occurs at most cr(1 + e) times . This proves (9) .
Now we prove that these j sequences are disjoint . In other words

(9)

Clearly

Thus

b (") 54 b ( i'

	

'11 < 22

It will suffice to show that

)i=12i . . .I.,,

f(bu'' ) )

	

f(b,Y ) .

u<ya,

	

v 6_yi2-

bui ' ) = au pi,

	

pi€(k,, lily,

	

b(i2) = a v 1,

	

p2€(ki2,li2)2

f(bv 2 ) < D + c; - min (f (p) - f(q)),
pe(k i2 ,1i 2 )

Abu"' ) ) > D - may, [f(p) - f(q)] .
pe(ki 1 .1i 1 )

9 Ibid. (1934) Vol . 9, p . 274-276 . See'also ibid (1936) Vol . 11, p . 125-133 .

11
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Now by definition
min (f(p) - f(q)) > 2 max (f(p) - f(q)) > max (f(p) =f(q)) + c, .

pe(ki 2 ,ti, )

	

Pc(ki l,Ii l )

	

P E(ki I , Ii I )

Thus
f(bi" 2) ) > f(b,') i .e . bv 2 p b"'

Hence

y,+y2-i- . . . yj <1C-1-1)n <n.

Thus

jx 1
lc
1 - e ] < n,

	

x < 2C12 < En
j

for sufficiently large j, this completes the proof of case 1 .
Clearly the case f (pi) - f (qi) - - - can be dealt with similarly .
CASE II . Next suppose that there exist sequences pi , qi with lim pi/q i = c,

1 < c < - f(pi) - f(qi) - 0,

	

1/pi =

	

1/qi =

	

.
Let ai r) < a2' < . . . < ay,)

	

n, n large, xi > c2 n, jf(ai) - f(a,) I < c, .
We will show that this assumption leads to a contradiction . In other words

f(n) is not finitely distributed .
Define (k, , l,) as before . We can assume as before that a, divides no pigi

and that
r(1 - e) < dp,,(a,,) < r(1 + e) ; er(1 - e) < d,,,(a„) < cr(1 + e) .

As previously if p i ' a,, we consider (a„/pi)gi, pi e (k,, l,) . Thus we obtain anew
sequence of integers ai'> <a2 2 < . . . < az2 where as in ease 1 x2 > xi(1/c - e)
and all the a, ) are less than n(1/ c + e) . Repeat the same process for the az 2) etc .
We repeat this operation j times (j large) and order all the as ') , i < xr , r 5 j in a
sequence bi < b2 < . . . < b z < n . Clearly for every m > n/c' the number of
the b's <_ m is > c3 m. Also since f(pi) - f(qi) -* 0 we have (for sufficiently
large k,)

f (b i) - f (b;) < 2c, .
We can assume that

I = o (t prime) .
II(t)I>2c1 t

For if not, since Z (f'(p))'/p diverges, we would immediately obtain from I
that f (m) is not finitely distributed .

Without loss of generality we can thus assume that Ef (t)> •, ~, 1/t = o . Let
A be large (its dependence on ca will be indicated later) . We choose j so large
that

1
>

r(t 2 c, l

	

A.
t<c ,
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This choice of j is obviously possible, if we only took r to be sufficiently large .
Since f (t) > 2ci the quotient of two b's can not be an integer composed entirely
of the t's . We will show that this leads to a contradiction . The proof will be
similar to that . used in a previous paper .10

Denote by d(m) the number of divisors of m among the b's greater than n/c' .
Clearly

n nZ d (m) _

	

b > c4 jn,
m=2

	

b1> n/c'

	

i

where c4 depends on c2 . The quotient of two b's is never composed only of the
is therefore the quotient of two integers of the form m./b i is also never composed
entirely of the t's . M so m,/bi < c'(m < n) . Denote now by d+ (m) the maxi-
mum number of divisors of m which are < c` and the quotient of no two is en-
tirely composed of t's. We clearly have

d(m) < d+(m) .
Thus

n

(10)

	

d+ (era)

	

c,jn .
m=1

From here on the proof follows very closely that of Lemma 2 of my paper
"On the density of some sequences of numbers", London Math . Soc. Journal,
(1.937) Vol. III p. 9-10, so that it will be sufficient to give only an outline of
the argument .

We have to show that (10) is false. Put
n

d ^ ( in) _ ~ 1 + ~2
m=1

where Ei is extended over the m less than A divisors among the t's, and L.,,2 is
extended over the other nn's . On p. 10 of the above article I prove that for
sufficiently large rl

E < ejn,

	

E < ejn
1

	

2

which proves that (10) is false . This contradiction shows that f(m) is not finitely
distributed in case 2 .

CASE 3 . There exists a sequence p i and qi with p 1/q i - + c, 1 < c < - f (p i) -
f(qi) -~ d, 1 < d < - , .E1/pi = E 1/qi = --

Suppose that f(m) is finitely distributed, then
d

~(m.) = A m) + log c log m

is clearly also finitely distributed, and
~(Pi) - ~(qi) -k 0.

10 London Math . Soc . Journal (1937) Vol . 9, p . 7-11 .
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If E(,P(p'))2/p = oo then we are back in case 2 and So(m) cannot be finitely
distributed . Thus

v0(P')2 <
P

which completes the proof of Theorem V .
Now we prove Theorem IV . If the conditions of Theorem IV are satisfied

f (m) is certainly finitely distributed, thus there exists a constant c such that

f(m) = c log m + P(m),

	

~~(p)2 < 00 .

Assume first c = 0 . Then Theorem IV would follow from Theorem II, but
since we suppressed the proof of Theorem II we will give the proof of this case .
Let then f(n) be an additive function with

(11)

	

(f'(p))2 <

	

.
P

We shall show that to every e there exists a S such that if a, < a 2 < . . . < ay
<- n is such that

D < f(a4) < D + S(12)

then x < en, and this will prove Theorem IV for c = 0 .
The proof follows very closely the argument used in my paper "On the density

of some sequences of numbers III" London Math . Soc. Journal (1938) Vol .
13 p. 119-127 . Put

fk(m) _

	

f (p), k large .
P I ~+
P<Pk

Let f(m) satisfy (11) . We assume for sake of simplicity that I f(p) I < c .
LEMMA 8 . The number of integers m < n for which

Psn
f(P)

f(m) - fk(m) -

	

> S
P>Pk P

is less than en for k sufficiently large 13 = S(e), k = k(e) .
We have

(f(m) - .fk(m) - n

	

f(p))
2

n

	

n

_

	

I f(m) - fk(m) 1 2 - 2Ak,n E f(m) - fk(m)

__ n f(~)(Akn
P>Pk P

P . ERDÖS

+ nAk.n



Now
n

	

PSnr
f(m) - fk(m) I

	

f(p) = nA5,n + o(n) .
Pf Lp

and by (11) and (6) for k sufficiently large

~f(M) -fx(m) 1, = P>Pk E
;q]f(p)f(q) + P£k [p] (f(p))2

Thus
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E

	

n f(p)f(q) + nn + o(n)
Pk<P .4 :Pq<= n pqPF6q

=

n C Z f(p)12 - n E f(p) E f(p) + qn -}- o(n)

P>Pk p

	

P > v p nfP<g5n p
nAk,n + 2,n + o(n)(n --+ 0 ask

	

ao)

n
E (f(m) - fx(m) - Ak,n)2 < 2nn + o(n)

which proves the lemma (with e = 3n/S2) .
LEMMA 9. The number of integers with

c-n<fr(m) <c+n
is < en for large k .
The proof follows Lemma '2 of "Density III" London Math . Soc . Journal

Vol. 13 (1930) p . 124 .
We now split the integers satisfying (12) into two classes . In class I are the

integers with D - Ak,n - S < fk(m) < D - Ak,n + S . And in the second
class are the other integers. By Lemma 9, the number of integers of the first
class is < en, and by Lemma 8 the same holds for the integers in class II, this
completes the proof .
REMARK . The above proof shows that in Theorem II the distribution func-

tion is continuous if it exists . This is the most difficult part of the proof of
Theorem II .
Assume next c 0 0. We then have

f(m) = c log m + ~P(M),

	

(~~(p)) <

	

.
P

Thus ~p(p) -* 0 except for a sequence q, with

	

1/q <

	

.
We prove the following Lemma : Let p be the primes where possibly a sequence

q with E 1/q < x has been omitted . Then to every c, there exists a c2 > I such
that if a, < a2 < . . . < a. < n, x > can, n sufficiently large, then there exist a ; ,
a ; , pi, p ; with

a; - a ;

	

a;

	

aj- 0 0 (mod p,),

	

mod p;

	

A ,

	

< cz .
pi

	

pi

	

pa

	

pi

	

pi
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Choose k large . Then there clearly are at least ne l/2 integers ai not divisible
by any p; > k, and q > k, we consider only these a's . Choose l large

E 1 = log log l - log log k + 0(1) .
i•< v<l p

We can assume (by the method of Turin)" that for at least ncl/ 4 a's, for suffici-
ently large 1

(13)

	

(1 - E)Iog log l <

	

v9(ai) <,

	

(1 + E)Iog log l

where v„(ai) denotes the number of divisors of a ; among the p in (k, l) . Clearly
we can also assume that for all but nC,/8 of the a's, Nn < a i (c 3 small) . We
consider only the ai satisfying these conditions . Let us denote them by a l <
a2 c • • • <a.„x,>nc,/8 .

Consider all the integers of the form

But by (13)

v p(a.i ) >
C,

log log 1 .

This contradiction establishes the lemma .

a i
p

Denote these integers by b ; , b2 ,

	

b y . Clearly

Ca n <b,: <n
Suppose that if we have

(Ii _ a.i
pi A

Then clearly b ip can be an a only if p lies in
ub i ( l + e) < n,/bi .
Thus
z,

	

v

pp(ai) <

	

7T[lib i ( I + e)] - r(libi)

since a simple calculation shows that

k < p < l,

	

a, _- 0 (mod p) .

z log -z

Pi < p; < (1 +e)p;+

some interval (nb ; , u(bi (1 + e

n

log log u .

1t

u

	

n

21

< Ce
i=1 bi log n/bi

n

< Cc

	

< C3a log log 1,
=e3(zi' l) z log

)d

z
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Assume now that (12) holds with x > cn. By our lemma we obtain

a i

	

a

	

p; > (1 + c1)pf,

	

as 0 0 (mod p:),
pi

	

pa y

	

p=

a' 0 0 (mod pf) j p(pi) I < E, I ~, ( pf) I < n .

pi
But then we have

.f(af) - f(ai) = f(pi) - f(p,)

= c(log p; - log p ;) + ~,(pi) - IP(p ;) > c log (1 + c 1) - 2rt > S,

which contradicts (12) . This completes the proof of Theorem IV" .
REMARK: It is easy to see that our lemma would not hold for every sequence

of primes with Z I /pi = - .
We can state Theorem IV roughly as follows : If Efcpr,o 1/p = w the dis-

tribution function tries to be continuous u;hether it exists or not .
We state a few results without proof .
THEOREM IX . Let f (m) be additive. f (p) < c, f'(p)/p = x . K any

given number. Then f(x), f(x + 1), . . . f(x + k) are independent and have
Gaussian distribution .

The proof is very similar to that of I .
THEOREM X . Assume chat

f(m) = clog m { .P(m),

	

7- (~'(p))z
< x .

P
Then g(m) = f(m + 1) - f(m) has a distribution function . The distribution
function is continuous if and only if E v (p).zo I /p = 00 and then the integers
with g(m) ? 0 have density 1/2 .

If

	

p(p) #o 1/p < -, denote by D(x) the distribution function of g(x) .
Then

lim D(x) = lim D(x) .

D(x) = 0 for x < 0 holds if and only if p(m) = 0, f(m) = c log in .
We omit the proof since it is similar to that used in a previous paper ."
Now we prove
THEOREM XI . Assume f (m + 1) ? f(m) . Then f (m) = c log m .
Let m be odd, m < n < 2n . Then

f(m) < f(n) < f(2n) = f(2) + .f(n) .

Thus f (m) is finitely distributed . Hence

f(m) = e log m + w(m),

	

~
,,(p)? < 0C .
P

11 Ibid. (1938) Vol . 13, p . 119-127 .
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Then by Theorem X if c(m) is not identically 0, we have for infinitely many m,

'P (M + 1) - cp(m) < - S

which contradicts f(m + 1) > f(m) . Thus p(m) = 0 for all m, which completes
the proof .
By a much more complicated argument we can prove THEOREM X11 . Let

f(m) be additive and assume that there exists a constant ci and infinitely many ni
such that for every nz there exists a sequence a i < a2 < . . . < a, < n, , with f(al)
<_ f(a2)

	

- . . <_ f (a.), x > cin. Then

f (n) = c log n + c(n), E 1 < .
'P (P) 7,60 P

It is easy to see that the converse of Theorem XII is true .
W e do not give the proof of Theorem XII .
THEOREM XIII. Let f(m) be additive, f(m + 1) - f(m) -f 0, then f(m) _

c log m .
Denote by Pi < P2 < . . . the primes and their powers . Put

f(P2)
c = lim sup log P,

Denote by pi < P2 < . . . the primes . First we assume that for infinitely many
primes pi there exists an a i such that

AA, 4 ) > C .log p ;'

Put p,?' = Q s and order the Q; by

f(Qi) > ,J(g2) > . . .
log Qi = log Q2 -

since lim f (Q i)/log Qy = c and f (Q1)/Iog Qi > c somewhere we must have an
inequality, assume that the first inequality occurs for Qj . Put

NA; = Q1-Q2 . . . Q,.,

	

k > j,

	

c i = log

	

,og Qi
f(Qk)

ck = logQs ,

	

c<ck<ci for k_> j .

We evidently have

f0vk) - f(Nk - 1) ? Ck log VA., + (Cl

	

C2) log Q,

- Ck log (Nk - 1) > S, for a fixed S > 0

which contradicts f(m + 1) - f(m) - 0 .
Assume next that there are only a finite number (perhaps none) of p ; with

f(pa')
>log p=

	

C.
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Denote these primes by pi, P2, • • • p, , p° i = Q,., i = 1, 2, • • • j . Assume
first j Fl- 0 . In this case we clearly have

- - < c < 00 .

Put N, = QiQ2 . . . Q; . Define n,, by
(n4, N,) = 1,

	

f(nti) > f(m)
log n; = log m for all m < n; , (m, Nj) = 1 .

Clearly there exist infinitely many such n; . Let nz be large . Let r be the
least prime > N ; . Choose u so that

niNj - u == 0 (mod r), but n;Nj - u =- 0 (mod r2 ) .
Clearly u < 2r . Put

f (ni)
log n ;

Also n;N, - u = rx, x < n; , (r, x) = 1, hence clearly

f(rx) = f(r) + f(x) < c ; log rx .

Hence finally
f (n ;N ;) - f(nbN; - u) > S, for some fixed S > 0 .

This contradicts f (n + 1) - f (n) - > 0 .
Thus we can assume that for all Q, ,

f(Qi)
log Q; < c . (c = + co is possible now) .

Define n; by
f(n,) > f(m)

m < n= •log n, _ log m

Now for the last time we again distinguish two cases . First there exists a Q, with

f	 (Qi) < c .log Q;
Clearly lim sup (f(n;))/log n; = c . Put Q, = q' determine u by ni - u
0 (mod Q=), n, - u 74 0 (mod q" +1), we can choose u to be < 2Q,, . A simple
computation shows that if n; is large

f(n;) - f(n, - u) > S, for a fixed a > 0,
this contradicts f (n + 1) - f (n) - •> 0 .
Thus for all Q j , f(Q;))/log Q; = c, or f(m) = c log (m) ; this completes the proof .

It seems likely that if

1 EIf(m+1) - f(m)I-*0n m,

f(M) = clog m.
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THEOREM XIV . Let f(n) be additive and suppose that

:11(m, n) - 17(1,n)->0,n--* ao,m-- oo,n - m - oc

then f(n) = c log n + ~p(n), g(n) uniformly bounded .
If f(n) satisfies the condition of the theorem we certainly must have

(14)

	

f(n) - M(1, n) I < c

Let n j satisfy
f(ni) >_ f(m) for m -<- n i .

We can assume that there exist infinitely many such ni (if need be, we replace
f(m) by f(m)) . We obtain from (14) that there exist c ln ; integers m _< ni
with f (m) >_ f(n i) - C2 . Thus f(m) is finitely distributed, hence

f(n) = c log n + sp(n),

	

E (
~,,

(p))
2

< x ,

P
and a simple calculation shows that ~p(n) must be uniformly bounded .

Before concluding we consider additive functions which are not necessarily
real valued . We state without proof the following results :
THEOREM IV'. Let f(m) be a complex valued additive function such that

Ef(P)~,1a 1/p diverges . Then to every e there exists a b such that if aI < a_ <
< ax ~ n is a sequence of integers with ( f(a i) I - I f(a) I ) < e then x < Sn for
n sufficiently large .
THEOREM V' . Let f(m) be additive, complex valued, and such that there exist

two constants cl and c2 and infinitely many n, so that there exist al < a,, < . . . <
as < n, x > c 1n, ( j f(a l) - f(a;) ) < e2 . Then there exists a constant c
such that if we write

f+(p) = f(p) - c log p, f- (p) = g(p) + ih(p)

we have

(15)

	

(g'(p)) 2 <

	

(h'(p))` < c, Z g'(p)
Y

	

P

	

'sn

	

p

	

v<n p

We can of course interchange g(p) and h(p) .
It can be shown that if (15) is satisfied, the condition of Theorem V is also

satisfied, in other words (15) is a necessary and sufficient condition .

UNIVERSITY OF MICHIGAN .
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