SOME REMARKS ON EULER'S ¢ FUNCTION AND
SOME RELATED PROBLEMS

PAUL ERDOS

The function ¢(n) is defined to he the number of integers relatively
prime to #, and ¢(n)=n-][,.(1—p=1).

In a previous paper® | proved the following results:

{1} The number of integers m 5 n for which ¢{x} =m has a solution
is o(n[log n]1) for every e>0.

(2) There exist infinitely many integers m =# such that the equa-
tion ¢{x) =m has more than m* solutions for some ¢2=0,

In the present note we are going to prove that the number of in-
tegers m=n for which ¢{x)=m has a solution is greater than
cn(log n)~'log log n.

By the same method we could prove that the number of in-
tegers m=n for which ¢(x)=m has a solution is greater than
n{log #)*log log n)* for every k. The proof of the sharper result
follows the same lines, but is much more complicated. If we denote
by f{n) the number of integers m =n for which ¢{x) =m has a solu-
tion we have the inequalities

n(log n)~*(log log n}* < f(n) < n(log n)—".

By more complicated arguments the upper and lower limits could be
improved, but to determine the exact order of f{n) seems difficult.

Also Turdn and I proved some time ago that the number of in-
tegers m S n for which ¢(m) S# is en+4o(n). We shall give this proof,
and also discuss some related questions:

LeMMa 1. Let a<e b<n, a =28, e=(log log n)~1, Then the
number of solutions N,(a, &) of

M p-Ve=(—Db pEmt g5 w7,
B, g primes, does nol exceed

(a,b) =
(2) (log log n)®.

ab  (log m)?

Proor. Put (g, ¥) =d. Then we have =1 mod bd-. Also (p—1 }ab—i
+1=gis a prime, We can assume that both p and g in (1) are greater
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than »/2, for the exceptional values of ¢ and g give only 2a%? solu-
tions of (1). Let r<n* where §=(log log »)~'", be a prime. If p iz a
solution of (1) it must satisfy the following conditions

¢ = 1 mod bd™, P < nal,

¢ # 0mod r, pFA(—ba '+ 1) modr.

If r is not a divisor of a{z —b) the excluded two residues are different.
Thus we obtain by Brun's argument?

Na(a, b) < 20 4 emd(ab) JI (1 — 29,

v[aga—b}

where r runs through the primes less than s
Now it is well known that?

II (1 = 2rY) < callog )2, IT (1 = 27 Y > ca(log log =)~

ras vz

Hence
Na(a, b) < 2n''2 4 cimd(ad)~Ylog log n)**(log n)—*

< nd(aby~Ylog log n)**{log n)~2,

which completes the proof.

LemMa 2. Y (p—1)1 < (log log #)2%d~" if this sum is extended over all
# <nt for whick p=1 mod d.

Clearly (summing over the indicated p)

Lptsa it

where the dash indicates that the summation is extended over the x
for which x <nd~*and xd+1 is a prime. Let ¥y <nd~!; first we estimate
the number of thesex Sy =#n. Let r <v¥ (§ = (log log #)~**) be a prime;

if (r, d)=1then x#£ —d~* mod r. Brun's method* gives that the num-
ber of these £ =¥ is less than

ey II (1 — r9) < cy(log ¥)~'(log log )" log log 4,

where the product is extended over the r which satisfy r <%, (r,d) =1.
Thus a simple argument gives

Slat<e 3" (log log £)*(log log d)(z log s)~* < (log log ),
<

which proves the lemma.

! Landau, Vorlesungen dber Zahlentkeorie, vol. 1, p. T1.
¥ Hardy-Wright, Theory of numbers.
* Landau, ibid,
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Lemma 3. The number A(n) of integers m of the form m=pq, where
(3) Pg = m,
P, g primes, p>q, @ <n*, equals
n(log log n)(log »)~* + o{[n(log log #)(log #m)']) = wa(n) + ofws(n)).

ReEMARE. Thus the number of integers satisfving (3) is asymptoti-
cally equal to the number mz2(n) of integers which are less than » and
have 2 prime factors.?

The number of intepers satisfying (3) is clearly not less than

2 (w(ng™) — ) = X ngi(log (ng™))™" — n
+ 22 o(ng~[log (ng~)]Y
=n(log log n)(log n)~'+o(n(log log #)(log u)™)

(here w(n) denotes the number of primes, and the sums are taken over
g<#*), since 3_g~'=log; n+log e+o(1) and log (ng~!) is asymptotic
to log n for g<n*. (The sum 2 g~ is for g <n*.)

TreEoREM. The number f(n) of different infegers m of the form
m=ag{pr) where {, r are primes and pr =n equals

n(log log n)(log n)=* + o(n(log log n)(log m)=) = ma(n) + o(rs(n)).
Denote by B(n) the number of solutions of (p—1)(r—1)
=({g—1)(s—1), where $, g, r, 5 are primes, with pg, rs<n and
5, r<n*. Clearly
f(n) = A(n) — B(n).
We have by Lemma 1 (the following sum being for r, s <n*)
Bn) = Y Nulr—1,5—1)
< n(log log n)**(log =)~ E fr—1,5— L){r— 1)"%s — 1),
Put (r—1, s—1)=d. Then
Ba < n(log #)~*(log log )93, 3 d(g — 1)~}(s — 1),

where the first sum is for d <n* and the second for r=s5=1 mod 4,
with r, s <n*. By Lemma 2 we have, summing over the same r and s,

¥ (r — 1)7(s — 1) < (log log n)®d—2,

¥ Denote by wa(m) the number of integers having & different prime factors,
Landau proves (Verteilung der Primsahlen, vol. 1, pp. 208-213) that m(n)
~(nflog n)log log n)¥1/(k—=1} L. The same asymptote formula holds if =uln) de-
notes the number of integers having & prime factors, multiple factors counted mult-
PI}'.- l:l-aﬂdﬂu-r ihid-}
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Hence
B(n) = cen(log n)~log log )™ = o(n(log n)).
Hence by Lemma 3
f(n) Z n(log log n)(log n)~* — o(n(log n)~"),

which completes the proof. {Clearly f{n) <m(n) <{14e)nllog log n)
(log #)~L.) Our result shows that the number of different integers not
greater than n of the form (p—1)(g—1) is asymptotic to the total
number of integers not greater than n of the form (p—1)(g—1).
Nevertheless there exist integers m such that (p—1)}(g—1)=m has
arbitrarily many solutions.®

By similar but more complicated methods we can prove:

The number of integers not greater than » of the form

k
IL(pi— 1) = ¢(ps-- -, pw) (#; primes)
il

is greater than

enllog log #) =1 [(k — 1)! log n]= = ex(n) + olms(n))

{we(n) denotes the number of integers not greater than # having ex-
actly k prime factors). The constant ¢ depends on % and tends to 0
as k—w, For k2 3, ¢ <1. We omit the proof of these results.

THEOREM, The number M(n) of integers for which ¢(m) =n equals
cn+oin).

Denote by f(x) the density of integers for which m/¢(m)=x. It is
well known that this density exists.” We are going to prove that

c=1+ f-_ﬂx}dx.
1

First we have to show that [T f(x)dx exists. Since f(x) is nondecreasing
it will suffice to show that for large #, f(r) <er—%. We have

E:m{m}r = ST+ 4 < S TLA + 557

w1 | m=lplm
- E ¥ u(d)d-15n@ < nz 5d-1 < en,
maal d|m

¢ P. Erdds, On the iotient of the product of fwo prémes, Quart, J. Math, Oxford Ser.
vol. 7 (1936) pp. 227-229,
T Schimberg, Math, Zeit, vol, 28 (1928) pp. 171-199,
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Hence
lim 51 3, (m/d(m))? < ¢
-]

and this shows f(r) <er%.
Let % be a large number. Consider the integers m satisfying muk—!
Sm<n(u+-1)kY, uzk We clearly have

lim sup M(n)/n < 1 + i"iﬂ“i’"}.
wenl

lim inf M(s)/n > 1 + BT f(( + 1Dk,
[

(If uk'=m=(u+1)k" and m/p(m) = (u-+1)k?, ¢(m)<n and if
m/d(m) <uk™', ¢(m)>n) If B—= both sums tend to [f(x)dx, thus

lim M(n)/n = 1 + j; e

which comjletes the proof.

Let o(m) be the sum of the divisors of m. By the same methods as
used before we can prove the following results:

(1) The number of integers m for which o(m) =n is cn-to(n).

(2) Denoteby g(m) the number of integers m =n for whicho(x)=m
i solvable. Then n(log n)~'(log log n}* <g(n) <n{log n)~'(log n).

It seems likely that there exist integers m such that the equation
¢(x) =m has more than m! solutions, and also that there exist, for
every k, consecutive integers #n, n+1,---, s+k—1 such that
Py =d(n+1) - - - p{n+k—1).* We can make analogous conjectures
for o(n). It also would seem likely that there are infinitely many
pairs of integers x and y with o(x) =o(y) =x+y, that is, there are
infinitely many friendly numbers, but these conjectures seem intract-
able at present.

One final remark: Let ¥(n) 20 be a multiplicative function which
has a distribution function.® f(x) denotes the density of integers with
Y(n) =z. Denote by M(n) the number of integers for which ny¥(n) Sn.
Then lim M(n)/n always exists since it can be shown that [5f(x)dx al-
ways exists. The proof is the same as in the case of ¢(n).

Uwsiversity oF MICHIGAN

8]t is known that thers exists a number s <10000 such that é(n)=g(n-1)
=gi{n-2), but I do not remember m and cannot trace the reference,

* The necessary and sufficient condition for the existence of the distribution fune-
tion is given by Erdés-Wintner, Amer. J. Math, vol. 61 {1939} pp. 713-T21.
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