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In the present note we are going to prove the following theorem: Let —1 =
¥ < ¥+ < #a = 1 he the roots of the ultraspherical polynomial PY' (x) with
02« = 3/2 (The normalisation is of no importance.) « = 7 gives the Le-
gendre polynomial & = 3/2 gives U.(z) = Toulx), where T,(z) is the n*® Teche-
bicheff polynomial. Let

Py(z)
Pl ) (z — x)
be the fundamental polynomial of the Lagrange interpolation. Then

trax | KM | = 1M (=1) = M)
[ B SO S - |

M (z) =

Special cases of this theorem have been proved by Erds-Griinwald' and Webster®
(the cages o = 1 /2 and & = 3/2), TIf there i no danger of sonfusion we shall
omit the upper index n in I{" (x).

Proor oF THE THEOREM, It clearly suffices to consider the Liz) with —1 =
. £ 0. From the differential equation of the ultraspherieal polynomials® we
obtain
P:;L:](xll_} - Tk
@) 1 -4
Thusfor o = & = 2o 0 = Liz) = 1. Buppose now that & = 1, then we prove
that in (xe_y, 2:) l{x) lies below its tangent at =.. Denote by v, 42, - ¥a

the roots of Ii{z) and by 21, 22, - - - oz the roots of I (z), From (1)} it follows
that 7, <0 i < 7 . To prove our assertion it suffices to show that 24 > e .

(1 HEAR

First we prove that ye, > Teat+ B w#., From (1)

2
I _a 1t __a !
2142 imn—am 21— iRE—
thus
1 1 1
® Pl

1 4 gk Ty — Tf gk dy — Iy

| Erpie-Gruxwain, Bull. Amer. Math, Soc. £4 {1038), p. 315518,

¢ WensTER, ibid. 45 (1939, p. S87T0-873.

Fage ap. (3. Bzeao, Orthogonal Polynemials, Amer, Math, Soc. Coll, Publications val.
KX p. 5. Our notation differs from that of Beegt, This « has to be replaced by o 4+ 1.
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Now from (2)

1 1 1 1
- + > .
ick U — Ty ick—1 W — ¥y W — Tk iek—1 L — i W — Tl
_ 1 1 1
i<k Tp — L Tp o Ty U — Tg-
= 1 1 o :
fSioe— 3 Xe— T aTr— 4 o411
1 1 1
3 + —— >
Iy — Tg—1 izk &y — Tk ik Ty — U

which proves gy, > w. Now evidently from yey > u

1 1 1 1
e . - B
ok e — Wi ick—1 g — W Iy — Wea i<k—1 Xy — X: Txp — U
1 1 1
= - +
i<k Tp = Iy T = Lg—a I — U
1 1 1 1
= >
ik ¥y — X *: X — T iebdy — X I+ 1
and
1
igk M — In Stz — o
Thus by (2)
1
> 1

ke — Y ekl — T

which proves z. > =& .
Thus we obtain for k& = 1

3 max @] <1+ %Tall
and of course from (1)

2i &lz&] ﬂ!lx,.
(4) L l:l}1+l+| I—|—_|?;|

Suppose now 1/2 = a = 3/2. A well known theorem of M. Riesz' states: Let
fiz) be a polynomial of degree n which assumes its absolute maximum in (-1, 1

at z;; then for every root @ of f(x) in (—1, +1) wehave &, — th = E Here
g =coath, m=coed, < Hh Er,0 < S m

t M, Riesz, Jahresbericht der Deutschen Math Vercinigung, (1916} p. 354-368.
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Let —1 £ <2 < -+ < 1, = 1 be the roots of P (z); put cosdy = m
0 < # < 7, then it iz well known that”

T T

b S S By DR S

Thus | Lix) [ can take its absolute maximum in (=1, 1) only in (w1, 2eg),
or at the points —1 and 1. We shall prove that for & = 1,
() F(=1) | < B(=1).
It clearly suffices to show that
| PR (@)1 + 22) | > | PL7(e)( + =)

+

Or that
(6) | PRl — @) | 2 | B2 () ~ 20)
By the differential equation we have
(1 — YP") — (2o + 2P (z) + nin + 2e + NP () = 0.
Now apart from a constant factor P (z) = plaiy {x). Thus we can write
(1 — PR z) + exP(2) + P53 (2) = 0.
Hence: for the roots of PP (z)
| @ — zPEMz) | = | PR () 1.

The points 2, are the relative maxima of P2i(e). Tt is well known® that for
a = 1/2 the successive maxima of P, (z) increase toward the origin ie, for
a = 3/2

*

| PEa () = | P () .
This proves (6) and therefore (5). By the symmetry of the r it follows that
for k # n

{7 hi=1) = L(1) > | (1) ].

Thus, finally, from (3), (4}, (6) and {7} we obtain our theorem for 1/2 5 & = §/2.

Suppose now that 0 = & < 1/2.  Then it is well known that ¢, = 2n’ Thus
according to the theorem of M. Riesz it suffices to consider the interval (2, , z.).
Suppose then that [i{x) assumes it absolute maximum at 2, and that z,; 18 not
in (fee1, Tpge). It i easy to see that”

i3, Bzl ibid. p. 121, theorem 6.3.1.
@ Ibid. p. 163 164, proof of theorem 7.82.1,

T Ibid. p. 117, theorem 6211, & = 2111 follows from the remark that in case of

To(z}a = Doy = E'i

¥ Erptde-Trraw, Annals of Math, vol. 41 (1940} p. 429 lemuma IV,
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Iif,fn} - fiul:-'l.‘u} >1, Ei < Iy < Tiga -

Acecording to a formula of Fejér®

g nlm)li(ze) = 1, where wn(z) =1,

(8)
vy (‘n -+ 1;;5) =0, wulz) linear,
hence
ea(za)li(2e) + vesa(xallisa(zs) + malza)lilze) = L.
Thus from (8)

2az, 2] 2 | '
b 1 — = — = 3
th{za) > 1+3:'|_'1 1+IJ o, F<egl

Clearly one of the numbers p,{x,}, :..4.1{1&} is greater than 1. Thus

szlh(@) + walin(z) > min (@ + ) = -
Efy=lry >0

-+ ¢
Henpee
|
| (o) | < 1Hm
From (4) we have
n-1>32°,
and it is easy to see that
d=r¢ 1
T-}Vm (l/2<es51)

which completes the proof.

If @ > 3/2 our theorem does not hold any more, sinee it is easy to see that
li(=1) remains bounded but max L(z) does not remain bounded.

Webster” proved that

K (=1) = (/2" | Playalin) | 7

* L. Frugr, Math. Annalen, 106, (1032) p. 4 and p. 43,
1 Wensrer, Bull. Amer, Math, Boe, 47 (1841), p. 73,
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where j; is the first zero of J. (J{z) denotes Bessel [unctions). I think it can
be shown that

WM (=1) < (1/2§) " Ty | 7

in fact L¥(—1) < "™ (—=1). If so, we could state the following theorem:
Let 0 < a < 3/2. Then

max _ @)] < )™ | Ple)yalan) [

N

and this result is the best possible.
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