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ON A PROBLEM OF SIDON IN ADDITIVE NUMBER THEORY
AND ON SOME RELATED PROBLEMS

ADnENDUM
T. Erpis.

In a note ﬁllﬂliﬁ Journal [16 (1941), 212-215], Turan and 1 proved,
among  other results, the following: Let ay<ey<..<a.<n be a
sequence of positive integers such that the sums a;+a; are all different.
Then & < n - 0O(n'). On the other hand, there exist such segquences with
w=nt{2t—¢), for any > 10.

Recently 1 noticed that J. Singer, in his paper “A theorem in
finite projective geometry and some applications to number theory ™
[Trans. Amer. Math. Sove., 43 (1938), 377-385], proves, among other
rosults, that, if m iz & power of a prime, then there exist m--1 numbers
@y < g < eee < My < M2-m4-1 such that the differences a;—a; are
congruent, mod (m2+m-+1), to the integers 1, 2, ..., m®*+m. Clearly the
sums a4, are all different, and since the quotient of two successive
primes tends to 1, Singer's construction gives, for any large n, a set with
x =nt{l—e), for any e = 0. Binger's method is quite different from ours,
His result shows that the above upper bound for = is best possible, except
perhaps for the error term O(nt).
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NOTE ON H, SUMMARBILITY OF FOURIER SERIES
Fu-Traimmg Waxng*,

1. Let s, (f) denote a partial sum of the Fourier series of an integrable
funetion f(t), periodic with period 2, and let ¢(f)= L fle+8)+ e —1)—2s}.
Recently 1 proved the following result of Hardy and Littlewoody:

If ]1 |(w)| {1+-log* | dlu)|} duw = olt) as 1-=0, then the Fowrier series of
L]

fit) 18 summable H, to sum s for i =, i.e

%{ | afz)—=* =oln).

* Received 10 February, 1945; rend 1 March, 1045
t Hardy and Littlowood (1), Fund. Math,, 25 (1030}, 182-188; Wang (2}, Duke Math,
Jowrnad (in the press),
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ON A PROBLEM OF SIDON IN ADDITIVE NUMBER THEORY,
AND ON SBOME RELATED PROBLEMS

P. Ernig and P, Turin®.

Let a; <a, < ... be a sequence of positive integers, and suppose that
the sums atLa; (where { < j) are all different. Such sequences, called B,
sequences by Sidont, cceur in the theory of Fourier series. Suppose
that n is given, and that a, <<= < a_,,; the guestion was raised by Sidon
how large r ean be; that iz, how many terms not exceeding n a B, sequence
can have. Put x=d(n), and denote by @(n) the maximum of ¢{n) for
given n. Sidon observed that ®(n) >cn!, where ¢ is a positive conatant.
In the present note we prove that

@ n) = (ﬁ—s) A

for any positive e and all % > ny(e). In the opposite direction, it is clear
that @(n) < 4/(2n)-+1 [for the numbers a,—a,, where 1 <j <i <z, must
ull be different, whence fx{r—1) =n—1]. We prove that

Dn) == (1+¢) 1.*’?1

for any positive e and all n > ngle). Thus

It is very likely that lim®(n)/v/n exists, but this we have not been able
to prove.

We also prove the following result: let f(n) denote the number of
representations of n a8 w+-a,, where the a's are an arbitrary sequence of
positive integers; then il is impossible that f{n) should be constant for
all n=mny,.

I. Let p he o prime, and Jot,

gy = Zpk+ (k) for k=1, 2 ...; (p—1),

* Recebvod 17 July, 1941; rend 17 Decemler, 1541,
f 8. 8idan, Math, Annalen, 100(1932), 530,
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where (k%) denotes the unigue integer w satislying k*=wu (mod p),
I<<u=p—1. Clearly the a's are all less than 2p®. We show that
(1) a;+a, = oy

if the pairs (i, j) and (&, I) are different. If (1) does not hold, we clearly

have
(2) it bt B4PE=K40 (mod p),
and hence s —§ == I —j, i*—J# = *—4* (mod p), Thus eitheri—k=1—j=0,
or i+k=04j (mod p), In the latter case, it follows from (2) that
i=1 (mod p) and ke=j (mod p), whenee s =1 andd £ =7, and the pairs
(i, ) and (k. [) are not different.

Since the a's satisfy (1), we have @{2p®) = p—1; and, since the
quotient of consecutive primes tends to 1, it follows that

i 2805 L
WV

VES

II. Let o) <a, <..<a,<n be positive integers such that the sums
w43, (¢ =j) are all different. Let m be a positive integer less than »,
and consider the intervals

(—m+1, 1), (—m+2 2), .., (»n nfm)

Let 4, denote the number of a's in the interval —m +n < a;,<u. Bince
each a; ocours in exactly m intervals, we have

-E. A, =mz.
w=l
The number of pairs g, a, (§ = ) which lie in the above interval is
i"iu{"iu_ ! J'

The total number of these is
" 14, (4,1,
=]

and, by an elementary inequality, this is greater than or equal to

o ) 1)

mnS \m-4-n

For any such pair, a,—a, is an integer r satisfying | <r <m—1, and
to each value of » there corresponds at most one such pair, since the
numbers &,—a; are all different, The pair which corresponds to » oceurs
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in exactly m—r of the intervals. Hence the total number of pairs is less
than or equal to

ml._'l{m—r} = fm{m—1).
r=1

Comparing these results, we have

dmna(mez—m—n) < dm{m—1){m-+-n),

whenoe w{me—2n) << mim-tn),
S
and xﬁ%-—l—(ﬁ-l-m-{-%).

Taking m = [n!], we obtain x-<n*4+0(nl). This proves the second
reault.

It iz easy to see that, for every infintte B, sequence, lim d(n)/v/n = 0.
On the other hand, it is not difficult to give an example of a B, sequence
with Tim ¢{n)/+/n = 0.

ITI. Let @, &, ... be an arbitrary sequence of positive integers, and
supposs that f(n) =k for n =n,, where f(n) denotes the number of repre-
sentations of nas ¢+ay  Clearly ¢(n) =o(n). For, if not, there would

= be arhitrarily large values of n for which the number of pairs @, a, hoth
less than n would be greater than en®, and so there would be a number
m <= 2n for which f(m) = ¢n®/2n, which is contrary to hypothesis,

L]

Therefore, by Fabry's gap theorem, the power series Z 2% has the unit

{=]

cirele as its natural boundary. But
kzme

1—:'

where i{z) is a polynomial of degree not exceeding n,—1. Clearly (4)
gives a continuation of X 2% over the whole plane as an algebraie funetion,
which is an obvious contradiction. This proves the result.

It would be of interest to have an elementary proof of this result,
but we have not succeeded in finding one. Perhaps the following con-
jectures on the hehaviour of fin) may be of some interest.

(1) It is impossible that
El_f{m] =en-0(1),

where ¢ is a constant. If, for example, @, =% the error term is known
not to be even O(nt).
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(2) If f(n) = 0 for n>n,, then lim f(n) =cc. Here we may mention
that the corresponding result for g(n), the number of representations of

7 a8 a; iy, can be proved®,
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ON THE SUMMABILITY FACTORS OF FOURIER SERIES
Huxg Came Crowt.
1. Suppose that the Fourier series of the L-integrable function f{x) is
3 l;_.""l (e, cosmzt-b, sinng)= ﬁﬂn+§ls” (). (1}

It was proved by B. N. Prasad thatf, if (A} is one of the sequences

|. J. ] I ]_ | 'l |
4 F] = 3 3 s - 5 - ta‘ } 0]‘
| {log #)1+E) |log n(logyn)i+* ogn Tog, n(logsn))
the series ﬁ Ao z) (2)
=1

is summable | A | for almost all values af 2.  This result has been generalized
by Izumi and Kawata, who proved that§, if A} is a conver sequence and
the series TZm~1X, converges, the series (2) s summable |A| for almost all
values of x. ITzumi and Kawata proved also that||, if f(z) belongs te the
class H, i.e. if fiz) and its conjugate function are both L-integrable, and if
{A.} 8 a bounded sequence such that the series

w“ w .8

I oatALE 22, i)

n=i n=1 T

* The proof ia similsr to that vaed by P, Erdis in A, ok Uade., 2 (1938), TL-52,
but iz considerably more complicatad.

+ Recaived 2 Beptembar, 1841; read 11 Dogember, 1041,

1 BN, Prasad, Proc. Lendon Math, Soe. (2). 30 (1933), 407424, A sories 2o, i5 said
to ba suppmable | 4| i Fla) = 2o, 2 eonverges for [o] < L and Fiz) is of bounded varistion
in (0, 1)

i 8. Irumi snd T. Kawntn, Proe. Tmp. dead. Jopan, 14 (1835), 52-35.

| 8. Izumi and T, Eewata, Téhoky Math. Jouwrral, 45 (1938), 104-11046,
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