APPROXIMATION BY POLYNOMIALS
By J. A. CLarksoN anD P. Ernés

1. Let {n:] be a set of distinet positive integers,  According to a theorem of
Miintz and Szdsz, the condition 3 _n;' = o is necessary and sufficient in order
that polynomials in the powers ™ and 1 enffice to approximate uniformly an
arhitrary eontinuous funetion in the interval 0 < 2z < 1, i.e., that these powers
gpan the space € of continuous functions in that interval,

If the series converges, these powers, then, will span a certain closed linear
proper sub-manifold M of the space €, Tt is clear from the Mintz-Szdsz result
that if M’ and M are two such manifolds, then their union M' 4+ M’ cannot
span the space ' either, although the latter is quite possible in general for two
proper closed linear sub-manifolds.  Such a manifold M is then in a dimensional
sense “small”, and it is not unreasonable to conjecture that the funetions com-
prizing M are subject to quite restrictive conditions. We shall show, in faet,
that every such funetion may be extended to be analytic in the interior of the
unit cirele. The power series for this function contains only powers ', and it
may diverge at the point @ = 1. It will converge at that point, however, if the
sequentce |n,} s laeunary (n/n > 0 = 10

Char results also cnable us to extend the Miintz-RBedsz theorem to an interval
excluding the origin,

2. Let S stand for an increasing sequence of distinet positive integers {n,]

with 3 n;' < =. Denote by M(8) the set of polynomials with real coefficients

im]
containing powers 2™,
The following estimate is due to Mimntz [2]:

Taeorem 1. Ifme' S, Plx) € M(S), then

‘ 1 ( 2m + 1 )“
m 2 1 P B P SN i
L|z P@) [Pdr 2 5 T (1 - 225 ) = atm, 9 > 0.

This estimate is the basis for our results. Our first step is to derive some
properties of the function A{m, 8). From the _thf-.urem itself it 1s clear that for
& fixed, m ¢’ S, lim A{m, 5} = 0; we shall show that A cannot converge to zero

a5 fast as an exponential funetion of m.  Our application, moreover, demands a
certain uniformity with respect to the sequence 5. Define, for m € S,

¥(m, §) = E n;l

T
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and
ﬂm$=%gL

Crr assumptions imply that both & and ¥ approach zero with m™".

We now prove

TaeoneM 2. For 8 and ¢ > 0 fized, there 18 an mole, 5) such that m > my(e, S),
m e’ S imply
(1} Alm, 8} > {1 + ¢
Moveover, this m, may be chosen stmullancously for any aggregale of sequences 8
provided only that ®(m, S) and ¥(m, 8) tend to zero as m — = uniformly for 5
in this aggregate,

Proof. We write

A(m, 8) = (2m + 1)7'B(m, 8)C*(m, 8),

where

Zm+1
bon 9= T1_(1- 2200
tn, )= T1 no+m+1
and C(m, 8) is the analogous product with n, < 3m 4 1, We shall show that
the functions B and 7 possess the property deseribed in our theorem, from
which it is easily seen thal our eonclusion follows. Tuming first to Bi{m, S},
we note that n, > 3m 4 1 implies

2m -+ 1
m4n; + 1
and that 0 < z < § implies 1 — = > ¢ from these we infer that

- 2m + 1 )
Bim, 8) > H exp( 2—“m+n.-+ 1

Imt+lany

0 < <4

>exp[—22m+ 1) 2, ni'] > exp [—6m®@Bm + 1, 8],
Bmelgng
g0 that we need only select m, such that exp [64(3m, + 1, S)] < 1 + ein order
to have condition (1) satisfied by B(m, 8) whenever m > m, .
Ta deal with C'{m, S) we first note that

T om 41 <

l_--m—]—n:-—i—l = &m

for n, < 3m 4+ 1. Moreover, all factors in C'(m, &) are distinet, and none
vanish. There are N(3m + 1, 8} of these factors, where N(m, 8) = m¥(m, 5).
Thus,

| C{m, S) [i = INI:Em <+ 1, S {ﬁm'J-?fiamH..Mr



APPROXIMATION BY POLYNOMIALS 7

and this last expression, if we recall that ¢ > E'(k1) " for positive integral k, is
readily seen to exceed

N@Bm + 1, 7> {[ Bem Taw-w»}--
{ﬁm}ﬂ'hnu-L.Gbﬁ.‘h’(am-&l.&h N{am + 1+ E} &

The expression within the brace approaches unity from above as m — o, and
indeed uniformly so for any set of &z which satisfy our supplementary condi-
tions; this concludes the proof of Theorem 2,

We remark that any aggregate of sequences S all of which are obtained from
a fixed S by omitting integers will be an aggregate for which the hypotheses of
Theorem 2 are satished.

We may now prove the first of our main results.

TaeoreM 3. Lef Poix) ¢ M0S) tend uniformiy to fie) m 0 < ¢ < lagh — =,
Then f(z) can be extended to e analytic throughout the interior of the unil efrele.
Ttz power series involves only powers x™'; and the cocfficienis of Pu(x) tend to the
coefficients in this power series.

Proof. We first show that lim a"' exists, where a!"' iz the coefficient of 2™
f =T

in P;-{-'E}
SBuppose, for a fixed 1, that this is not true. Then, for some ¢ > 0, there would
be a sequence of pairs of integers [k, | k}], increasing without limit, such that

el — a7 | > o (G=1,2,3 ).

Then,
Pi(z) — Puola) = (af*” — a*")2"" — Q(z}],

so that
[P ~P@ide>é [ 2" - QW [ de > 40, 8),

where 8; = 8§ — n, . But our hypothesis clearly implies that the integral on
the left tends to zero as j — o, from which contradiction our first assertion
follows., TLet

lim gl = 4, #=122, )

i
=

We next show that the a;" may be estimated with vespect to their growth as
i inereases, uniformly in &, whence we shall derive a like estimate for the 4, .
Suppose, indeed, that € > 0is fixed. For any £, k we may write P.(z) = a}"
[z + @..(x)] (unless gf*" = 0). §.{z) has no term in ="', s0 G e M(8.),

8 =8 —mn,. Now all these 8,'s, by our previous remark, form an aggregate
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which satisfies the requirements of Theorem 2; hence there is a fixed n,(e¢) such
that when n, > n.(e) and for all &,

ful | 2% + Qi) P dx 2 (1 + 7.

Now, from our hypothesis, | P.{x) | must be uniformly bounded: suppose | Py(z) |
< Tiorall x and &, Then we may conclude

T* = [0 _’; | 2™ + Quila) | de = [ai"T(L + ™

for all k, and n; > n.le), whenee, under the same conditions,
(2} e | < T(1 4 &

Thus, given ¢ > 0, we mayv first seleet n, large enough and then by letting
k —+ = obtain the result

{3 |4y | = Tl 4+ ™ {n; > ngle)).
This elearly implies that Tim | A, """ < 1 50 that the power series |, A.z* has

{—m

a radiug of convergence at least unity, We denote the sum of this series by
g(x): we now have only to identify f{z) and g{a} tor 0 < 2 < 1. Suppose then
that r is fixed in this range: we show that

(4) Lim | Pifx) — glz) | = 0.
Indeed, suppose an ¢ > 0 is given; we write

| Z .*],;I:“ oo E ﬂzﬂxn; |
=]

| Pe(z) — gla) |

(5)

4, —aP |+ thlaﬁ’” | 4 | A; Pa™.

=1 tm 4

1

We firet select N large enough so that | a;*' |, | 4: | < T(2/(1 4+ 2))"* whenever
i > N, which is possible by (2) and (3), and then further inerease N so that the
second term in {5), which iz now dominated by a geometric series remainder, is
less than 37, This N being fixed, the first term may he made < §7 by choosing
k sufficiently large. Hence, (4} is now demonstrated, and as Py(x) — flz), the
proof iz finished.

It is not true, in general, that the partial sums of the power series for flx) will
serve as approximating polvnomials for this function in the closed unit interval,
since this power series may not eonverge at the point e = 1. Consider a sequence
of positive integers

T TS M I R s A L
such that 1 < nf/n, < 1 + 27" It may easily be verified that the k-th term of
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the series 3, (2™ — ) hag absolute value less than 27" for 0 < 2 < 1, so that
k=i

flx), the sum of this series, is a continuous funetion in that interval, Moreover,
sinee our condition implies 3 n; ', 2 (ni) "' < =, we infer by our previous result
that f{x) can be rontinued to an analytic function within the unit eirele, whenee
it follows at onee that the power series for f{z) is — 2™ + 2" —z™ +a™ — -+,
which diverges at & = 1.

Um the other hand, Hardy and Littlewood [1] have shown that if the power
series 2 a2, with radius of convergence unity, is lacunary (ne,/n, > ¢ > 1)
and lim 3 a,s™ = a, then E a; = ¢. From this it follows immediately that

=1

in the lacunary case the divergence at x = 1 shown in our last example cannot
oceur, and that the power series will converge uniformly in the closed unit
interval,

3. By utilizing Theorem 2 we are able to extend the theorem of Miintz and
Bzdss to any closed interval (&, b), where @ > 0. In this case the presence of
the constant power z° is irrelevant. We have chosen to emit a discussion of the
covresponding extension to an interval containing the origin in its interior; this
is of a more routine nature, involving only a natural distinetion between even
and odd powers,

Tueorem 4. Let 5 = {n,| be an increastng sequence of distinet positive inlegers,
aned let I be the closed wnterval |, B, 0 < o < b, Any real funciion continuous on
I can be uniformly approvimaied on I by polynomials involving only powers ™ if
and only if 2 n7' diverges.

dm=l

Proof. The sufficieney being clear from known results, we consider only the
necessity,  Without loss of generality, we assume b = 1,

Suppose, then, that ¥ n;'< =, and that corresponding to each m ¢ § there

imi
exists a polynomial *.(x) in the 2" such that || 2™ — P. || < 277, where for
any function f the notations || £, || £/, || £]]" denote respectively the maxima
of fin (g, 1), (0, @), and {0, 1).

We first show that || P, || tends to infinity exponentially as m increases.
Let &, , for any positive integer I, be the sequence {n, + [}. We remark that
the supplementary conditions of uniformity laid down in Theorem 2 are satisfied
by the set of sequences S, (= 1,2, 3, -+ ). Indeed, that the functions ¥(m, 8,)
tend to zero with m™', uniformly in {, is obvious from their definition; and, from
the relations

q’(m: SJ} = E {ﬂ,- + '!:I_E = E (ni + n_] + E (H'{ + {}_1

mamng 0 =g m—l<sniEm
< Y al'+mt Y 1= ®m, 8+ ¥m, 8,
LT niEm

our remark follows,
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We now select an integer my subject to several conditions, the first of which
is that m ¢ 8 and m > m, will imply || 27 — 2"P.(x) |\ > (2 — a) ™™, which,
by our remark above and Theorem 2, is certainly possible. Since || 2*" — 2™P,, ||
< 27" this implies || 2™ — z"P,. ||' > (2 — a)™", whence [| 2™ — P, ||’ >
[a{2 — a)]"". Since a(2 — a) < 1, this shows that (with a possible further
increase of my,) when m > myandme 8, A, = || Po || > " (e > 1),

We further restriet m, to satisfy the two following conditions:

(i) Y 2—-a] <%

Wy

{ii) |2 — 2 aa™ || > (2 —a)™ forme > nh .
1k

Here (i) is possible once more by Theorem 2,
We now write P.(x) = 2 b,2", and note that because of (i), whenever

Ny > Wi, and unless b, = 0,

|

from which | b,; | < 4.(2 — )™ when 1, > m, .. Thus, for any m,

| 2 baz® |['< 4. 2 (0@ — a)]’ < 34..

i
= !|1-_"' + - | > @ - e,

ETEA T W
Inereasing m, so that m > my will imply || P. || = || Pa |'; we then conelude
from our last result that for m > me, 2, |b.;| > $4. . Foreachm > m,
B Sma

there must be, then, & corresponding j(m) such that #;.., < my and | by |

> A./2(m, + 1). We further demand of m, that m > m, imply | bosrwy | > L
Now, for m > m, , we write

Bajioy | & = & Pofz) | = | 27" + Quix} |,

where Q.. is a polynomial in ™" and 2™ "™, § # jim). This expression is less
than o"'=""" where 0 < o < 1, for the entire interval 0 < = < 1. For the
interval (@, 1) this is at onee elear from the definition of P, . In (0, a) we write

h;::{—} |"t!m - mum | E ﬂsm + zimn + l}ﬂ-m1

which again tends to zero exponentially.
If we write

|;r""”-|!l1‘lﬁ + Q..{lj | i |mﬂ|":u|-l-n| + b;:“uxzm + Rm{:f:! |r

and recall that b, tends to infinity as an exponential in m, it is clear that for
an appropriate 3, 0 < g < 1, we shall have for0 < z < |, m > n,,

[mte + Bu@) | < 47,
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where the polynomial &.. involves only powers 2”77, @ = jim). BSince this
contradiets Theorem 2, our proof is now concluded.
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