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Denote by p(n) the number of partitions of n. Hardy and Ramanujan’

proved in their classical paper that

p(n) ~ Iigi e, o= =3,

using complex function theory. The main purpose of the present paper is to
give an elementary proof of this formula. But we can only prove with our
elementary method that

(1) p(n) ~ 2 o

and are unable to prove that ¢ = 1/4.3%
Our method will be very similar to that used in a previous paper. The
starting point will be the following identity:

(2) np(n) = ;gvp(n — k),  p(0) = p(—m) = 0.

(We easily obtain (2) by adding up all the p(n) partitions of n, and noting
that » occurs in p(n — v) partitions.) (2) is of course well known. In fact,
Hardy and Ramanujan state in their paper® that by using (2) they have obtained
an elementary proof of

(3) log p(n) ~ en'.
The proof of (3) is indeed easy. First we show that
4) p(n) < ™.

We use induction. (4) clearly holds for n = 1. By (2) and the induction
hypothesis we have

@ o ) —ke/2nk
i 2 €
np(n) 2 E E: wc(‘n ko) k < 2: z: vecni kv 2nk i eoﬂ* Z T
=1 k=1 vl k=1 k=1 (1 — ¢ )

kv<n

1 Hardy, Ramanujan, Asymplotic formulae in combinatory analysis, Proc. London Math.
Soc. 17, (1918), pp. 75-115.
t Erdos, On some asympiotic formulas in the theory of factorisatio numerorum, these Annals
42, (1941), pp. 989-993.
3 Hardy, Ramanujan, ibid, p. 79.
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Nowitiseasymseethatforallrealx( £ "I),<—1§
=B

Thus
sk 4n enl
np(n) < € E 2’(‘:2 = m 3

which proves (4).
Similarly but with slightly longer calculations, we can prove that for every
e > ( there exists an A > 0 such that

(5) pln) > —i-e“"""l ’

(4) and (5) clearly imply (3).
To prove (1) we need the following
LEmMMma 1:

B ® W vec(nwku)! mi
(6) 2L o= |1+% )]

kv<n

for some fized € > 0.

Proor. We omit as many details as possible, since the proof is quite straight
forward and uninteresting. We e\ndently have by expanding 1/(n — kv) and
omitting the terms with kv > n'*

1<% i i

= E Z vee(n ko) + E Z kﬂs e{n—ks)
M oyl k=1 n? el k=1

kv<n kv<n kv<n

+ o(n,+,) ¥+ T+ o( i:)

Now

1" peml kel

r‘rli - L cni
e —cku/2nb €
S-SR e o).

(It is easy to see that the other terms of ¢“™ ™! can be neglected and that
the summation for v and k can be extended to «.) Thus

ent oo end
e 2k e 2k-8n}
E" i wE Z 1= e—kcfzvﬂ)s + 0 (ﬂH-e) . E =y

enl 4ecnl e:nl
+ O(ﬂ,!"") = E ‘r_i.!— + O(-r—'ﬂ;).
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On the other hand

CJ ! oo ; & 3 (20 l
—l:h [2nd—ckiy Sml
2= 4 0( uf)

=1 I.=»l
fﬂi oo a0 i {lk ! 2 ecni
—eke/2n M —r.ﬁr n ?
(; 3 st A ) S+ 0(G) -

i nk 2 ¥
C‘ﬂ - i k! 36-—1:.{& 2ad _ fﬁl i 6;\.' + O em

ol & e o —okznd) e

8?1, v=1 k=l 8n' =1 (1 geki ) n

ent = 2. 2 end
ce 26;.. 16n +O(e__)=

8nt i3 k¢t nite
e = enl —ck{2nk
Vil e 33 gt é e
R =1 n iot (1 — e—ck2ed)?

A simple caleulation shows that
—r e—ckmni 4

e 1 ) o
T, 1), ie. —— = + 001)
. (1 — e-:)z 2 + 0( ) 1 (1 — e—n‘:f'-"-")z oy (
Hence
end u —ck{2n} enk
' e 4n & ;
= 7 o2 I 3y = |n
Zl n sz=:1 C‘Zkﬁ + k;; (1 ey g—ckjﬁni)g (ﬂ.{"") [ ]
But
S dn _ 4dnaxt 4dn 1 o n)
= ] c 1;‘ B "= Eu F (uf
And

c-—ck,’?nl @ e—c:.r?nl 1
= ————dzt o(_,,)
kg (1 — e—ckﬂni)g fu (1 — e_.ul."zni)'z 242

2n' n' 1\ _ 4n # 1
i ~ et ol = B -]

Thus finally

Hence

Il

(
2 =2u- i’+22=e”‘[1+0(11)]

which proves the lemma.
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Next we show that

@) 0 < tim inf "2 < Jim sup "2 <
e po
To prove (7) write

(]) e = max ??L(m) :

m<n ecm‘

Clearly by (8) and (6) and (2)

e{n=1—ke)d 4
1) < ™ ve (w) c{n-w} EJ; :
(n+ Dpn + 1) < ¢f f\;{gr—_—a-i—l—k < ef 14 5.
v
Write
(n + Pp(n +3) _ ol :
getn+i) 1+ nHe ? J ® Ly
Then
() c(n-lr—l -ks]l
1) <"
n+r+Dpa+r+1) <ecf ;%ﬂ%-r—}-l-—kb
() m:'x bif vea(r:+r--‘-1—kn]l
- !
Tl %;§n+ r+ 1 — kv
max b; e cnirsni
(n) _elnir+1)d by j<r T €
<a’e (1 + _.i+¢ rﬂ\l\+t __'ﬂ_ o k)
since
p < 9°
kn=r -
Hence
+* max b;

br+1<b1+£r_-
n

We show that, for 7* < n/2, by < 2b1 . We use induction. We have

b;-+1 = bl + s 2{)1 .
¢ b is chosen such that for every m > 0
pet (m—ku)
4 c(ml)
g; Ppay R (l+m““')

m—ku >0
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Thus
ciw(inlll <e¢ (»J (1 i 251).

nite

Or

nite

el o <m=) (1 3 l_.Ub)

and since Y m""** converges we see that lim sup c ' < w;ie. limsup np(n) /e <

». Similarly we can show that lim inf np(n) /e”' >0, whlch completes the proof
of (7).
Next we prove that

(9) lim inf ﬂ“p(?) = lim sup n_p@
ecﬂ eﬂﬂ

and this will complete the proof of (1).
Suppose that (9) does not hold; write

(10) tim inf 2 = ¢ lim sup "™ _ p,
e“ ecn

Now choose n large and such that

np(n)
ecﬂ i > D

Then since p(n) is an increasing functlon of n there exists a ¢ such that for
every min therangen < m = n + c-n

mp(m) + D
gemd 2 2

Now wel claim that for every r; there exists a §,, = 4(ry) such that, forn = m =
n + nn’,

(an) W) 4 iy
. eom

We prove (11) as follows: We evidently have by our lemma

- :(m—kv)i D—d i
mp(m) Zdzz + EZ ve _‘r__a(gcml) 5

=1 ke — kv 2 »=1 k=1
kv{m n=m—tv<ntegnt M — kv

5 The term o(e"‘i) is present because d is the lower limit and not the lower bound of
mp(m)

E =
ecm



442 P. ERDOS

i, D=de* i 3 i 3
> de™ + 0 — v — o(e™) > de™ + e — o(e™)
2 M n=m—w=ntecant
l— C'II*
> (d + 8, ie > ).
gcm}
which proves (11).
e s ie rge; we w tha
Suppose 2n = m = n + sn sufficiently large; we show that
—kw) ¥ cmd
(12) 2 2 v e
vl bm]l ————— < -—16 .
m_kv<n M — kv s
Clearly
c{m—kv}i e{m—-&t}‘
'<
L il n
b<m—kr<n kv>an
cp [ 2md (m—kv)d
T e ve’
=+
‘ BE o
lm>ku>mi m>kvzim
3
2ve-ck912m )
o b it
im}kv}ani
since
2.2 w27
0 f
kp<z
Further
E 3 iomd
E E ckv/2m < Z Z E Z'é'_cwﬂ [2m
"m)kz}an (’u+1)aﬂigk'y}uani
m
<ET Tt < 3w 0t
1 y=1 k=1
:El§<3+1;m1
Thus
H
E Z —ckm’!m < ms2 Z ('U. + )2 —cus/4 < 4 —
-]l
im)]w}anl “
for sufficiently large s. Hence finally
elm—kr)} eml em¥
ve € 2 elim)t e
< Fwmie <
vl kel M — kv 2510 st

m—kv<n

for sufficiently large m and s (since s < n?).
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Consider now the intervals n + tn', n + (¢ + nd, ¢ >, £+ 1 < n}. Split
it into # equal parts. Write

win TOVR) . gge némén-!-( ”j;l)n*

eom!

and put 8" =5, Nowletn + ({ +uw/Ond <m <n+ (¢ + (u+ 1)/tnt;
then we have

elm—kp)t

u—1} z Z; ve _ O(chl),

1‘8

peml k=1
kv <m

where the primes indicate that the summation is extended only over those »
and k for whichn £ m — kv < n + (¢ + u/*)n’. Further by Lemma 1

elm—kv)t
£ ve

m — kv

mp(m) = (d + s 0)e™ — 500 3

elm—tw) ¥

B(u—l} Zru ve _ O(ecm‘l)
?
where in Y. the summation is extended only over those v and k for which

m — kv < m, and in ) _/" the summation is extended only over those » and k
for whichm — kv = n + (¢ + u/)n'. We have by (11)

€
EH< W’

Further we have

3 3

nzecm 26(.‘1’“

1 < - < ——
Z t om I

Hence finally

u—1)
mplm) > ¢ (d o B 36;4 ) — ole™h.

Hence
g g (1 - ;) — o(1).
Thus if ¢ is fixed, independent of n, we have

3\"
Bei1 > G (1 = E‘) = 9(1):

therefore

3\*
8 > 6” II (1 - EF) - 0(1).

=T
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But [[. (1 — 3/u")*" converges; thus, if r, was sufficiently large, we have 8, >
8-, /2. %Now choose ry sufficiently large; then we have 3,, > 6,,/2,i.e.forn = m =
n —+ rn’,

mp(m) rl
— >d+ -2

Consider the interval n + tn, n + (¢ + 1)n, £ > r».  Split it into £ equal parts.
5 and 8, have the same meaning as before. Suppose n + (¢ + w/&)n' <m =
n + (t + (u + 1)/i*)n}; then evidently

elm—kw)t

mp(m) > (d + &) 2’ ;f ve

m — kv’

where the primes indicate that the summation is extended only over those »
and k for whichn < m — kv < n + n(t + u/t).
Now

c(m—kw c(im—ko) ¥

S 2P VM B 14

m — kv 1,=1k..1m—kv

203

where D" 'and >." are defined as before. By (12) and the previous estimate
of >°"" we have

| i
rm 2ecm

Zn tw , Zur < =

Hence by Lemma 1

(u—1) emt
mp(m) > ecmi(d "‘I" 6Eu—1)) (1 _ §) . bl(d + 6! )6 .

A nf+e !
ie.
g a(ll'—l)
d+ 8" > (d+ 6 ")(1 —g) —-bﬂ?;—,‘——),
and
2 b 2 d 6(1,:-—1)
d+ Gua > (d"f‘at}(l _531) == —l—t—(—?;—:_‘—“—):
or

3 " b283
d+53>( H(l——) _ﬂ._!;‘.

E>ra

For sufficiently large . we have,

s, _3\“ -,
(a+3) I (-3 >a+ %

and if s £ (log n)* and = is sufficiently large,
By

5>8;
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that is, for n < m < n + n'(log n)*

mp(m) rl
ecnﬁ > d + L

Now suppose m > n + ni(log n)’; we shall show that

E Z E c[m-—kt)l chi
kv m
ﬂ{m—hr(ﬂ
We have
oo
E < m2 ent < m2 em¥—10c logm < e
m
for sufficiently large n. Hence by Lemma 1,
elm—fr) t
ZZU e e (1 — b\ e
nite/’

m—kv 2 n

Now we continue as in the proof of (7). Suppose! > n + n'}(log n)®; write

a8 = mmm?’(":‘), nEm=st
e
Then
wcu—wi ) bi
C+Dpt+ Dz @+ 22— >(d+6)“(—ﬁ—+.)-
—}LUZH
Write

t+ »plt + 1)

ec(l-f—r)!'

b,
= (a*+a,J(1 ‘a—)

" e(tdit1—ke)t

(+i+0pC+i+)>@+8) TX :

Then as in the proof of (7) we have

~ t 7+ 1— ke
t+i+tl—kv=n
max b: -2 )
— (d + 8) rﬁﬁ .ilt_ec(w;a.-ni

' ma.x b,

> (d + a‘)ec(l"-j-i-l)l (1 - ‘___bl—) (d + 5’) r< i ec(:—:-j.H)i
0+74+ 10 gl+¢ P

= (@ + 8)e ! (1 - 2—:-1)

s Asin footnote 4 b} is chosen such that for every m > n + ni(log n)?

acim—ke) ¥ !
Tyt (1
~ Lt — Ky mite
n <m—kv
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where

2
biy < bi + maxbl-L .

r=ij t

We show that for 7* < /2 we have, bj;1 < 2b;. We use induction; we have

b < b4 22— ]
Thus
d+ By > @+ 8 (1 - ﬁ—(})
That s,
&4 dgups > W+ 8) (1 - 18?53'1)
Therefore

b, __ 10, 3ry
d+ 8 > (d+ _8_)”11“(1 F) >d+ 15,
which contradicts (10); and this completes the proof of (1).

As ean be seen, the main idea of our proof is rather simple; unfortunately the
details are long and cumbersome. By the same method we can prove the
following result: Let m be a fixed integer. Denote by pirs,......,(r) the number
of partitions of n into integers congruent to one of the numbers a,, as, -+- a,
(mod m). Then

m a &n m
(13) p:gl_iz.-v-.a,(n) ~ ?; € ;) ((al y Qay *tr, ar) = 1)

where €' depends on m and r, and @ and a depend on m, @1, a2, -+ - @, .

The same method will work if we consider partitions of » into rth powers.
Denote the number of partitions of » into rth powers by p.(n), Hardy, Ramanu-
jan and Wright’ proved that

(14) pif_ﬂ) ~ ¢ nl."(r+l)—i ecgﬂ‘f(’+1).
Clearly as in the case of p(n) we have

npn) = 3 ; v p.(n — k).

vh<n

? Hardy, Ramanujan, ibid. p. 111, Maitland Wright, Acta Math. 63, (1934), pp. 143-191.
Wright proves a very much sharper result than (13).
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To prove (14) we should only have to prove the analogue of our lemma, namely

Z Z (n— 1o k)1f(r+l)-vl—ecz(n—l:"k)I-J"("‘HJ
e

o
wTh<n
— U=} eanl/ (r 1) 1
= e 1+ 0 =] 511+ E

If (15) is proved the proof of (14) proceeds as in the case of p(n).

I have not worked out a proof of (15); it seems likely that a proof would be
longer than that of Lemma 1, but would not present any particular difficulties.

Recently Ingham® proved a Tauberian theorem from which (1) and (14)
follow as corollaries. In fact his Theorem 2 gives a more general result, from
which (13) also follows as a very special case.

Denote by P,(rn) the number of partitions of n into powers of r. Clearly

nP,(n) = Y, ; " Pin — k).

k< n

(15)

It might be possible to get an asymptotic formula for P,(n) by our method.
T have not succeeded so far. But we can show without difficulty that

(log n)*
(16) log P.(n) T

We have

o= 3 Bl =11 L

n=0 ol 1 - xfll

It is easy tosee that for0 = = = 1,

- . (1 i x)tmz log ) log 1/(1—z) < @) < o (l_i_x)um loga)) log 1j(1—2)
Thus

P (1 B %)n P f(l B %) < gypiioamiclosa,
that is

P
Piln) < pypHieenidloes log P.(n) < (1 — ¢ (l_og_n)_ for n > ng.
2 log a

Suppose now that for a certain large n log (P.(n)) < (1 — €)(log n)*/2 log a;
then, since for m < n P.(m) £ P.(n) we have

n
(18) f(&:) & e(:—-e}-(lonn)zf(ﬁloga) Z xk s Z cak(lozk)ftﬂ log a) xk’

k=) k>n

$A. E. Ingham, A Tauberian Theorem for Partitions, these Annals, 42 (1941), p. 1083,
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and a simple calculation shows that (18) contradicts (17). (Choosez = (1 — d)n,
8 = 6(¢)). The same method would of course give

log (pll) e (%"’)a

We can also prove the following results:

I. Let a; < a2 < --- be an infinite sequence of integers of density «, such
that the a’s have no common factor. Denote by p’(n) the number of partitions
of n into the a’s. Then

(19) log (p'(m)) ~clan)t. (¢ = =(®)}

II. Let a; < az < --- be an infinite sequence of integers of density «, such
that every sufficiently large m can be expressed as the sum of different a's.
Then denote by P’(n) the number of partitions of » into different a’s. Then

3
(20) log P'(n) ~¢ (g n) :

We shall sketch the proof of II; the proof of I is similar but simpler. Denote
by P(n) the number of partitions of » into different summands: it is well known
that’

(21) log P(n) ~¢ (g‘)i .

First we show that

i’
(22) lim sup IM <1
(57)
To the partition n = a;, + @i, + --- + a;, we make correspond the partition

@4+ 4+ - + 4. Fori > 4 we have 1 < a;(a + ¢) therefore ¢ + 7> +
«or 41 < nla+ €) +7;. Thus each partition of n into the a’s is mapped
into a partition of integers < n(a + 2¢) with all integers as summands; hence

from (20) we obtain (22). Next we prove that

I3
(23) tim inf 28 P'®) 5 1
¢(3n)
Split the sequence a; into two disjoint sequences by, by, --- and 1, ca, -+

where the b’s have density 0 and every sufficiently large integer is the sum of
different b’s and the ¢’s are the remaining a’s. It is easy to see that we can
find the b’s with the required property; also the density of the ¢'s is clearly o.
Denote by Q(n) the number of partitions of n into the ¢’s. Now associate

3 A well known result of Euler states that the number of partitions of n into odd integers
equals the number of partitions of n into different summands. Thus (20) follows from 4.
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with the partition n = 4, + & + - + %, 11 < %2 < -++ < % the partition

¢, + ¢y, + -+ + ¢, ; as before, we have
n n
a+e<cu+c;,+---+c;k<a_e.

Hence for at least one n/(a +€) < m < n/la — ¢, Qim) > pn)(a — ¢ /n.
Thus there exists a sequence of integers z; < xz < --- with lim 2;1/x; = 1 and

24) lim inf 126 9@ _ 5,
9

Now suppose £; = m < z;41. Choose x; such that en > m — 2; > €. Then
m — z;is a sum of different b's, hence P(m) = Q(x;). Thus (23) follows from
(24), and this completes the proof of II.

If might be worth while to mention the following problem: Let a; < az < - - -
be an infinite sequence of integers, such that log P(n) ~ c(en)!. Does it then
follow that the density of the a's is @. I cannot decide this problem. Perhaps
the following result might be of some interest in this connection: Let a; < a3 - - -
be an infinite sequence of integers. f(n) denotes the number of a’s < n, and
¢(n) denotes the number of solutions of a; + a; £ n. It can be shown trivially
that if lim f(n)/n® = e, then lim ¢(n)/n** = ¢;. But the converse is also true,
and can be simply proved by using a Tauberian theorem of Hardy and Little-
wood.” We have '

() = (i z) -3 o

and, since Y di = ¢(n) ~ e, we evidently have

~
{(.z.')l (1 — 2)=

and hence by the theorem of Hardy and Littlewood,
f('n) = Z 1~ Clnﬂ.

ap=n
By the same methods that were used in proving II, we can prove the following
result: Denote by R(n) the number of partitions of » into integers relatively
prime to n. We have

log R(n) ~ clp(n))*.

Similarly, if we denote by R'(n) the number of partitions of n into different
integers relatively prime to n, we have

log R'(n) ~ c(g(z—n))i.

10 Hardy-Littlewood, Tauberian Theorems, Proc. London Math. Soe. 13, (1914), pp.
174-191.
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I have not succeeded in finding asymptotic formulas for R(n) and R'(n).
This problem seems rather difficult,

March 12, 1942,
In the meantime I have proved the above conjecture. Consider

1@ = 3 Pa* = T =

el

If we assume that log P(n) ~ a(n—)l, we obtain by a simple calculation

log f(z) ~ T %

1 — T

But

o

log ) = T o+ 3 X 4 oo = 3 bnad

Denote by A(n) the number of a’s not exceeding n. We have

B(n) = Ebk = i— (:)

=1k
Thus

=1 ok

Al =3 EE 5 (E)
But by the well known Tauberian theorem of Hardy-Littlewood," we have
2
arT n

B(ﬂ) N_B_'

Hence

= u(k) ar'n
A(n) ;—F 5 an. q.e.d.

Similarly we can show that if log P’(n) = ¢[(a/2)n)}, the density of the a’s is a.

UNIVERSITY OF PENNSYLVANIA

1 Hardy-Littlewood, ibid,
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