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To THE MEMORY OF I. SCHUR 

1. Introduction 

1. Let n 2 3, and let Qa denote the class of polynomials f(s) of degree n 
satisfying the condition 1 f(z) 1 5 1 in the interval - 1 5 x 5 + 1. Let Qn(zO) 
denote the subclass of Qn characterized by the further restriction j”(zo) = 0. 

A well-knom theorem of A. Markoff’ states that 1 f’(z) j 5 nz for - 1 5 
x 5 +l provided that f(z) E Qn ; here 1 f’(s) 1 = n2 holds if and only if 5 = &l 
andf(z) = &Z’,,(z), where T,(X) denotes the nth Tchebycheff polynomial. We 
observe that T,(s) does not belong to the classes Qn(ztl). 

Some years ago I. Schur2 proved the following interesting theorem: Let 

- 1 5 x0 5 +l, and let f(z) belong to Q%(xo). Then 1 f’(zo) I < an”. Moreover 
he showed: Let m, be the least positive constant (depending only on n) such that 
1 f’(xo) 1 2 m,-n” for all f(x) E Qn(xO), and x0 in -1 5 x 5 fl. 1.f p = 
lim supn.+ m, , then 

(1.1) 

Obviously 

(1.2) m,.n2 = max max I f’(z0) I. 
-l<z~~'+l f(Z) z Q"k4 - 

The main purpose of the present note is to determine the constant ,u and the 
polynomialf(z) for which the extremum (1.2) is attained, In terms of the con- 
stant m, , we obtain a bound for the derivative f’(z) of a polynomial f(x) which 
satisfies the condition t,hat /f’(z) I h as a relative maximum at the point CC 
considered. 

2. Let u,(x) be the polynomial of the class Qn(+l) for which u;(l) is a maximum. 
This polynomial U,(X) = zc,(s; 4,) can be determined from the transcendental 
equations (2.5), (2.6) and (2.17) of $2 (see below). It is a special case of a 
remarkable class of polynomials u,, (X ; -4) considered first by G. ZolotarefP 

18. Markoff, On a certain problem of D. I. Mendeleiefl (in Russian), Zapiski Imperatorskoi 
Akademii Kauk, vol. 62 (1889), pp. l-24. 

2 I. Schur, iiber das Maximum des absoluten Betrages ekes Po1ynom.s in einem gegebenen 
Intervall, Mathematische Zeitschrift, vol. 4 (1919), pp. 271-287. 

3G. Zolotareff, (a) On a question concerning a mini,mum value (in Russian), DissertaCon 
“pro venia legendi,” published in lithographed form, 1868, Oeuvres, vol. 2 (1902), pp. 130- 
166; (b) Application of elliptic functions to questions concerning functions which deviate the 
least from zero (in Russian), Zapiski Imperatorskoi Akademii Kauk, vol. 30 (1877)) Oeuvres, 
vol. 2, pp. l-59; (c) SW l’tzpplication des foncfions elliptiques aux questions de maxima. et 

minima, Bulletin de l’hcadhmie des Sciences de St.-PBtersbourg, series 3, vol. 24 (1878), 
pp. 305-310, Mklanges, 5, pp. 419-126, Oeuvres, vol. 1 (1931), pp. 369-374. 
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playing also a role in the important investigations of W. Markoff.4 Recently 
N. Aehyeser’ used polynomials of the Zolotareff type in his investigations on 
polynomials of least deviation in two disjoint intervals. With the previous 
notation, our main result is: 

THEOREM 1. The extremum rnn. n” in (1.2) is attained for x0 = + 1 and jor the 
Zolotareff polynomials &un(x) [or for x0 = - 1 and for &u,( - CC)], provided n is 
suficiently large. Furthermore 

(1.3) lim m, = p 
n--rm 

exists and 

(1.4 p = A-‘(1 - E/K)2 = 0.3124 . . . , 

wh.ere k2 is the only root of the transcendental equation 

(1.5) (K - El3 + (1 - k2)K - (1 -f k2)E = 0 

satisfying the condition 0 < hf < 1. Here K and E are the complete elliptic 
integrals associated with the modulus k. 

A further analysis and discussion of a few special cases furnishes the more 
informative 

THEOREM 2. If n > 3 the extremum m, . n2 in (1.2) is attained in the cases 
m.entioned in Theorem 1, and only in these cases. If n = 3, it is attained for 
x0 = 0 and for the Tchebychef polym?nials fT3(x), and only then.. 

In $42 and 3 of the present paper we first study as a preparation the general 
polynomials u,(s; A) of Zolotareff and the special case un(z) = u,(z; A,) men- 
tioned above. The proof of Theorem 1 is then given in $04 and 5, and that of 
Theorem 2 in §$S and 7. In $3 we consider two problems of Zolotareff in which 
the polynomials u,(z; A) were first used; $9 contains another application. 

The polynomials of Zolotareff occur in numerous other related extremum 
problems. They satisfy a simple differential equation by means of which they 
can be brought in relationship with the multiplication problem of ellipt,ic 
int,egrals. In what follows we have tried to reduce the use of elliptic. funct,ions 
t,o a minimum.” 

4 W. Markoff, Cuber Polynome, die in einem gegebenen Interaalle mdglichst wenig van lVull 
abweichen, hlathematischc Annalen, vol. 77 (1916), pp. 213-258. The Russian original 
appeared 1892. 

5 N. Aehyeser, (a) Uber eCnige Funktionen, welche in zwei gegebenen Intervallen ana wenig- 
sten van Nt~ll abweichm, Bulletin de 1’Academie des Sciences de l’URSS, Classe des sciences 
mathematiques et naturelles, series 7,1932, pp. 1163-1202; (b) i?ber einige Funktionen, die in 
gegebenen Interval&n am wenigsten uon AVull abweicheti, Bulletin de la Soci&tB Physico- 
Rfathematique de Kazan, series 3, vol. 3 (1928), pp. l-69. 

6 Zolotareff and hrhyeser make extensive use of the theory of elliptic functions; honever, 
W. Markoff does not. 
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2. On the polynomials of Zolotareff 

1. It is a classical fact that there is a unique polynomial Tn(s) of degree n 
(the nth polynomial of Tchebycheff) having the following property: The curve 
y = Tn(4, - 1 5 z 5 +l, consists of n monotonic arcs varying between + 1 
and - 1; T%(l) = 1, and T,( - 1) = (- 1) ‘. This polynomial satisfies the 
differential equation 

I2.1) 

from which follows 

n”(1 - y”) = (1 - s2)?J2 

(2.2) 

2. We shorn that there are in6niteIy many polynomials y of degree n possessing 
the following property: The curve y, - 1 5 zr d + 1, consists of n - 1 monotonic 
arcsvaryingbetween+land-l,y=lforz=l,andy= (-l)“-lfors= -1. 
Such a curve necessarily has n - 1 roots in - 1 s 2 5 j-1 and consequently 
one more outside this interval. If this additional root is > 1, y satisfies a 
differential equation of the form 

(2.3) n”(1 - y2) = (1 - z’)y” 
(B - z)(C - x) 

(A - ri+ 

where y’ = Oforz = A,y = lfors = B,y = -Iforz = C,andl <A < 
B < C. A similar different’ial equation holds if the additional root of y men- 
tioned above is < - 1. (The second case can be obtained from the first one by 
replacing zr by -5.) 

Solving the differential equation (2.3), we obtain 

(2.4) y = cos n 
ii 

1* (A - t)(B - t)-‘(C - t)-“(1 - r)+dt). 

From the properties of y mentioned above we find 

(2.5) 
s 
_:’ (A - t)(B - t)+ - t)-$(l - t2)-*dt = (n - l)r/n, 

(2.6) s 
’ (A - t)(B - t)-‘(C - t)-‘(1’ - l)-” dt = 0, 

+1 

(2.7) s 
’ (t - A)(t - B)-“(C - t)-‘(t’ - l)-‘dt = r/n. 

B 

By a well-known application of Cauchy’s theorem we see that the sum of the 
integrals (2.5) and (2.7) s i ?r, so that (2.7) is a consequence of (2.5). 

Conversely, if (2.5) and (2.6) hold, an easy discussion (encircling the singular 
points - 1, +l, B, C) shows t,hat (2.4) is an analyt,ic function single-valued and 
regular in the whole finite s-plane. If 5 --+ m we find y = a(1 z I”), so that y 
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must be a polynomial of degree n.. Of course it, satisfies the differential equation 
(2.3), and it has all the properties mentioned above. 

For later purposes we note that 

(A - Q2 
Y’ = n2 (B _ l)(C _ 1) at x = 17 

(A -t- 1)” 
(-1)“~’ = n2tB + ljcc + 1j at x = -1. 

These values can be obtained from the differential equation (2.3). 
3. LEMMA 1. Of the three quantities A, B, C (1 < A < B < C) satisjying 

the two transcendental equations (2.5) and (2X), any one can be prescribed arbi- 
trarily provided that 

(2.10) A > 1, or B > 1, or C > c, = 1 + ICY, = 1 + 2 tan* [a/(%)] 

respectively; the two others are then uniquely determined. As A increases mono- 
tonically from 1 to + m, B and C increase likewise from 1 to + w and from c,, 
to f ~0, respectively. 

Furthermore the values of y, y’, . * . , yen) for a $xed x not less than one, and the 
values of ( - l)“y, ( - 1) n-ly’, . . * , yen) for a fixed x not greater than - 1, are in- 
creasing functions of A. 

The only exceptions are y = 1 for z = 1 and (-1)“~ = - 1 for x = -1. 
In particular, the expressions (2.8) and (2.9) are respectively increasing and 
decreasing functions of A. 

In order to prove this Lemma, let B denote a fixed value, greater than 1, 
and let C be variable, such that C > B; we define A = A(C) by (2.6) so that 
l<A<B. Then 

(B - t)-‘(C - t)-+(t2 - 1)-Q = 0; 

hence 

dA lA-io -= -- 
dC 2c - to’ 

where 1 < to < B. 

Now consider the function X(C) defined by the leftchand member of (2.5), where 
A = A(C). We find 

(B - t)-“(C - t)-‘(1 - 1”)~” dt 

18---t = - ___ - z C--t (B - t)-‘(C - t)-‘(1 - t”)-‘dt < 0, 

so that X(C) is decreasing. Let C -+ B; then from (2.6) we see that A + B, 
so that 
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s +1 

MC) + -l (1 - t”)-” at = ?i-. 

Since limc+m X(C) = 0, the equation X(C) = (n - l)~/n has precisely one 
solution.7 

4. Further let p(z) and n(s) be two special cases of (2.4) corresponding to the 
values A’, B’, C’ and A”, B”, C” of A, B, C, respectively. First suppose that 
p’(l) < q’(1). Considering the polynomial 6(s) = p(x) - a(x) at the n points 
in -1 5 x 5 +1 at which p(z) = fl and assuming that 6(s) $ 0, a familiar 
argument furnishes the existence of n - 1 distinct points $1 > 71 > 72 > 
**. > ~~-1 > - 1 such that S’(qJ > 0, #(r/t) < 0, . . . . Furthermore S’(l) < 0, 
so that S’(z) has n - 1 roots (that is, all its roots) in - 1 < z < fl. The same 
holds for 8”(z), S”‘(X), . . . so that S(s) < 0, 6’(x) < 0, S”(z) < 0, . . 1 for z 2 1 
[except that 6(l) = 01, and also (-1)“6(s) < 0, (-l)“-‘6’(x) < 0, 
( -l)n-2s”(2) < 0, . . * for x 6 -1 [except that 6( -1) = 01. From this we 
easily conclude that the relations A’ < A”, B’ < B”, C’ < C” hold for the 
constants corresponding to p(z) and p(z). 

If p’(l) = n’(l) the previous argument still holds good [unless 6(s) = 01, 
except that 6’(l) = 0 so that the root’s of 6’(z) are in - 1 < 2 S + 1. Conse- 
quently 6’(z) < 0 for 5 > 1. Interchanging p(z) and n(s) we obtain 6’(z) > 0, 
x > 1, which is a contradiction; so that in this case p(x) = q(z), A’ = A”, 
B’ = B”, C’ = C”. 

From the previous considerations we conclude that B and C are increasing 
functions of A. It remains to calculate the limits of B and C as A --+ 1 and 
A -+ +m. In the former case, (2.6) shows that B -+ 1, and from (2.5) we 
obtain C -+ cn since Dhe equation 

s T1 (1 + t)-+(y - t)-? at = (n - 1)7r/n 
-1 

has the unique solut,ion y = c, . If ,4 --f fm it is obvious that B -+ +m, 
c-t+m. This completes the proof of Lemma 1. 

5. In what follows we denote the polynomial (2.4) [for which (2.5) and (2.6) 
hold] by y = u,(z; A). We note that, from (2.4) and (2.10), 

u,(z; +l) = lim u,(z; A) 
A+1 

(2.11) = cos {n s,z (1 + t)-‘(c, - t)-* 

Hence uL(+l; +I> = 0. Also 

(2.12) ~~(4-1; +l> = -(l + aJ2T~[cos (r/n)] = -an’ cot” [?r/(2n)]. 

7 These considerations require only slight’ modifications if we replace the right-hand 
members in (2.5) and (2.6) by w/n and r - w/n, 1 5 Y 5 n - 1. The resulting polynomials 
have been used for various purposes by Achyeser; see lot. cit. 



456 P.ERD& AND G, SZEG6 

Further, let A --+ + 00 so that B + + 03 and C 3 + co. From (2.5) 

(A - tl)(B - tJ*(C - tl)+ = (n - 1)/n 

where tl is a suitably chosen number between 0 and 1. Hence A (BC)’ + 
1 - l/n, so that, from (2.4), 

(2.13) u,(z; + W) = lim u,(x; A) = T-I(Z). 
.4-t* 

Hence 

(2.14) uL(fl; +a> = (n - 1y; 

(2.15) ul,l(+l; +a) = $n(n - l)‘(n - 2). 

Therefore, as A increases from 1 to + 00, u:(+l; A) increases from 0 to 
(n - l)“, and u’,‘( + 1; A) increases from the negative value (2.12) to the positive 
value (2.15), corresponding respectively to A = 1 and A = + CL,. There is 
precisely one value of A, A = A, , for which u’,‘(+l; A,) = 0. We denote the 
corresponding values of B and C by B, and G . In $04 and 5 we shall prove 
that the function u,(z; A,) furnishes the solution of I. Schur’s problem formu- 
lated above, provided n is sufficiently large. 

From the differential equation (2.3) we obtain 

(A - 1)2 (A - 1)” 

(2.16) 
uz(+l; A) = +n” (B _ l)(c _ 1) n2 (B - 1) (C - 1) 

1 
A+-Bjjl- 

so that the condition u’,‘( +l ; A) = 0 is equivalent to 

(2.17) 
(A - 1)2 

n2(B-1)(Ck1)=1+2 
2 1 

-- -- A-l B-l 

The transcendental equations (2.5), (2.6) and (2.17) determine the constants 
;2 = A, , B = B, , C = C, uniquely. These constants depend only on n. 

The polynomial y = u,(z; A,) is completely determined by the following 
conditions: The curve y, - 1 5 2 5 +l, consists of n - 1 monotonic arcs 
varying between +l and -1, y = 1 for x = 1, y = ( -l)n-l for 2 = -1 and 
y” = Oforz = 1. 

3. The limiting process n -+ Q) 

1. First we prove the following 
LEMMA 2. The constants A, , B, , C,, de$ned by the transcendental equations 

(2.5), (2.6), (2.17) satisfy 

lim n2(A, - 1) = a2/2, lim n’(B, - 1) = b2/2, 

(3.1) A’m 
n-m 

lim n’(C, - 1) = c”/2 

where 0 < a < b < c. The numerical values of a, b, c are given in (3.17). 
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By Lemma 1 

lim inf n2(Cn - 1) 2 ir2/2 
n-cc 

and from (2.17) 

icAn- 2 2 
nC,-l'A~-C,-lI' 

(3.2) 

so that 

n4(A, - 1)2 + 2d(A, - I) 2 2n2(C, - l), 

(3.3) lim inf n2(A, - 1) 2 (1 + ?r2)# - 1. 
R--cc 

The same inequality holds if we replace A, by B, . 
On the other hand, let us assume that n’(C, - 1) + + ~a for a proper sub- 

sequence n = n, as v 3 cc ; then, from (3.2), n2(,4, - 1) + + 00, so that 
n"(B, - 1) -+ + 00. Therefore, by (2.17), for the same subsequence n = n, , 

(3.1) (A, - 1)' 
(Bn - 1) (C, - 1) -+ Oy 

Now let w be a fixed positive number; for large n, from (2.5), 

s 

+-I 
?r = .?L --1 (1 - 1*)-$dt{l - (A, - t)(B, - t)-"(C, - t)-$1 

(3.5) > njy" &(l - (A, - cos (p)(B,z - cos p)"(Cn - cos q)-"] 

= 
s @ Gil - L-4, - 

0 
cm (#/n>>(& - cos ($/n>>-“CC, - cos (G/n>>-']. 

Since 

(A, - cos ($/n)>(Bn - cos (J//n>)-'(C, - cos (#/n))-' 

5 (A, - I>(& - I)-*(C, - 1)-i 1 + ' -ACoS (+h) 
n-1 

and since for ‘n = n, , as v 4 w, 

nv - cos (G/n)> ---, 0 
n"(A, - 1) 

uniformly in #, for 0 d # 6 W, we find a 2 w. This is a contradiction if we 
choose w > ?r. Thus we have proved that the points of accumulation of the 
sequences n'(A, - l), n’(B, - l), n*(C, - 1) are positive and finite. 

2. Now let n = n, be a subsequence for which the limits (3.1) exist, where 
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0 < a P b 5 c < fx. From (2.5), (2.6) and (2.7) we shall derive a < b < c 
and 

(3.6) 
s 

.a, {l - (u.” $ z?)(b’ + u2)-*(c2 + u2)-‘1 du = ?r, 
0 

(3.7) 
s 

* (a” - $)(iy - uy(c’ _ Uy& = 0, 
0 

(3.8) s 
bc (u” - a2)(zl” - b2)--t( c2 - u2)-i du = *, 

Also from (2.17) by t,hhe same limiting process (n = 12, , Y + co), 

(3.9) 
a” 

b”c’ 
-4 “-&’ 

( a2 
=o. 

c- > 

Instead of (3.7) we can show more precisely 

La /Aa (A, - t)(l?, - t>-“(C, - t)-+(t2 - Q-4 at 
1 

i 
1 

--f oa ($ - J)(@ - #y$ - uy &, s 
(3.10) 

I 1 
n r” (1 - An)(Bn - t>-“(C, - t)-“(t” - 1>-+ tit 

I( 

i 4 s * (72 - a2)(b” - u2)-:(c2 - u2)-: du, a 
the two limits being the same. 

First, (3.9) is obvious and this equat,ion shows that u = b = c is impossible. 
In case a < b = c both formulas (3.10) follow easily [writing t = 1 + u’/‘(21~‘)]; 
but the first limit is finite and the second one turns out to be + co, which is a 
contradiction. In cage a = h < c the same formulas can be easily est,ablished 
again, but the first limit is positive whereas the second one is 0 [since 
max{ (t - a,)(C,, - t)-‘(t - l)-‘1, A, s t 2 B, , is bounded]. Therefore 
U<b<C. 

Kew (3.7) and (3.8) follow directly, and (3.6) can also he easily obtained. 
However (3.6) follows also from (3.8) by applying Cauchy’s theorem to 

f(z) = 1 - (a2 - $)(b” - z2)+(c2 - ,$)-+ 

integrated along the half-circle j z ! = R, ?Xx 2 0 and along the segment %z = 0, 
-R 5 32 5 fR, R -+ +a. 

3. Substituting 2~’ = b” sin” cp in (3.7) and z? = c” - (c” - b2) sin’ cp in (3.8) 
we find 

T/f 
(3.11) 

s 
(a” - b2 sin’ (p)(c’ - b* sin” p)-” dp = 0, 

0 
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/ 

x/z 
(3.12) 

0 j 
c2 - a2 - (c” - b2) sin’ a) {c” - (c” - b2) sin2 q,nJ-‘dp = ?r. 

Using the standard notation these equations can be written in the form 

(3.13) (1 - c?/c2)K = E, cE’ - (a’/c)K’ = T 

where the complete elliptic integrals K and E belong to the modulus 12 = b/c. 
Eliminating a2/c2 we find 

(3.14) E/K + (E’ - r/c)/K’ = 1. 

Comparing this with the classical equation’ 

(3.15) EK’ + E’K - KK’ = n/2 

we obtain c = 2K. Hence 

(3.16) a2 = 4K(K - E), b = ZkK, c = 2K. 

The relation (3.9) furnishes the transcendental equation (1.5) of Theorem 1 
(see $1) for t’he modulus k. This equation has precisely one root as k2 goes 
from 0 to 1 [which shows that the limits (3.1) exist as n -+ 00 unrestrictedly]. 
Indeed, differentiating the left-hand member of (1.5) with respect to k2,* we have 

;E {k-2(K - E)’ - 1)) 

where k’ is the complementary modulus. The expression in the curly bracket 
increases with k2, as the well-known power series expansion of K and E shows; 
it is negative for small k2 and positive as k2 approaches 1. Therefore the left- 
hand member of (1.5) first decreases and then increases; but for k” = 0 it is 
zero and for k2 -+ 1 - 0 it tends to + W. This establishes Lemma 2. 

Gsing the t.ables of Milne-Thomson” we find 

k2 = 0.84 . *. , a” = 11.4055 v n - , b = 4.3245 * *. , 
(3.17) 

c = 4.7185 - - m , a4/b2c2 = 0.3124 - a - . 

We also note that (2.4) implies that 

(3.18) lim un(cos (z/n>; A,) = Cos 
n-tm !s 

oz (a” + u2)(b” + U2)+(C2 + U’)-‘dU} 

uniformly in z, for all complex z such that [ z / 5 R. 
4. Another limiting formula important for the proof of Theorem 1, is 
LEMMA 3. Let A = AL be a sequence of values such that AL - 1 = ~(?a’-‘). 

8 See for instance, E. T. Whittaker and G. K. Watson, A course of Modern Analysis, 
Fourth edition, 1935, p. 520. 

9 See Whittaker-Watson, lot. cit. p. 521. 
10 L. RI. Milne-Thomson, Ten-figure table of the complete elliptic integrals K, K’, E, E’ and 

a table of l/8$ (0 1 T), I/S: (0 j T’), Proceedings of the London ,Mathematical Society, series 2, 
vol. 33 (1932), pp. 160-164. 
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Denoting the corresponding values of B and C determined from the equations (2.5) 
and (2.6) by B’, and C:, , respectivel$, we hare 

(3.19) lim u,(COS (Z/n); A:) = -COS {CT” + ~“)‘I- 
n-+-a 

The last equation h,olds uniformly in z, for abl complex z such th.at j z 1 5 R. 
We not,e that (3.19) arises from (3.18) on writing a = b = 0, c = T. 
For the proof we use an argument similar to that of Part 1. Let w be fixed, 

w > 0; we find [see (3.5)] 

(3.20) T > 
s 

$l- (A:, - cos ($/n))(B: - cos (#/n>>-?C:, - cos (+>)-+b 
0 

Assuming for a certain subsequence n = n, , v + ~0, that the limits 

lim n’(B’,I - 1) = B, lim n”(CL - 1) = y 

exist, we have /3 >= 0, y 2 7rz/2. Thus we conclude from (3.20) 

n>, 
s 

o d#tl - (#“/2)(P i- rt”W(r + +“/2>-V, 
0 

so that 

(3.21) P2 
s 

- d#{ 1 - (92/2x8 + #“/2)-G + G2/2Y’1. 
0 

xow 

(3.22) ‘IT= 
s 

Td$(l - j&r’ + t#b2>-*); 
0 

consequently (3.21) and (3.22) involve a contradiction, unless /3 = 0, y = E/2. 
Further 

u,(cos (x/n>; A:) 

(3.23) 
= cos I/-” (A’, - cos (+/n>>( B:, - cos ($/n))-“(CL - cos &b/n))-+d$ . 

0 

KOK let 0 < e < I < R and ] x 1 = R. Then 

s f (,a’, - cos ($/n))(B:, - cos ($/n))-*(CL - cos (#/n))-‘d# 
0 

5 oL (A:, 
s 

- cos (#/n)>+(C~ - cos (#/n))“& ---) 
s 
oe 1c,h2 -I- iJ2r5 & 

cu n -+ m; the last integral is arbitrarily small with E. Integrating from E to 
z, we can assume that # # 0, f r on the path of integration; and t,he assertion 
follows immediately from (3.23) for n -+ a. 
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4. Proof of Theorem 1 

Tn nfhat follows, the symbols Qn , C&(Q) defined in $1 are used. 
1. LEMMA 4. &ppose - 1 S x0 5 + 1, and let jo(z) be a polynomial of the 

class Qn(xo) for which max ] f’(zo) I, j(z) c Qn(z.rO), is attained. Then 1 jO(x) 1 as- 
sumes its maximum 1 at least n times in - 1 5 x 5 +I. 

The proof follows the usual lines. Let ji(zo> > 0 and let us suppose that 
the assertion of Lemma 4 does not hold. Denote by x1 , x2 , * . . , xz ; 2 < n, 
the distinct, values in -1 _I zz 5 +l for which ) jO(z,) ] = 1 and write w(x) = 
ITiC1 (X - s,). If - 1 < x0 < +l we have x0 # x, [otherwise j:(~~) would 
be 01. However if ~0 = =tl we may have x0 = X” , in which case w(xo) = 0 
but w’(ti) Z 0. 

We form the polynomial 

(4.1) ~(2) = -2 sgn f0(r,> 
4x) 

w’(x,)(x - 2”) 
+ w(s){a(s - 20) + bf 

and want to determine the constants a and b such that r’(a) > 0, ~“(5~) = 0; 
this can certainly be done provided the linear equations 

aw(xo) + bw'(xo) = G, 

2aw’(zo) + bw”(X*) = H 

have a determinant ~0, Now WOW” - Z{C~‘(Z~)}~ z 0 is obvious if 
A = 0 (cf. above); but if w(xo) # 0, 

w”(X0) _ 2 w’(xo:o) 2 
{ ) 
__- 

w (x0) w b-0) 
= -g (x0 - x,y - kg)’ < 0. 

Obviously r(x) is of degree I fl s n and we find for sufficiently small E > 0 
that 1 jo(x> + ET(Z) 1 5 I in -1 5 x 5 +I; hence jo(z) + ET(X) belongs to 
&(zo). On the other hand ji(zo) + EN’ > Jo which is a contradiction. 
This proves Lemma 4. 

2. Let the extremum (1.2) be attained for the value x0 and for j(x) = jo(z), 
jo(z) E &(xo>. Then jy(xo) = 0, and jot possesses the property formulated in 
Lemma 4. Further we show that jr’(xo) z 0. By Lemma 4, ( jo(z) / att’ains 
its relative maximum 1 in -1 < x < +l for at least n - 2 distinct points for 
which j{(z) = 0. Since j:(s) vanishes an odd number of times between two 
consecut7ive roots of j;(x), we find thatj:(z) has precisely one simpleroot bet’ween 
two consecutive root’s of j:(z), and these roots of jr(z) are maximum point,s of 
/j:(z) /. The number of these maximum points is at least n - 3. If x0 is one 
of t’hese points, we must have fl(xo) Z 0. If x0 is different from these maximum 
points (whose number in this case is n - 3), then we must have again ji’(zo) z 0, 
and thus there is a relative maximum of (j;(r) [ at’ x = xo . 

If we assume thatji(x”) > 0 then jl(~) = 0, jr’(zO) < 0, so that j;(z) has a 
relative maximum at 2 = 50 . 

NOW we distinguish various cases. 
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(a) x0 = fl. 
Let z0 = +1 and let us denote an extremum polynomial of our problem by 

u,(x), Ul,(l) > 0, U:(l) = 0. As we showed before, U:(X) has at least n - 2 
and u:(z) at least n - 3 distinct roots in -1 < x < +l. Since u:(l) = 0, 
w+e find that n - 2 is the precise number of roots of U:(X) in - 1 < x < $1. 
Consequently 1 u,( - 1) 1 = 1 ~(4-1) 1 = 1; and, since u),(l) > 0, we find 
I&(l) = 1, I&(-l) = (-I)“-‘. 

Thus the curve ?J = U,(X), -1 I rz: 5 fl, consists of n - 1 monotonic arcs 
varying between +l and -1, and u%(l) = 1, z&%(-l) = (-l)“-‘, u:(l) > 0, 
U:(l) = 0. 

Hence from the last remark of $2 we conclude that u,(z) is identical with the 
polynomial u,(z; A,) defined there. 

Consequently, under the assumption x0 = ~1, the extremum polynomials of 
our problem are fzc,(x; A,) and &A%( -2; A,,), respectively. The asymptotic 
value of 1 &(l; A,) I is c~*b?-~~n~ [see (3.17)]. 

(b) -1 < Q < fl, and there exists a polynomial g(z) of Qn for which 
I g’b0) / > t f&00> I. Suppose f&0) > 0, /(x0) > 0. 

Consider the polynomial h,(s) = fo(~) + E{g(z) - fo(z)), 0 < E < 1. Ob- 
viously h,(z) E QR ; furthermore h:(zO) > fi((zo). For sufficiently small c there 
is a root of h:‘(z) in the neighborhood of x0 , 2; say, and h:(z) attains a positive 
relative maximum at z = z$ . We evidently have 

which shows that fo(x) cannot be the extremum polynomial. 

5. Proof of Theorem 1 (continued) 

The remaining case requires a more elaborate discussion. This case is: 
(c) -1 < 9 < +l andjo is the polynomial in Qn with the maximum value 

of Y(zo). 
Then W. Markoff has shown” that ID(z) must be one of the polynomials 

ztu,( fx; A) 

where 0 < Q < 0~~ = tan2[?r/(2n)], and u,(s; A) are the Zolotareff polynomials 
defined and discussed above. As n 4 rr:, the largest relative maximum of 
] T,(X) 1 in -1 < x < fl is asymptotically Man’ where --M is the minimum 
of sin e/e for real 0, that is iM = 0.2172 * . * . Comparing this result with the 
asymptotic value of u’,(l; A,), that is with ~~b?‘c-~-d [see (3.17)], we see that 
for large values of n the four first, t,ypes in (5.1) can be excluded. 

I1 Lot. cit. p. 249. 
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AS ‘VC’. Markoff has further shown”, fo(x) = fu,(s; A) if and only if (a) a 
belongs t,o certain open intervals in - 1 < z < + 1, and (b) : 

(5.2) 

Since uk(s, ; A) # 0, and ul(zO ; A) = 0, t’he latter-mentioned condition im- 
plies that 

(5.3) 20 = A - (AZ - l)“, A - 1 = (1 - 5iJ2/(2xo), 

so that 0 < 50 < + 1. Now we distinguish again two cases: 
(c’) 0 < 50 5 (1 - l&C”)“. According to S. Bernstein’s theorem 

(5.4) 1 uh(x ; A) 1 5 n(1 - x2)-” I nZ/4. - 

(c”) (1 - 16n-‘)-’ < x0 < 1. Then A - 1 = AL - 1 = 0(nV4). Now 
we assume that this case occurs for an infinite number of values of n, and we 
write zo = cos (20/n) ; then zo is bounded. From Lemma 3 we conclude that 

(5.5) lim ~nP2u~ (COS (z/n); AL) = --p-- . sin {(7r” + z2)“) 
(7r2 + 2y 

The maximum of the absolute value of the last expression for real z is 
M = 0.21’i2 . .a so that this case can be also eliminated. 

The assumptionSo = fu,(--2; A) can be dealt with similarly. 
Thus for large n only Case (a) remains. This completes the proof of 

Theorem 1. 

6. Proof of Theorem 2 

1. First we consider again the case (c) defined in §5 and let z. belong to one 
of the open intervals in - 1 s z $ f 1 in which the maximum off’(zo),f(s) E QG , 
is att.ained for the Zolot,areff polynomial f(z) = U%(Z ; A ) . [The argument is similar 
for -G{Z; -4) or &u,( -z; A).] Then f(z) = u,(s; S) = jo(z), where fo(r) has 
the same meaning as in $04 and 5, so that HO E Qn(xo); that is, ft(zo) = 0. 
We have f~(z~) > 0, fr(zo) < 0. 

By an important theorem of W. Markoff13, to every positive c correspond 
values x1 such that? 

(a) 0 < 151 - x0/ < t; 
(p) iffi(z) = u,(z; A’) denotes th e polynomial of Qn for which f’(z,) becomes 

a maximum, then 

(6.1) A (x1:1) > fo: (x0). 

12 Lot. cit. pp. 233-246. 
I3 Lot. cit. p. 257. 
11 In fact, a whole half-neighborhood of 20 satisfies this condition. 
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Now if E is sufficiently small, f:‘(x) will have a root’, say XC: , in the neighbor- 
hood of ~0 ; we can assume that - 1 < z: < +l. Also fi”(z:) < 0, so that 
f:(z) has a relative maximum at x = z: ; hence 

(6.2) jI(d> 2 L(Xl) > f&o), 

which shows that fO(z) can not be the solution of our problem. 
This argument leaves as the only possibilities for fb(z) either the Zolotareff 

polynomials fu,(x; A,) with z. = fl, or the Tchebycheff polynomials &tTn(z). 
2. Let D, be the largest root of zc,(x; A,), B, < D, < C, . Using the con- 

vexity of u,,(x; A,) for z > 1, we deduce 

(6.3) D, - B,, > C,, - D, . 

Further we make use of a theorem of I, Schur on the largest roots of the deriva- 
tives of an algebraic equation with only real roots.15 -4pplying this theorem 
to u,(z; A,) we obtain 

(6.4) D, - A,, 5 A,, - 1 

so that 

2(An - 1)~DD,-1>~(B,-l+CCn-l)>((B, 

Hence, from (2.8), 

(6.5) u:(l; A,) > d/4. 

3. On the other hand we show that 

G3.6) 1 T:(x) I 5 n2/4 if T’,‘(x) = 0 

1)KLa - 01’. 

provided 7~ 2 5 (with equality only if n = 5). Incidentally, I. Schur has proved 
(6.6) for all large n.16 

Let (O be a root of the equation tan ncp = n tan cp, 0 < cp < a/2. Then the 
assertion is 

= n”(n’ sin’ p + cos’ cp)-” 5 n2/& sin cp >= 

It is sufficient to show this for the largest root, xn = cos CD,, of T:(x)); that is, 
for the smallest positive value (a, , r < n+ < 3~,/2, satisfying the equation 
above. 

The function 

(6.8) jq$) = tan 
n tan # 

16 I. Schur, Zwei S&e tiber algebraische Gleichungen mit lauter reellen Wurzeln, Journal 
fiir die reine und angewandte Mathematik, vol. 144 (1914), pp. 75-88. 

16 I. Schur, lot. cit.2 , p. 277. 
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increases from 0 to + 30 as # increases from r/n to 3a/(Zn). Let 2 be the smah- 
est positive root of the equat.ion tan x = z, ?r < z < 3a/2. Since 

(6.9) 

we have (P% > z/n, so that (6.7) follows from 

(6.10) ( ) 
t 

sin (z/n) 2 n& . 

Since n sin (z/n) increases and n2/(n2 - 1) decreases as n increases, the last 
inequality will be proved for n 2 6 if we prove it for n = 6. But 

(6.11) sin (z/F) 2 (3/7)” = 0.6546 . . . , 

since” Z = 4.4934 * * . and sin (z/6) = 0.6808 . . . . 
In the case n = 5 we have 

(6.12) T!(s) = 320x3 - 1202, 25 = cos (~5 = (3/8)“, sin 9~6 = (5/S)*. 

Comparing (6.5) and (6.6) we obtain fu,(fz; A,) as the only eligible ex- 
tremum polynomials [and 20 = ~1 as the points at which the extremum $s 
obtained] provided n 2 5. 

7. Proof of Theorem 2 (continued) 

The previous result holds also for n = 4, as a direct discussion shows; how- 
ever, it fails for n = 3. 

1. We have for n = 4: 

(7.1) T&z) = sz4 - 8x2 + 1, T;(x) = 32x3 - 16 x, T:(x) = 96x2 - 16, 

so that, with the same notation as before, ~4 = G-” and 

(7.2) j T;(x4) j = (16/3)(2/3)” = 4.3546 . . - . 

On the ot,her hand, let us denote by ?J] and y2 T the values of x for which the 
relative extrema of u~(x; Ad) in - 1 s 5 5 $1 are attained; thus - 1 < g1 < 
gz < -j-l, say. Then 

(7.3) u~(x; A4) = 1 - X(1 - ~)(I34 - x)(~I - x)' 

must satisfy the following conditions: 

f (4: u4(-1; Ad) = -1, X(B4 + I)(?/1 + 1T = 1, 

1 w: us(y2; A41 = -11, X(1 - gm34 - Yz)(Y* - Id2 = 2, 

z&h; 84) = 0, 1 ___ 
y2 - 1 

I ) (6 : d'(1; A4) = 0, 2& + 1J1 = 3. 

17 See, for instance, E. Jahnke-F. Emde, Funkt~ionentnfeln, 1933, p. 30. 
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Hence B4 < 2. Let 

(7.5) 
1 - y2 = h(Ba - l), 34 - yz = (h + l>(& - 11, 

y2 - y1 = (2 - h>(& - 1); 

then (y) becomes: 

(7.6) = 0; i.e., h = (1 + (33)“)/8 = 0.8430* - ** 

Further, writing Y(Z) = x(x + 1)(x: - 2)‘, we obtain from (a) and (0) 

(7.7) 
2 

v B*-1 ( > = v(h). 

Since v(x) = v(h) has h as a double root, it can be reduced to a quadratic equa- 
tion giving 

(7.8) 

Now 

2 
- = 3/2 - 
Bq - 1 

h + $(lOh + 5)+ = 2.4893. m . . 

2 

(7.9) &(l; A) = A(& - 1x1 - Yl)* = 4 
Bq - 1 = 4.7881. . -3 

Comparison of this value with (7.2) furnishes UJ(X; ~44) as the solution. 
2. Finally in the case ?a = 3, 

Ta(x) = 4x3 - 32, T;(x) = 12x2 - 3, T:‘(x) = 242, 
(7.10) 

x3 = 0, 1 !fj(xJ 1 = 3. 

On the other hand, 

(7.11) 242; A3) = 1 - X(1 - XZ}(& - 2) 

with a relative minimum at z = yl , - 1 < y1 < + 1, satisfies the foIloffing 
conditions : 

(a): U&l ; A3) = -1, X(1 - y:)(Bs - yi) = 2, 

(7.12) (P>: dY1 ; A?) = 0, 3y:: - 2B3y, - 1 = 0, 

(7) : $1; A3) = 0, B3 = 3, 

so that 

(7.13) 1 
y1 = 1 _ 2.3-g 

’ 

X = 3”/8, 

(us(x; Aa) = 1 - 3”(1 - x*)(3 - x)/8, u:(l; A3) = 3”/2 < 3. 

This completes the proof of Theorem 2. 
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8. Two problems of Zolotareff 

1. The previous considerations permit a very simple approach to the follow- 
ing interesting theorem of Zolotareff :I5 

THEOREM 3. Let d be a given positive number and j(x) an. arbitrary polynomial 
of degree n of the form 

(8.1) j(r) = 2 - UiP + - - . ‘ 

Then max /f(z) 1, -1 5 x S $-I, is minimized if and only if 

(4 f(x) = const. u,(z; A) provided c ?z nol, , 

(b) j(r) = 2’~“(1 -l- g/n>” T, (T&$2) provided 0 < u 5 na, . 

Here u,(x; -4) denotes the polynomial (2.4) ; and in case (a) A = A(a) is a uniquely 
determined function which increases monotonically from 1 to + 00 as u increases 
from na, to + cc, ; (Y~ = tan” [7r/(2n)]. 

A corresponding result holds for negative u, obtained by replacing j(z) by 
c-1)7-C-xl. For u = 0 the extremum is given by Tchebycheff’s polynomial. 

From (2.4) we obtain, for x > C, 

--Z&T; A) = Rx” _ f$x”-’ f . . . 

cash n 
!I 

z (t - A)(t - @(I! - C)-“(t” - 1)-2dt 
c > 

cash 

- A)(i - B)-f(t - cp(t’ - 1)-” - t-11 & 

-n 
s 

m [(t - A)(1 - B)-“(t - (y(t’ - 1>-’ - t-l]& ; 
2 

so that, as z -+ + cc, 

-uu,(x; A) = $(x/C)” exp n 
iJ 

m [(t - A)(t - B)-“(t - c>-“(2 - 1>-” - t-l] dt 
c 

--n 
s jm I($@ + C) - A)t-* + O(t-“>I dt 

1 
+ 0(x-in), 

ConsequentSly 

R = $C-” X 

(8.2) exp n 
(I 

m [(t - A)(1 - B)-“(t - C)-“(1” - l)-+ 
C 

X/R = n($(B + C) - A) > 0, 

so that R and S are continuous functions of A. 

1s Lot. cit.3 (a), (b), (c). 
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From the results of Lemma 1, 

(8.3) 0 $ “u,(x;A) = --n!R, 
is an increasing function of A. Let, A1 < A4f ) and let RI , 2% , Rz , S2 be the cor- 
respondingvaluesof Rand& RI > Rz. Considering Rl’u,(s; AI) - R&,(x;AJ 
at t,he extremum points of un(z;a,) in - 1 I x 5 + 1 me see that it cannot, be of 
degree n - 2, so that &/RI # &,fR; . Hence S/R is monot’onic, Its minimum 
value is attained for 

u,(x; +I) = -T, ;< 3 
( ) 

so that min (S/R) = ncr, . Its maximum value is attained for u,(z; + ~13) = 
57,-1(z), so that max (S/R) = + 03. 

Now letf(z) be a polynomial of t’he form (8.1), and let c 2 nos, . Then there 
exists a definite polynomial u.,(x; a), A = -4(u) 2 1, for which S/R = u so tha’t 

(8.4) d(x) = f(a) + R-%,(x; A) 

is of degree n - 2. Let. max j f(z) 1 5 R-‘, - 1 5 x S +l. Then the poly- 
nomial (8.4) is alternately 2_ 0 and 50 a.t the points at, which u,(s; A) = fl. 

Unless d(z) = 0 this gives n - 1 distinct point,s at which d’(x) is a,lternately 
>0 and < 0, and hence n - 2 roots for d’(z) which is impossible. 

2. The argument is similar in t,he other case, 0 C: g < ‘1~~ , since the poly- 
nomial 

(8.5) 2l-‘( 1 + ~/n)~ T, (KY;;) = Zn - d--l + ‘** 

assumes its maximum modulus 2’-“(1 + a/n)” precisely n t,imes in - 1 5 
2 5 $1. 

Replacing -Zi?u,(z; A) in (8.4) by the left-hand side of (8.5), lT<‘e obtain the 
desired result. 

3. Another theorem of Zolotareff is the followingig: 
THEOREM 4. Let x0 , yo , be arbitrary real numbers, of which. x0 > 1, and let 

f(z) be an arbitrary polynomial of degree n satisfying the conditions 

(8.6) f(x) = xR + . . . , j-(20) = yo 1 

Then max / f(z) 1, - 1 2 x I + 1, fis a minimum if and only if f (x) is one of the 

polynomials 

-R-‘&(2; -4), 2l-“(1 + a)” T, 

(8.7) 

(-l)“-lR-l~,n(--s; A). 

19 Lot. cit.3 (b), p. 2‘7, (c), p. 371 
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Here A 2 1, 0 s a: 5 a,, = tan” [n/(212)] are certain numbers miqwly defer- 
mined by x0 and g0 . 

The values of the polynomials (8.7) at x = xo increase 

from - = to 2’-” (1 + anYTn (E) = P 

as A decreases from + CO to + 1; 
from 0 to 2l-“T,(z0) as cy decreases from LY,, to 0, 

from 2’-% T,(T~) to 2l-“(l + Q~)~ T, ‘e: 
( > 

= 0’ 

as (Y increases from 0 to tin ; 
from 8’ to + a as A increases from 1 to + ~0, 

respectively. These facts determine for a given yo the extremum polynomial 
f&r) in question. Indeed, consider the difference f(x) - fo(z) at the points in 
- 1 5 2 5 fl at which fo(z) = &l, and in addition at 2 = 20 . Since this 
difference is alternately 2 0 and 5 0 at t.hese n + 1 points, the usual argument 
gives n - 1 distinct roots for its derivative [unIess f(x) = fo(x)], which is im- 
possible. 

4. The problem defined by the condition 

W3) fk’(xo) = yo 

where 1 5 X: 5 n - 1, zo > 1, and yo is arbitrary, can be treated in a similar 
manner. For k = n - 1 we obtain the first problem dealt lC;ith above. 

9. A further application 

The previous considerations furnish another property of the polynomials 
u,,(l;; A) of Zolotareff which play a role in the interesting investigations of 
W. Markoff [see”]. 

1. We prove the following applicat,ion of Lemma 1: 
THEOREM 5. Let 

(9.1) 1 > 21 > z1 > 22 > 22 > *‘- > &l--2 > .2,-g > &-I > -1 

be the values of x characterised by the conditions 

(9.2) u,(x, ; A) = 0, v = 1,2, . . ’ , n - 1, 

(9.3) ui& ; il) = 0, v = 1, 2, b * * , 72 - 2; 

then the junctions x, = ~“(~4) and zy = z,(A) increase as A increases.20 
The roots X, of u~(.x; -4) satisfy the equat,ion 

s ’ (-4 - t)(B - t)-“(C - t)-“(1 - t’>-+dt = (Y - +>a/$ 
(9.4) =v 

v = 1, 2, a-. , n - 1. 

20 Concerning xv, see \T’. MarkoE, lot. cit. p. 242. The largest root D = D(S) also in- 
creases, as can be concluded from the result of $2, No.‘. 
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We can assume that A = A(P), B = B(p), C = C(p) are increasing functions 
of a parameter p,p > 0, all these functions having continuous derivatives. Then 
zy = s,(p) and 

(A - X>)(B - s,) qc - x,)-y1 - xyx:(p) 

= s z; $ {(A - t)(B - t)-+(C - t)-!‘(l - 1”)~$1 dt 
= 

s 

1 

2, (B - t)-+(C - t)-$(l - 12)-idl{A’(p) - 

> fGd 
f 

- +fjy&!T! - 

>o 
since the expression (2.9) increases with p. 

The assertion about zy can be proved in a similar manner. 
2. The assertion about zv follows also from the following general remark. 

Suppose the root,s of an algebraic ecmation are real and dist#inct, and that they 
are increasing functions of a parameter; then the same holds for the roots of 
t,he derivati\le. Indeed, using the notation above: 

1 
+L+ . . . f + = 0, xn = D. 

2, - 21 2, _ x2 - xn 

[Here xn = D denotes the only root of u,(z; A) which is > 1.1 Differentiating 
this relation, 

so that 2: > 0 implies z: > 0. 
Repeated application of this argument shows that the roots of all derivatives 

(kj U, (5; A) mcrease as A increases. 
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