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THE DIFFERENCE OF CONSECUTIVE PRIMES
By P. Erpis
Let p, denote the n-th prime. Backlund [1]' proved that, for every positive
¢ and infinitely many 7, payr — Pa > (2 — € log p.. Brauer and Zeitz [2, 10]

proved that 2 — ¢ can be replaced by 4 — e. Westzynthius [9] proved that for
an infinity of n

2 log pa log log log p.
log log log log pa

and this was improved by Ricei [7] to

Patl — Pn >

’

Pt — Pa > €1 log pa log log log pa,

where, as throughout the paper, the ¢’s denote positive absolute constants. I
[4] showed that

_ 10g pa 1og log p.
Pntl — Pa > C2 (log log log p.)?’
and lately Rankin [6] proved
a log p. log log p. log log log log Pr
Prtt = Pn 2 G (log log log p,)?

In the other direction the best known result is that of Ingham [5] which
states that for sufficiently large n
vt — Pa < P < .
Thus it is known that
s Prir — Pn .
h?—.?p log pa s
Very much less is known about
A = lim inf Pttt = P,
log pa

Hardy and Littlewood proved a few years ago, by using the Riemann hypothesis,
that A =< #, and Rankin recently proved, again by using the Riemann hypothe-
gis, that A < §. In the present paper we are going to prove—without the
Riemann hypothesis—that

A<1—g¢, for a certain ¢, > 0.
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It seems extremely likely that A = 0. In faet, a well-known conjecture
states that the equation p,y; — p» = 2 has infinitely many solutions (i.e., there
are infinitely many prime twins).

We need two lemmas,

Lemma 1. The number of solutions of
a=p:—Pi, Pi,Pi=n,

"‘E(l ¥ )aogn)ﬂ

The proof is well known ([8], p. 670).
Lemma 2. Let ¢4 be sufficiently small; then

b4 H(1+ )<%logn,

pla

does not exceed

where the prime indicales that the summation is extended over the a’s of the interval
1 —c)logn =a = (A + ¢) log n.
Proof. Wehave

2 log n )
Z :];-Iw(l-'- ) d<(1+324)lugud( +1
<cslogn +

1
d<{l+cy) logn d < 605 logn
for sufficiently small ¢q , and the proof is complete.

Now we can prove our theorem. Denote by p1, p2, - - -, ps the primes of
the interval 3n, n. It follows from the prime number theorem that, for suffi-
iently large n, x > (3 — €¢)n/log n. It suffices to prove that if n is sufficiently
large, then for at least one 2

Pit — i < (1 —ca) logn t=z—1).
For then we have
mﬂo..mf p'i:;g p,p’ d lo;oi:log Sl
Write
bi=ps— P, b =P — P2, - bet = Pz — Do
Evidently

E b < in.
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From Lemmas 1 and 2 it follows that the number of b’s lying in the interval
1—c)logn =b s (14 c)logn
does not exceed

 Tog i = H(” ) e

Hence if b; < (1 — ¢) log n had no solution, we should obtain

=]

Ebw -a)logn+(;—e)l-a"f—n<1+cologn

= in(l — 2¢) + (} — dan > in.

This is an evident contradiction and the theorem is proved.
Denote by ¢1 < ¢ < --- < ¢, the primes not exceeding n. Cramér [3]
proved by aid of the Riemarm hypothesis that

E‘. (gisr — @) = log 1og n)

It might be conjectured that the following stronger result also holds:

(giys — @ > (log g:)?).

g (gir1 — g)' = O(n log n).

This result if true must be very deep. I could not even prove the following
very much more elementary conjecture: Let n be any integer and let 0 < a;
< ay < --+ < a; < n be the ¢(n) integers relatively prime to n; then

z—1 5 ﬂz
g(am—a«) <oa@-
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