
ANNALS of MATHEMATICS
VOL 41, No . 3, July, 1940

ON INTERPOLATION. III. INTERPOLATORY THEORY OF
POLYNOMIALS

BY PAUL ERDÖS AND PAUL TURÁN

(Received April 27, 1939)

Dedicated to Professor L. Fejér on the occasion of his sixtieth birthday

This paper may be read without a knowledge of our first two papers on
interpolation .
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Let f(x) be defined in [-1, +1] ; then we define the nth Lagrange interpolatory
polynomial of f(x) with respect to 9 as the polynomial Ln(f) of degree (n - 1)
at most taking at the points xi n) , xgn),
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1 Some of these results have been presented before the Mathematical Association in
Budapest in April, 1937.
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n

	

n
(5b)

	

Con(x) = 11 (x - xrn') = 11 (x - X,)-
P-1

	

r-1

We shall explicitly indicate the upper and double indices only when some
misunderstanding may arise . The polynomials l,(x) (for which we omitted to
indicate explicitly their dependence upon n) are independent of f (x) and
dependent only upon X11, v, and n ; following Fejér they are called the funda-
mental functions of interpolation . For these it is easy to verify that

n

	

n
(6a)

	

E l..n(x) _- E l(x) _- 1,

	

n = 1, 2, . . .,
v-1

	

v-1

and more generally
n

(6b)

	

Ln(r) _- E r(x,)l,(x) _- r(x), n = k + 1, k + 2,
r-1

+1
where r(x) denotes any polynomial of degree k . The numbers

L
l,(x) dx

X,(') = a, (depending only upon P1, v, and n) are called the Cotes numbers
belonging to X11. From (6a) we evidently have

(7)

We intend to consider chiefly the case of two general and very often used
matrices . The first of them is obtained as follows : let p(x) be nonnegative and
integrable in Lebesgue's sense (L-integrable) for [-1, +11 . Then a sequence
of uniquely determined polynomials wo(x), w i (x), corresponds to p(x) so
that can(x) is a polynomial of degree n with

(8a)

	

coeff. x n in w n(x) = 1

and

(8b)

	

L1 w n(x)wn(x)p(x) dx = 0,

	

n 76 m.

The sequence of such polynomials is called orthogonal with respect to the
weight function p(x) . The sequence of polynomials %(x), Q.(x) for
which

(8c)

	

f 1 1tn(x)S2„(x)p(x) dx = 0

	

n 0 m,
1
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coeff. xn in S2 (x) is greater than 0,

	

n = 0, 1, • • ,
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we call a sequence of normal-orthogonal polynomials with respect to p(z) .
The polynomials Wn(x) and Sln (x) evidently differ only in a constant factor
dependent only upon n . By (8b) it is easy to see that all roots of w ,,(x) are
real and situated in [-1, +1] . Taking these roots for n = 1, 2, . . . we obtain
the so called p-matrix . It is well known that for p(z) _- 1 we obtain the
sequence of Legendre-polynomials Pn (x), for p(x) = 1/v/(1 - x2) the Tcheby-
cheff-polynomials Tn(x), and in general, for p(x) _ (1 - x)"(1 + x) 8 with
a > - 1, 0 > -1, the Jacobi-polynomials P.") (x) .
The second class of matrices has been found by Fejér2 in his paper about

Lagrange-interpolation . According to his notation the matrix 9J1 is normal, if

(9a)

	

Vk(X)
	 (xk) (x - xk) Z 0,

W n (xk)

-15_x5+1,

	

k=1,2, . . .n,

	

n=1,2, . . .,

and it is strongly normal, if

(9b)

	

1 - W; (xk) (x - Xk) ? C1,
W n (xk)

-1<x<=+1,

	

k=1,2, . . .n,

	

n=1,2, . . .,

where cl-and later all the other c's-are positive constants independent of
x, n, k . Their dependence upon accidental parameters will always be explicitly
stated . Fejér proved that e .g. the sequence of Jacobi-polynomials P;,"'(x)
presents a normal matrix if -1 < a 5 0, -1 < 0 5- 0 and a strongly normal
one, if -1 < a < 0. -1 < ,8 < 0. For this second matrix class, by

n
(10)

	

E vk(x)lk(x) $
k-i

we have

(11)

	

I lk(x) I

	

~cl

-1Sx_<_+1,

	

k=1,2, . . .n,

	

n=1,2,

Orthogonal polynomials, and especially Jacobi-polynomials, play a most im-
portant part in many problems of analysis ; we mention here only the works of
Legendre, Laplace, Jacobi, Bruns Tchebycheff, A. Markoff, Stieltjes, Christoffel,
Darboux, Fejér, S . Bernstein and Szegö. In the general theory of orthogonal
polynomials (i .e . for general p(x)) an important step has been made by G . Szegö .a
He succeeded in proving for a general class of weight-functions the asymptotic
formulae of Laplace-Darboux concerning Jacobi-polynomials . Thus he proved

2 L . Fejér: Lagrangesche interpolation and die zugehörigen konjugierten Punkte, Math .
Ann., 1932, pp. 1-55 .

' G. Szegö : Über die Entwicklung einer analytischen Function usw ., Math. Ann., 1921,
pp. 188-212 .
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that if p(x) is such that to p (cos 4) 1 sin $ _- p1(z9) there exists a function D(z)
regular in z I < 1, here 0 0 and for almost all z9

(12)

	

lim I D(rese) I2 = p1(zg),
r-.1-0

then in I z > R> 1 for n -* oo uniformly

Sl„
C(z + z) 2] =

	

1lim

	

-
n_m

	

z^ (21r)ID (i)'

which determines the asymptotic behavior of the polynomials for any point of
the z plane not lying in [-1, +1] . (12) is satisfied, if p(x) >_ 0, further if p(x)
and log p(x) are Lebesgue-integrable in [-1, +1]. Further-and this is a
deeper result-Szegö 4 gave for the fundamental interval itself i .e . for [-1, +1]
an asymptotic formula

2	 I
(13)

	

12„(cos t o) ^ (ir sin z3op(cos 40))
cos Rn + 2) z3a - 4 - a],

where a depends in a given way upon p(x) . In order to give a simple example,
he proved this for e < z9o <_ zr - e and n - > oc, if p(x) remains in [-1, +1]
between two positive bounds and the first and second derivatives of p(x) in
the same interval exist . S. Bernstein' proved a theorem, which is analogous
to the above mentioned theorem of Szegö. He proved the asymptotic formula
(13) if, in [-1, + 1] p(x) i/(1 - x2) remains between two positive bounds and
uniformly satisfies here a logarithmic Lipschitz condition with the exponent
1 + e. For this theorem, Szegö gives a very simple proof in his book to be
published . The papers of J . Shohat' also contain general results of this kind .

The problems concerning orthogonal polynomials can be divided into four
classes : a) the behavior of the polynomials within the interval [-1, +1]
((internal behavior), b) the behavior of the polynomials upon the plane cut along
[-1, +1] (external behavior), c) distance of consecutive roots (problems of the
finer distribution of roots), d) number of roots in a fixed subinterval (problems
of the mean-distribution of roots) . Problems concerning a) are completely
solved by Szegö and Bernstein for a rather general class of weight-functions ;
if we require the weight function only to satisfy

(14a)

	

p(x) z c2

	

-1 5 x S +1,

(14b)

	

p(x) is Lebesgue-integrable in {-l, +1],

a G. Szegö : Über den asymptotischen Ausdruck von Polynomen, die durch eine Ortho-
gonalitatseigenschaft definiert rind, Math. Ann ., 1922, pp . 114-139 .

S. Bernstein : Sur les polynomes arthogonaux on a segment fini, Journal de Mathema-
tiques, pp. 127-177 .

"See J. Shohat : Théorie générale des polynomes orthogonaux de Tchebichef, Mémorial
des Sciences Mathématiques, Faso . LXVIII .
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then Shohat e gives an upper estimate for the orthogonal polynomials belonging
to p(x) . As far as we know there are no other general results in this direction .
Question b) is settled by Szegö for rather general weights . As for c) we obtain
from Szegö's formula that if the weight function throughout a subinterval has
derivatives of the first and second order and remains throughout [-1, +11
between two positive bounds (Szegö gives some other, more general condition),
then for the nth fundamental points x (

," ) = cos 0y ") lying in that subinterval,
we have lim n(t9Y+)1

	

r; we obtain the same result for consecutive
n-oo

fundamental points from Bernstein's theorem, if throughout the interval
[-1, +1]

(15a)

	

c3 ? p(x)-,/(1 - x2) >_ ca

and if for p(cos t9) sin tg = t(t9) throughout and uniformly in [0, ir]

(15b)

	

I t(t9 + h) - t(t9) I <
	 cb

log'+. 1
h

Concerning d) Szegö' implicitly proved, that, if the weights are non-negative in

[-1, +1], and if in the same interval p(x) and
-01

1 x2) log p(x) are L-inte-

grable, then the distribution of the ntn fundamental points is uniform, which
means, that if 0 <= a < # <= tr, then with x(. ") = cos 41 "~

(16) lim
1E 1= #-a ,

n-.o n r

	

it
a < t~y n) < S.

Szegö's and Bernstein's methods are based upon asymptotic formulae for
polynomials . But it is probable that in the general case such a formula does
not exist not even for continuous weights remaining between two positive
bounds. Thus, in this way we cannot obtain any answer to questions such as
e.g. what is the effect of the singularities of the weight function (loci of dis-
continuity, infinities, zeros) upon the distribution of roots, whether this effect
is only local etc . The investigation of this last question will be a main object
of our paper . Here we make use of a principle introduced by Fejér : we derive
the structure of the matrix from the properties of interpolatory fundamental
functions belonging to 931. Fejér deals with two such properties . The first 2
is the property of being strongly normal, from which he deduces the relation

(17)

	

lim

	

max

	

(xF+1 - x(
P "

) ) = 0,
n-Go r-1,2, • • . (n-1)

which-from what precedes-means a statement about the distribution of roots
of certain Jacobi-polynomials . The second property' is the non-negativeness

t L . Fejér: Mechanische Quadraturen mit positiven Cotesschen Zahlen, Math . Zeitschr .,
1933, pp . 287-310 . His proof gives also the following result : if there exists for the matrix
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of the Cotes-numbers belonging to 911, from which we once more obtain (17) .
Theorems deducing properties of 9N from some interpolatory properties we shall
call Fejérian theorems. We proved' two such theorems, the application of
which to p-matrices gave the following two theorems .

I. If throughout [-1, +1] c6 5 p(x) < c7 and p(x) is L-integrable, then

(n)

	

6,(n) S
CS

n

v=0,1,2, . . .(n-1),n,

	

n=1,2, . . .,

	

io n) =0,

	

t,,±1=a

for the corresponding matrix SJJ2' . (See (3) .)

II. If throughout the interval [-1, +1] p(x) >= 0, p(x) and
pox)

L-integrable,

then

(n)

	

(n) <c9 log(n + 1)
'~ .+1 - t~v - n

v=0,1, . . .n .

	

n=1,2, • • .

By systematic application of Fejér's principle we obtain Fejérian theorems
for each of the four classes mentioned above, theorems, which may be applied
to p-matrices as well as to strongly normal ones . Properly speaking we deduce
the theory of both classes of polynomials from that of a more general class of
polynomials, the roots of which form a matrix SJJ1, and for which the values of
the fundamental functions l(x) satisfy certain conditions .

In §2 we consider problem a) . That will be the only section in which we
shall not explicitly express a Fejérian-theorem . Our theorem I asserts for
strongly normal polynomials

Wn(x) I S 8 -,/_n,

	

-1 -<- x < +1,

	

n = 1, 2, . . .
1/Cl 2n

where cl is any constant for which (11) is valid . This result cannot be essen-
tially improved in [ -1, + 1], but it is probable, that in [ -1 + e, 1 - e] the
factor with - /n can be omitted and the factor 8/-v/c, replaced by a clo =
clo(cl , e) . Theorem II applies to the orthogonal polynomials and it states that,

T1 a function s(x), non-negative and L-integrable on [-1, +11, positive in [a, b] and such
that

f1 l,.n(x)s(x) dx _>- 0,

	

v = 1, 2,

	

. , n, n = 1, 2, . . .
1

then (17) holds in [a, b] . This is satisfied e .g . if the matrix 972 is a p-matrix and s(x)=- p(x) ;
hence the roots of the polynomials orthogonal to a weight-function, non-negative and
L-integrable on [-1, +1] and positive throughout the subinterval [a, b] cover the interval
[a, b] everywhere densely .

8 P. Erdös and P. Turin : On Interpolation II, Annals of Math . 1938, pp . 703-724 .
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if the weight-function is non-negative and L-integrable in [-I, +I] and if
throughout the subinterval [a, b] p(x) z m > 0, then

[
	 72 	t' , n

(b - a)m L 1 p(t) dt l
2n

in a 5 x <_ b, n = 1, 2,(18a)

	

I wn(x) I <

(18b)

	

wn(x) I < [mEe(b'_2
	

a)]} fl. p(t) dtj . 2n

in a+e5xsb-e,n=1,2, • • .

For the case a = -1, b = + 1 these estimations have been presented by Shohat .
By the same method we obtain lower estimates for the orthogonal polynomials
wn(x) . More exactly : if the weight p(x) is non-negative and L-integrable
throughout [-1, + 1] and p(x) >- m > 0 throughout a subinterval [a, b], then
for any x (real or complex)

(19a)

	

I wn(x) I? c11
	 m1	]'(b 4a)n I x - xrn) I ,

(b - a) l1 p(t) d

	

I

t

where x (," ) denotes the nth fundamental point nearest to x . As a matter of
fact this has importance only for the interval [-1, +1] . If in addition to the
above properties throughout a subinterval [c, d] of [a, b] the weight is bounded,
p(x) <--_ M, then a factor with \/n can be appended to the right side, if we take
c11 = c11(M) . For c = a = -1, d = b = +1 we find implicitly and qualitatively
the same as Shohat .' By this and by the results of §3 we obtain e .g. that if
for the L-integrable weight function p(x) m > 0 throughout [-1, +1] and
if p(x) S M throughout the subinterval [e, f], then w, (x) takes in any [x ;+i , x ; n) ]
lying in [e + e, f - e] a value, greater than

(19b) C12(e, M, m, e, f)
2nVn

It is probable, that in (18a) and (18b) the factor n or -,/n may be improved to
c1a(a, b, m)i./n or to c14 (e, a, b, m) respectively-this is true in the mean-and
also in (19b) we may omit from the denominator the factor with \/n . If in
[-1, +1] p(x) z m > 0 and in the subinterval [a, b] p(x) <= M, then we proved
that there exists an n(n) such that q(n) -> 0 for n -, co and that in [a + e, b - e]

wn(x) I < cis(a, b, e, m,
M) I(n)-,/n

2n

We omit the details of the proof .

' See footnote 6, p . 41, formula (60) .
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In §3 we are concerned with b) problems . The base of the investigation is
the following Fejérian theorem : If for the matrix T1 for every e > 0

(20)
[I lk(x) I]1/n G 1 + e,

n>c16(e),

	

k=1,2, . . .n,

	

-1 Sx<_ +1,

then for any fixed z of the complex plane cut along [-1, +1] we have

(21)

	

Jim [wn(z)]1/n =
z + %/(z 2 -1)

nSao 2

	

'

where we are to take those values of the nth and square roots, which are positive
on the positive real axis . Condition (20) is abundantly satisfied for sequences
of strongly normal polynomials . Thus the asymptotic representation (21)
applies for these too .

We shall see that if in [-1, +1] the L-integrable p(x) is >=0 and its roots form
an aggregate of measure 0, then (20) is satisfied hence (21) holds too . Formula
(21) presents less than the above quoted formula of Szegö but it refers to a
wider class of weight-functions : e .g. (21) holds for the weight-function p(x) _e1/xz , whereas Szegö's formula has nothing to say in this case .

We shall give a direct and elementary proof of the aforesaid theorem, but we
are bound to mention that it is to be deduced indirectly from a deep theorem of
L. Kalmár10 by the following note of Polya :11 If upon the matrix 9)t we have
uniformly in [-1, +1]

lim [I l1(x) I + . . . + I ln(x) I]1/n = 1,
n-+oo

then the Lagrange parabolas taken upon 9)2 of a function f (x) analytic in this
interval uniformly converge to f(x) . In order to prove this note standard
theorems about approximation of analytic functions are required .

On the other hand by a further theorem of Kalmár 10 it follows, that the ele-

to L. Kalmár : Az interpolátióról, Mathematikai és Fizikai Lapok, 1927, pp. 120-149
(Hungarian) . This gives the following result : Let Q9 be the closed interior of Jordan-curve
l on the complex z-plane and let x = ,p(z) be regular on the exterior of l and continuous
on the closed exterior of 1, which maps 13 upon the exterior of a circle I x ~ 5 c with lim

ILI-
~(z) = 1. Let the matrix TZ be given in $ and con (z) = II (z - 41) ) . Then a necessary

z

	

V-1

and sufficient condition that lim L„(f) = f(z) uniformly in Z for any f(z) regular in !6 is
n-+ao

that lim

	

(p(z) for any z of the exterior of 1 . We use this only in the case if 1 is
n-00

the interval [-1, +11 .
11 G. Polya : Über die Konvergenz von Quadraturverfahren, Math. Zeitschrift, 1933, pp .

264-287.
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ments of 931' belonging to 91 are uniformly distributed in [0, ir] . 12 From this we
incidentally obtained the following result : if p(x) is non-negative and L-inte-
grable in [-1, +1], and further, if the roots of this p(x) form an aggregate of
measure 0, then the elements of the matrix 931' belonging to the roots of the
respective orthogonal polynomials are uniformly distributed . (We can prove
this result in a direct and elementary way, too .)

In §4 we consider c) problems . The basis of the general consideration is
given by the following Fejérian-theorem : If a matrix 9JY is such, that for a
subinterval [a, 0] of [0, Ir] with

6,1n) < a < 6Yn) < ry ln) < . . . <
#Mn) < /3 < $,,-F.1

we have

Ilk(x)1 -<K,

	

k=v,v+1, • • • µ,

	

a=cos/3 <x <cosa=b,

and, in the same subinterval, the absolute value of the other nth fundamental
functions does not exceed cla n`", then

(22)

	

[e(b	
K

	 a)]1 1 < O (n) - ~ kn' <=
C18(C16, C17, e, a, WK

if #k(n) and #k+i are in [a + e, /3 - e] . If [a, /3] _- [0, a], then c 1 8 is independent
of a and the estimate holds for all [Ok n~, tYk+n i] (k = 1, 2, n - 1), the upper
estimation holds even, as we proved8 for k = 0 and k = n, if #,1n) = 0,61

+1 = a.
The content of the theorem may briefly be expressed as follows : if the funda-
mental functions belonging to the fundamental points of a subinterval are
bounded and the other fundamental functions are in the same subinterval
not excessively great, then the distribution of the matrix is approximately uni-
form in that subinterval . In our paper cited under$ we already proved, that
the estimate of the form (22) holds in the case of strongly normal polynomials
for any pair [t ' , 0k+i] with an absolute constant c l s . For orthogonal poly-
nomials we obtain that, if the L-integrable weight function is non-negative in
[-1, +1] and if 0 < m < p(x) <= M in a subinterval [cos ,8, cos a], then for
any pair [t9kn', O' ] in [a + e, /3 - e] we have

C19(m, M, a, #, e) < 6k+1 -
#k(n) < C20(m, M, a ) /3, e)

n

	

-

	

=

	

n

For [a, 0] _- [0, a] c19 and c29 are independent of e ; in our paper we proved the
upper estimate for this case, we omit the details of the lower estimate .

If in the subinterval [cos /3, cos a] p(x)-\/(1 - x2 ) ->- m > 0 and besides it

12 This means of course, that for any fixed subinterval [a, #] of [0, 7r]

lim 1 E 1 = '3
a

holds .
n-ao n

	

y

	

ar
a~a(.) :go
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p(x)-\/(1 - x2) is continuous, very much more is to be said from the nth funda-
mental-points situated in [a + E, # - e] . In this case we have for n -* 00

~k n l - t~kn) , , ir
n~

The proof is also based upon the analysis of interpolatory forms but not upon
a Fejérian-theorem ; it is important to notice that the formula obtained for the
fundamental functions relative to [a + e, B - e] is to some extent an asymptotic

one . The interval [a + e, li - e] may be replaced by
Ca

+nA(n)
, /3 -

A(
nJ
n)1'

where A (n), though arbitrarily slowly, tends to infinity, and we may postulate
other, more general conditions for the weight function . In the case of strongly
normal polynomials the former of us proved in another way, that for
A(n)

	

t~k n) < t9k+i

	

-
A(n)

the difference 61+i -
#k(n)

^ . We do not
n -

	

n

	

n
give the details of the proof .

In §5 we consider d) problems . The analysis is based upon two Fejérian-
theorems . The first of them states, that the uniform distribution in the sense
(16) of the matrix 171 is a consequence of condition (20) ; we give for this a
completely elementary direct proof . If for a matrix 9N with the absolute
constant K'

Ilr(x)1 -< K',

	

- 1 _< x <_ +1,

	

v=1,2, . . .n

then more exactly

(23) -c22(K',E){(0 - a)n}'
+' <

	

E 1 - -
a
n < {(~-a)n}"`c22(K',e)

a

for ($ - a)n > c23(K', e) . This means, that for uniformly bounded funda-
mental functions the uniform distribution is already effected for very small
subintervals [a, 3], the size of which depend upon n. If [a, 0] means any
interval in [0, 1r], then by the condition

(24)

	

1,(x) 1 < c24n c2b ,

	

-1 < x < +1,

we have

(25)	 a n < C26(C2b, C24, E)n
J+e ,

r

	

T
«:g4('n) 5 0

which establishes the uniform distribution already for intervals of the length
1/n"E . This is not very much weaker than the former conclusion .
By applying the above-arguments to sequences of strongly normal poly-

nomials we immediately see that the fundamental points are distributed accord-
ing to (23) . Thus for orthogonal polynomials we obtained a new and strictly

v=1,2, . . .

	

n=1,2, .
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elementary proof of our theorem that, if the L-integrable p(x) weight-function
is in [-1, +1] not less than 0 and the aggregate of the points x with p(x) = 0,
is of measure 0, then the distribution of the elements of the matrix 9fl' formed
of the roots of the respective orthogonal polynomials is uniformly dense in [0, 7r] .

Here we must remark, that although our hypothesis is more general than that
of Szegö, we obtained only the sufficient condition for the uniform distribution
of the roots ; the necessary and sufficient condition-as the first of us proved-
is connected with the transfinite diameter of the aggregate of points, for which
p(x) = 0 . We omit the proof here .

Our second theorem states that, if the L-integrable weight function is >= m > 0
in [-1, +1], then (25) holds for the corresponding matrix 9T1' ; if in addition,
for [-1, +1] M ->_ p(x) -\/(I - x2) ~; m, then (23) holds too . If the aforesaid
conditions are valid only for a subinterval and for the complementary sub-
interval of [-1, +11 we postulate only the non-negativeness and the L-inte-
grability, then nothing may be said with respect to the d) problems .

From the point of view of the theory of uniform distribution we make fol-
lowing remarks . Weyl's criterion for the uniform distribution of 97t under (1)

postulates, that for n -> oo the expressions sk =- E 1 e2 .:koS°' tend to 0 for any
positive integer k. Our theorems of §5 deduce the uniform distribution from
the behavior of certain polynomials associated with S1)1 . It is to be noticed
that instead of asymptotic equalities we have in the condition only inequalities
and that we obtain also an error-term, that could not be obtained by Weyl's
criterion . It would be plausible to ask, whether the uniform distribution with
error-term is to be deduced from an inequality relative-in [-1, +11-to

w„(x) itself. The answer is affirmative ; if in [-1, +1]

	

<
A2n)

with

A (n) >- 2, then for a fixed subinterval [a, $] we have

8[n log A (n) ]} .
r

	

7r
aSSi n~S~

We will return to this problem on another occasion . If we disregard the error-
term then, as we learned later the theorem is contained in a general theorem
of Fekete13 stating that the distribution of a matrix 9+ given upon any Jordan-
curve l is uniform, if upon l the inequality [I

(0.(X)
I] 11n _< M holds, where M

denotes the transfinite diameter of the Jordan-curve . Our argument essen-
tially differs from his method .

From what is said before the reader may see the chief results of this paper :
the uniformity of the method, the statement that the polynomials and their
roots essentially depend only upon the local values of the weight function and
asymptotic formulae of more general validity than before . We hope to con-
sider the other fundamental problems in another paper .

11 Oral communication .



PROOF. As the arithmetic mean is not less than the geometric mean we
may write

hence

1 1

	

"
>

1 "-

	

l,(x) 2 > nn c1 = n r_1 .-1

lv(x)2-~1/n
=	I	 w"(x) I2

-2/n

J

	

n II 1 2
1/n

wx(xv)
.-1

As the x,'s are in [-1, +1], we have after Schur14

l i I W", (X,) I < 2a„a2n ,

i .e .
2

I wx(x) I2-2/" < 1 • can
cmn

	

22^ '

I w"(x) I <
cm -,/n

2"

	

, Q.e.d .

This proof is very simple, but Schur's theorem which we applied is not of
interpolatory nature . Hence it will perhaps be of some interest to give another
proof for it . We require
LEMMA I . If 1 >= x;"

)
> x$"~ > . . . > xA" ' >_ - 1, then

> 2"-z
r~l I w, (xr) I

(Equality only forty"(x) = (x2 - 1)U,..2(x), where Uk (cos,9) _ .1
sin (k + 1)t

2k

	

sin ~

	

'
but for the present we shall not use this .)
PROOF . Let us fix in [-1, +1] the values j > z > . . . > and let us deter-

mine the polynomial f(x) of degree (n - 1), for which coeff . xn-1 = 1 and
max I fQ,) i is minimum . According to standard theorems such f(x) exists

r-1,2, • • x
and takes at the places , with alternating signs the same absolute values
(v = 1, 2,

	

n) . Thus by coeff . x"-1 = 1 we have
" (-1)1+1 w(x)

(	 '(r)	x - .

E (

- 1)

r-1 w ' (Sr)

1 ' I . Schur : Über die Verteilung der Wurzeln bei gewissen algebraischen Gleichungen mit
ganzzahligen Koeffizienten, Math. Zeitachrift, 1918, pp. 377-402 .
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THEOREM I .

1.

n=1,2, • • .

For strongly normal matrices we have in [-1, +1]

w"(x) I
_< 8 -\/n

VC,
2x '
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where w(x) = fl,'- 1 (x - i,) . The minimum value is given by the formula

1

	

1
Mn _

	

(_1)r+1

	

1

r=1 w~ (Sr)

	

V-1 I w' ( r) 1 1

i .e .

	n 1	 - min

	

max I f( r) I _< min

	

max I f (x) I < 1 ,
1

	

r°xn-1+ . . . P-1,2,---n

	

r=xn-1+ . . . -1,5x<+1

	

2n-2

V-1 I w~(Sr)

since for f(x) = T n_1 (x)(T n_ 1 (cos ~) = 2 1 2 cos (n - 1)0), in [-1, +1]

max I Tn_1(x) I = 2n-2 . By taking the reciprocals we obtain the Lemma .

By the Lemma we immediately obtain that

10n(X) 12n
-2 < I wn(x) I E	 1t 	5 2 F	twn(x)	

r-1 I W/n (Sr) I

	

r=1 on (Sr) (x - EP)

= 2 E I lr(x) I < 21/n [E lr(x)2] <,
2

~n,r=1

	

r=1

	

V e1

which establishes the theorem . Notice that in both proofs we used only the
fact that E 1 1r(x)2 <

C1 .

This result is not to be improved essentially in [-1, +1], that is to be seen
by the matrix given by the roots of the Jacobi-polynomial P(n-" - ' ) (x) for e
being any small fixed positive numbers . Its being strongly normal we already
mentioned in the introduction . On the other hand by

2n
	 (n	

+ a)
p(~,e>(1) =	n

n

we have

PAUL ERDÖS AND PAUL TURÁN

(2n+a+
/
/n

a>-1,0>-1

"
f)
(1) ,-,

e81(E)
n3-.

P("n

	

2n

THEOREM II. If the L-integrable weightfunction p(x) is non-negative in
[-1, +1], and for the subinterval [a, b] >= m(> 0), then in [a, b]

wn(x) I

	

[(b 8a)m
J_1 p(t) dt] . 2n2}- 1

whereas in [a + e, b - ej

wn(x) < 2 [m[e(b -1 a - e)]# J-11
p(t) dt]

1/(2n
+ 1)2n
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PROOF. As is known-and it may easily be verified-w n(x) minimizes the

integral J(f) _- f I f(t) 2 p(t) dt, if f(t) runs over the polynomials of degree n

with coeff. x n = 1 . Thus for a <_ x <- b we have

mfb wn(t) 2 dt _<_ f b Wn(t) 2 p(t) dt < / wn(t) 2p(t) dt <_ f 1 Tn(t) 2p(t) dt,
a

	

a

	

1

	

1

where Tn (cos 0) = 211 cos ntY . Hence

(26)

	

m f b W n (t) 2 dt <- 4 f 1 p(t) dt .
a

	

- 22» 1

But then, according to a theorem of A. Markoff (stating that if for a <- x _< b

F(x) ( _< M, then here I F(x) < b2Ma
n2 , where n denotes the degree of F(x))

for a _< x < b we have

w n(x) ~2 < 2 2gm fI p(t) dt (2b -+a
)2 .

	

Q.e.d .

By applying to (26) the theorem of Bernstein-Fejér (stating that if for

a 5_ x <_ b I F(x) 1 <_ M, then I F'(x) 1 _<_ [(b
- xM - a)] , where n denotes

the degree of F(x)) we obtain for a + a --< x <- b - e

(X) 2

	

4 I1

	

1

	

2n+1
Wn x)

- m I p(t) dt [e(b - a - e)] ' 22n

	

Q.e.d .

In connection with theorem II we mentioned that it is probable that the
factor ./n in (18b) is to be improved to c14(e, a, b, m) . This conjecture may to
some extent be supported by the fact that from (26)

(27)

	

f
b

w(t) 2
di] < 2n Cm

f 1 p(t) dt]' ,
a

i .e. for [a, b] the mean value of ~ wn(t) I is 0 (_) .

1 The proof of theorem II is very simple, but it is not of interpolatory char-
acter ; thus we give a proof of such kind which with a slight modification gives
the lower estimate indicated in the introduction, and besides it contains many
elements needed in the following investigations.

Let the numbers
I

(28)

	

k;n I = f
1
1,,n(t)p(t) dt --- k,,

	

v = 1 1 2, . . . , n,

	

n = 1, 2, . . . ,

denote the Christoffel-numbers belonging to p(x), then we have
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LEMMA II. In [-1, +11 suppose p,(x) >= p2(x) >= 0, both L-integrable . If
1, (x) (v = 1, 2, • • • , n ; n = 1, 2, . . . ) stand for the fundamental functions and k"
for the Christoffel-numbers belonging to p,(x), 1+,(x) and k~ for those belonging to
p2(x) respectively, then for any fixed (real or complex) xo

Il,(xo)12

	

E 1 l( xo)12,

	

n = 1, 2,
"-1

	

k,

	

µ-1

	

k,

PROOF . Let xo denote any fixed number and determine the polynomial
F(x) of degree (n - 1) at the utmost, for which F(xo) = 1 and I(F) _-

L1
I F(t) 1 2 p,(t) dt is minimum .

1

We express F(x) by the interpolatory polynomials belonging to the roots of
nth polynomial orthogonal to p,(x), then we have

n
F(x) = E d,l,(x),

,-1

I (F) = E E dµ d" L1 lv(x)l,(x)p1(x) dx = E I d, I 2 k,
V-p-1

	

1

	

v-1

as15 for µ 0 v

(29a) L, lµ(t)l,(t)p1(t) dt =
Wn(xv)Wn(x,) a..1 (x - X') (x -

x,) wn(x)pl(x) dx = 0,

and

(29b)

	

L,
l„(x) 2 p1(x) dx =

L1
lµ(x)p 1 (x) dx = k,, .

As
n

F(xo) = 1 = E d,l,(xo),
"-1

we obtain from what precedes
n
E d, l, (xo)
"-1

2 -

"~ d" ~/k"
lk

)
2

5 "~ 1
l,xo)' 2)("E k, I d,1 2 ) ,

I(F) >= n	 1	2 .
I l,(xo)

-1

	

k,

15

's P . Erdös and P . Turán: On Interpolation. I . Annals of Math ., 1937, pp . 142-155 .
lB Implicitly J . Shohat : Théorie générale etc ., p . 47, formula (75) .
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Equality is evidently to be obtained if and only if

F(x) =	1	 E t
°(x0) l,(x),

2 I l,(xo)I2 ,-1 k,
,_1

	

k,

(30)

	

E I t,(xo)1 2
= C

	

min

	

fl
I F(t) I E p1(t) dt]-1

,_1

	

k,

	

F (xo)-1, F(x)-ao} • • •} a n-lx^-1

	

1

But then evidently
11,(x0)12

	

min

	

f1
IF(t) 12 p2(t)dtl

-1

,_1

	

k,

	

F(xo)-1,F(x)-ao} . . . .+.an-lxn-1

	

1

	

J

Q.e .d .
(31)

I 2,
1 l:(XD)

In the special case of xo being the with root of the nth polynomial orthogonal to
p i (x), then by (30) the minimum-value is k, and this minimum is attained only
for F(x) = l,(x) (Corollary I) . 17

Here we remark-although we make no use of it in this paper-that the sum
E l"') ( x)2 is also monotone with respect to pl (x), if 1,( ') (x) denotes the rth
,-1 k,
derivative .

In Lemma II let p1(x) _- p(x) and p2(x) = m(>0) if a 5 x 5 b, and p2(x) = 0
for the complementary intervals ; furthermore suppose x o real . Then the
explicit form of the polynomials orthogonal in [-1, +1] with respect to p2(x)
is given by

wn(x) = A .P. (-1 + 2 b - a> ,
where Pn (x) denotes the nth Legendre-polynomial for [-1, + 1], with the nor-
malization Pn(1) = 1, A depending only upon n, a, b so that coeff . x"` in wn(x)
equals 1 . As in this case with P. ( ,q,) = 0 (v = 1, 2,

	

n),

k+, = m fb l ( t) dt =
m(b- a) f 1

	

Pn(t)	dt = m(b - a) 19

a

	

2

	

1Pn(7h)(t - 71,)

	

(1 -7') 1'.( 77,) 2'

from Lemma II, if Sl, 2,

	

, Sn denote the roots of Pn
\
- 1 + 2

b
	 -  a) = 0,

Pn
	

(-1 + 2 x0- ale
h( )2 <

	

n

	

I

-1 k, - m(bl a)

	

(1 - 77,)Pn(77,)2

	

2

	

2	 '	b - a

	

2
(32)

	

(b - a) Pn (77.) (xo - ,)

- b-a P

	

1~-2xo-a 2~ 1-~;
4m n (-

	

b - a )> ,-1 (x0 - :;,) 2
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1 7 J . Shohat : On the convergence-properties of Lagrange-interpolation etc ., Annals of
Math ., 1937, pp. 758-769, formula (39) .

1 8 L. Fejér : Az interpolátióról, Akadémiai Ertesitö (Hungarian), 1915.
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As -1 + 2 b°-a = rt e (v = 1, 2,

	

n), making use of the differential

equation of the Legendre-polynomials we obtain by the substitution x o =

a + b	2	a (1 + yo ) in (32) for any real yo

lr a+ b-a (yo +1))
2

(33)
	 2kY	

<
m(b1

a) [(1 - yo)P' (yo ) 2 + n2P n(yo) 2] .

Equality in (33) holds only for p(x) _- m. Suppose now -1 _5 yo _5 +1 ;
then, by a well known result I P„(yo) < 1, and by the above, cited theorem of
Bernstein-Fejér I P;,(yo)-\/(1 - yo) - n, i .e . from (33) for a 5 x <- b we obtain

(34a) n 1,(x)2 <

	

2

	

n2•.=1 k,

	

m(b - a)

19

Let now -1 + E S y 5 1 - E. Then according to the classical formula of
Laplace for c.' < 19 < 7r - E', we have

2

	

1

	

1

	

7r

	

C31(E 1 )P»(cos #) -
[7rn sin 1y] cos

[ \n
+ 2)13 - 41

< n312 ,

by this and by the theorem of Bernstein-Fejér for [-1 + E, 1 - ej we have

P„(x) 1
< C n n

	

P'n(x) I < C32(e)/n,

i .e. we obtain roughly 19 from (33) in [a + E, b - E]

(34b)

	

1,(x)2 5 C33(E) n .
al k .

	

m(b - a)

We remark, that for the validity of (34a) and (34b) in the above intervals
we require only that the L-integrable p(x) is in [-1, +1] not less than 0, and
in [a, b] p(x) >--_ m > 0 . (Corollary II .)

Let in Lemma II pi(x) _- p(x), p2(x) = 0 in [-1, a][b, 1] and not less than
m

[(x - a)(b - x)], in [a, b] ; if yl , y2 ,

	

y„ stand for the roots of the Tchebycheff

polynomial T„(x) (Tn (cos 0) = cos n#), µ1 , µ2 ,

	

µ„ for the roots of

T„C-1+ 2(b
- a) / ,then

k~ = m pb	 b° (t)	dt = m
~1

	 T„(t)

	

dt

	

-_ m 7r~
Ja [(t - a)(b - t)]#

	

1 Tn,(y.)(t - y~) V/(1 - t2)

	

n

1B For a = -1, b = 1, see J . Shohat : On Interpolation, Annals of Math ., 1933 .



i .e. by easy computation with real x
h(x)2

	

n E to (x) 2
=1 kP

	

mir p=i
(34c)

Thus we came to the result, that if the L-integrable p(x) is not less in [-1, +1j
than 0 and in the subinterval [a, b] p(x) ?
	 m	

[(x - a)(b - x)]+
then for a < x _< b

(35)

	

l.(x)2
< 2- •n .

v_1 k, _ arm

But then
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Mr[,
2n + 2n(2n - 1) Tzn-1 (_i + 2b - a ))]

III) Equality holds only when in a b]

	

-

	

m
(Corollary

	

•

	

Y

	

[ ~ p(x) - [(x - a) (b - x)]~'
and in the complementary intervals p(x) = 0, further x = a or x = b .

We deduce theorem II from (34a) and (34b) as follows . As

E k„ n) _ f 1 (E i.(t)) p(t) dt = L p(t) dt
Y°1

	

1 y°1

	

1

and as k,(
n

) > 0 by (6a) and (29b), we have in [a, b] by (34a)

(~E I h(x) I)2 = (r
I l k)

I vkr) 2 _< yE l "kx)2 VE k. <
m(b2 a) fp(t)dt . n2

1

and analogously in [a + e, b - e]

(Y~ I l(x) I)2 < m(b - a) L1 p(t) dt •n .

# 1

	

'n

	

[m(b8_ a)]
[L p(t) dt] •n for a =< x =< b

1&)n(X)12n-2

	

2 r I l.(x) Ip-i

	

[ma ]4C33()
(b - )[u 1

1 p(t) dt] • s/n for a + e < x <= b-e .

It is to be remarked, that the same argument leads to the following result :
if the L-integrable p(x) is not less than 0 in [-1, +1] and if in the subinterval
[a, b]

P (x) >	m[(x - a)(b - x)]"

then for a <= x <= b we have

(36)

	

I -n(X) I < 4 [gym (' p(t) dt] •'n

	

n = 1, 2, . . . .

Some further corollaries of Lemma II we shall mention later .
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Let us now consider the lower estimate of the orthogonal polynomials w n(x) .
THEOREM III . Let the weight-function p(x) be non-negative and L-integrable

in [-1, + 1] ; throughout the subinterval [a, b] suppose p(x) _> m > 0 . Then, if
xd n) denotes the root of (O n(x) nearest to x, we have for real x

wn(x)
I _>_	c84m	~b -a)n I x - x,j ~ .

(b - a) f p(t) dt

We require two lemmas .
LEMMA III . In [-1, +1] suppose p j(x) _> p2(x) >_ 0 and both L-integrable .

If co, (x) and w,+,(x) denote the corresponding orthogonal polynomials respectively, k,

and k; the respective Christoffel-numbers, x, and xq the respective fundamental
points, then

Fl k,w 1(x.)2 < .E k+V wn(x: ) 2

PROOF . Let us consider the minimum of N(F) = f I F(t) I 2 p1(t) dt
1

Ei f

amongst the polynomials of degree (n - 1), in which coeff . xn-1 = 1 . It is
known that this problem has one and only one solution and that the minimum
is assumed only for F(x) = wn_1(x) . But we want to represent the solution in
the form F(x) = E% j d,l,(x), where the l,(x)'s denote the fundamental func-
tions of Lagrange-interpolation formed upon the roots of w rt (x) . It is evident
that in this case we have to determine the minimum of the form E% j k, I d, 12 ,

I
d,

= 1 . From this, by applying Schwarz's inequality once more,
,-1 wrt (x,)

n

	

1

	

-1

we obtain for the value of this minimum
[E

	

2 and equality holds
1 k,wn (x,)

only for the polynomial

(37)

Thus again
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n

	

1

Ax)

	

k,w, (x,)	l,
(x)

E k,w1(x02

99

	

1E 1,

	

2 =
If-.,n-l+

min

	

If(t) I 2p 1(t) dt] s [ min f I f(t) I 2 i' (t) dt],-1 k, wrt (x,)

	

. . .

	

1

	

f-yn-1+ . . .

	

1
n

	

1

,,_k, wn ' (X,) 2,

	

Q.e.d .

If pl(x) _- p(x) and throughout the intervals [-1, a], [b, 1] p2(x) = 0, further
for a < x _< b p2(x) - m, then

k w 1(X,)2
< 1 [ -min f

f (t)2 dt]
_1
= 1 [ f b

Pn_1

C-1 -}-
2 b - a)2~]

_1 '

-1 v n

	

m f x F

	

a

	

m a



where the integrand is the linear transform of the (n - 1)th Legendre poly-
nomial with the normalization coeff . xn-1 = 1. Thus

2
n

	

1

	

1 (2n-1)
2n - 2
\n-1)_< _	

.-1 kywn(x.) 2

	

m

	

(b-a)2n-1

if throughout [-1, +1] the L-integrable p(x) _>_ 0 and throughout [a, b] p(x) >_
m > 0. Equality holds only if p(x) _= m in [a, b] and - 0 outside of [a, b] .
LEMMA IV . For the fundamental functions of the Lagrange-interpolation

formed upon any matrix 9 we have

O(x) = lkn(x) + lk+l,n(x) > 1.
xkn) = x - xk+l .

PROOF. Let 2 < k < n - 2 . Then O(x) is a polynomial of degree (n - 1)
at the utmost, vanishing at x (n) x(n) • •

	

xk(n- )1 , x(n 2) . . . x;,n) i .e . at n - 21 ,

	

2
places and equals 1 at x,(E n) and xk+i . Consequently its first derivative has one

(n)

	

(n)

	

(n)

	

(n)

	

(n)

	

(n)root in each of the intervals [x2

	

x1 ]

	

[xk_ 1 , xk_2], [xk+3 , xk+2],
[x„n ) , x (nn_i], which determines at least n - 4 roots . In consequence of ¢(xkn)) _
0(xk+i) = 1 one of the roots of this derivative lies evidently in [xk+i , xk n) ] .
We now show that O'(xkn)) _5 0 and 0'(x0"•1)) ? 0 . It will be sufficient to show
the first . Suppose 0'(xk) > 0. Then 4o'(x) must have at least one root in
[xk n) , x,((-n i] . But then 0'(x) could not have more roots and thus ¢ ' (xk+1) < 0 ;
hence ¢'(x) ought to have one more root in [xk+z , xLLn}i], and this is impossible .
0'(xk+i) >_ 0 is to be obtained analogously . But then, if in (xk(+ i , xk n) ) there
were a point to with 4(~o) = 1 then 0'(x) would have 3 roots in [xk+)l , xkn ) ] ; an
evident impossibility, which establishes the lemma. For k = 1, 2, n - 2, n - 1
the proof runs analogously .

(38)
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h(x)2
By (38) we

-1 k.
PROOF OF THEOREM III . Here also we start from

have-xa n) has the meaning given above-

Wn(x.)2 = [F kµwI(xµ) (x - xµ)2]-1

	

1,, (X )2

(39)

	

2	m(b-a)2n-1

	

n l.(x) 2

(2n - 1) On
24 (x-xan

	

-2 2

	

k, .
n- 1>

1
But since k(, n) <

1 p(t) dt (we made use of this at the upper estimate, too)
1

then if e .g. xa+l 5 x S xan) , we may write
2' '

(40)

	

(0. (X)2 >
1
m

	

(b - a)
2n - 2

2 E1d(x) 2 + la+1(x) 2] I x - xan) 12

Ll p(t) dt (2n - 1) \ n - 1 >
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Now by lemma IV for any x in the interval in question

ld(x) 2 + ld+1(x) 2 ? Hld(x) + 1d+1(x)]2 >_

i .e . by

l 2
(2n - 1)

2n
n - - 1

1
2 '" c364"

we obtain that

1} (b	
wn(x) I > CH b -

	 m

a [1

1

1
p(t) dt]

	 - a)"

} \
	 4

	

I x - xd °) ,

which proves the theorem

	

1

.

THEOREM IV. Let us add to the hypotheses of theorem III that, throughout a

subinterval [c, d] of [a, b], m S p(x) 5
-V(1M

x2)
. Then, if xd^ ) denotes again

the root of wn(x) nearest to x, we have in [c + e, d - e] for n > no(e, c, d, p)

wn(x) I >	
ca?

	

m

	

} I x - xd°)
I lb -

a
I Vfl

~/(b - a) M +

	

p(t) dt

	

44

1

For the proof we require
LEMMA V. In [-1, +1] suppose p(x) >_ 0 and L-integrable ; suppose further-

more, throughout a subinterval [u, v] p(x) -<
-%/(1M e)

; then for the Christoffel- numbers k, n ) belonging to the x, ^ )'s lying in [u +

-q, v - r)] ( ,1 > 0), we have

k,n) < cer

[M +
cu

f
1

p(t) dt .
n

	

rte n 1

PROOF . According to the first corollary due to Shohat of Lemma II we
may write

1

k ( ^ ) =

	

min

	

If(t) I2 p(t) dt
(s ;^ ) ) •-1.I-¢OS^-1+ . . .

	

1

x

min

	

f I F(t) j2p(cos 13) sin 4dr3
r(a;*))-1,~(a)-bp+ • • + b^_ 1 coo (n-1)a 0
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5
f=0

d
+ dcn) • 2

	

, - dcn) 2
sin n	2 '

	

sin n	
2

'

+ ~~(n) +

	

- ~r(n)
n sin	

2

	

nsin	
2

p(cos e}) sin rY dt

+f =Il+I2,
ay

	

C



where u = cos f3, v = cos a and C stands for the intervals complementary to
[a, R] in [0, i] . Evidently

and

12
< ~sn2

L' p(t) dt,

which proves the lemma .
PROOF OF THEOREM IV. From (39)

wn(x)Y >_ m (b - a )Yn-'(x - xd") Z Y C ld(x) Y + ld+1(X) ']

(2n - 1) (2n - 21

	

kd

	

kd+'
`n - 11

If c + e 5 x 5 d - e and n > n i(c, d, e, p) then, according to footnote,'
the interval [xd+i , xd" )] containing x lies in [c + it, d - 12 e], and hence, by
applying lemma IV, and with the substitution u = c, v = d, Ze, Lemma V
we obtain for n > max (n', 4/t2) = na

_ Yn-'
W(X)2

> C40
	 mn

'

	

Cb 4
	 al

	

I x - xd") IY,

M + p(t) d

	

1

1'
which establishes the theorem .

REMARK I . In the special case m 5 p(x) <	 /(1M
X-4)

throughout [-1, +11

we have by the aforesaid in [-1 + e, 1 - t]

Cu(p, t) 2^ I x - xd") I

	

Iwn(x) s_ c+Y(p' e) 2n
REMARK II . In lemma V we required the upper estimate of the Christoffel-

numbers. Although we shall not use it, we mention, that if in [-1, +11
p(x) = m > 0, then

(n) >

	

2m
k` = (1 - x.)P*(x.) 2 + n2 PA(x.) 2

'

equality only for p(x) _- m ; here P„ (x) means the nth Legendre-polynomial with
normalization P„(1) = 1 . By this

k ; n)
>= n
m ,

	

v= 1, 2, . . . n,

	

n = 1, 2, • • .

2r

it <M2 JW o
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sin n	2

sin's -
~yn)

2

d'9 =
cum
n
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Further it is easy to obtain that if in [-1, +1] p(x) => m > 0, then

krn ) >- c'8(E)m, -1 + e < xrnl <_
n

and, if in [-1, +1] p(x)

>_ V(1 -

	

holds, then

krn) > c"m ,

	

p = 1, 2, . . . n .
n

REMARK III. If in Lemma V [u, v] _- [-1, +1], then we have the sharper
result

/i
,.(n) C c46M
r = n ,

REMARK IV . We obtain from the proof of Lemma III

n	1 	n	1	wa(x)E

	

1.(x) Z

	

z'
rmlk.wn(x.)

	

.=1 k.wn(xr) x - x,

wn-1(x) =

	

n

	

1

	

=

	

n

	

1

	

,

k.w»(x.) 2

	

k.wA(x.) 2

where l.(x) are the fundamental functions of the Lagrange interpolation formed
upon the roots of wn(x) . As k. > 0 we evidently have for sufficiently small e
(see (2))

sg wn_1(x (p
n) - e) = -sg wn(x(yn) - E),

sg wn-1\xr+l + E) = sg wn(xr}1 + E),

i .e. we obtained the well known fact that there is a root of w .-,(x) between
each pair of roots of wn(x) .

2.
THEOREM V. If for the fundamental functions belonging to the matrix 9J

(41)

	

[1 lk(X) I]l'n < 1 + e,

	

-1 < x < +1, k = 1, 2, . . . n, n > n2(E),

holds for any sufficiently small e, then, at any fixed point z of the complex plane
cut up along [-1, +1], we have

lira [wn(z)] I1n =
Z	 + \/(z2 -1)

~2n-c0

P = 1, 2, . . n .

Here we must take those values of the roots which are positive on the positive real
axis for z > 1 .

For the proof we require
LEMMA VI . From (41) it follows that, for any small positive ,l, if n > n 3 (l),

w n (x.) I >

	

2, . . . n .



PROOF . Suppose that the lemma is not true . In this case there is a posi-
tive absolute constant b and a sequence of positive integers n1 < n1 < . . . such,
that to any nk we could give an integer vk with 1 <- vk 5 nk and

I Wnk(x'(k k) ) I < (2 - a)nk .

But, as, according to a classical theorem of Tchebycheff, there is in [-1, +1]

a ~k for which the value of the polynomial Wnk( ) k) is not less than 2nk-2, at
x-x. k

the same x = Sk
'

	

t

	

1

	

1
{ ~'rk,nk(Ek) { > 2nk-2

1$ -
art

which, for k -> co contradicts (41) and thus proves the lemma .
REMARK . It follows from lemma VI and lemma I that (41) implies

n

	

1

	

1/n
lim E 1

	

= 2.
n --c [ r-1 { W n (x.) {

We shall make no use of this statement in this paper .
PROOF OF THEOREM V. Let

2v - 1cos
2n + 2,,

	

v = 1 , 2, . . . (n + 1),

the roots of the (n + 1)c' Tchebycheff-polynomial T,+ , (x) (Tn (cos o) = cos ne),
and represent w n(x) by the Lagrange-interpolatoric-polynomial taken at these
,,'s . If L,(z) (v = 1, 2 . . . (n + 1)) denote these fundamental functions, then

n~+1
(42)

	

Wn(z) = L., wn(+i .)L.(z)
-1

(z any number) . But by (41) and lemma I, in -1 5 x
we have

ON INTERPOLATION . III

{ wn(x) { 2n-2

	

2

	

W. (x)
.-1

i .e . by { TA+1(n,) { _ /(1+ ~2) from (42) for n > n3(e)

{ (z) <
n~ 8(n + 1)(1 +E)n {z + -,/(z2-Wn

	

1) {n+1

.d1

	

2n

	

(n + 1){ z - t/, {
n+1

< 11 1	2 e
(z + 1%/ V - 1))

	

max

	

1

W,n (x.)(x - x.)
5 2(n + 1)(1 + e)n

hence, as z is not in [-1, +1], for n > n4(e, z)

[{ W.(z) {]
1/n < 1	2
	2E

{ z + '/(z2 - 1) { .

.-1,2 . • • • (n+l) { z -
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Now let us consider the lower estimate and represent the (n - 1)t' Tcheby-
cheff-polynomial T._1(z) by the Lagrange-interpolatoric-polynomial taken at
the roots of wn(x) . We obtain

n
T.-,(z)

	

Tn-1(xvn")1,(x) .
._1

As I T,,-1(x,)
I

	

1, there is an integer vo with 1 5 vo 5- n and

l,, (z) I > n I T .-,(z) I ,

thus for n > n€(E)

(43)

	

I wn(z)1 > 2n (1 - E) I z + /( z2 - 1) In - ' I wn(x:o') I I z - X'("'
I .

From (43), by lemma VI, and as z is not at [-1, +1], we obtain for n >

(44)

	

I wn(z) I - 2n
1	2	2f

(z + _

V/(z2

- 1)) Iz-x;o'I .

no(E)

From (44) and n > n7(E, B) it is evident that in any closed bounded set B of
the complex plane cut up along [-1, +1] we have uniformly

(45)

	

[I wn(z) 11" > (1 - 3E) Z + V (z 2 - 1)
2

	

'

where we are to take that value of the square root, for which the right side - z
for z -> oo . This proves the theorem, since on the positive real axis, for z --> o o,
the two sides of (45) are equal without the sign of the absolute value too, and
upon the cut plane both sides are one-valued and regular functions of z.

We already mentioned in the introduction that in the case of strongly normal
polynomials, the asymptotic formula for [wn(z)]" n upon the cut plane is a conse-
quence of the above Fejérian-theorem . In order to state an analogous theorem
for a class of orthogonal polynomials more general than that of Szegö's we
require a further lemma.
LEMMA VII . If the L-integrable weight-function p(x) is non-negative in

(-1, +1] and if its roots form an aggregate of measure 0, then for the fundamental
functions connected with the matrix p and n > ns(E) we have

Il,, n (x)I 5(1+e) n ,

	

-15 x5+1,

	

v=1,2, . . .,n .

PROOF . We employ following theorem of E. Remes.20 Let in [-1, +1]
be given a finite set of disjoint intervals of total length 6 . If throughout this

' 0 E. Remes : Sur une propriété extrémale des polynomes de Tchebichef . Communications
de l'Institut de Sciences etc ., Kharkow, 1936, série 4, XIII, fasc . 1, pp . 93-95 .



aggregate the absolute value of the polynomial f(x) of degree n is not greater
than M then in [-1, +1]

If(x)I6M Tn(

where T, (cos t9) = cos nr9

	

/

.
Now suppose lemma VII to be untrue . Then we have an infinite sequence

of positive integers nl < n2 < . . . and a c4e such, that to every nk there is a
positive integer vk with 1 S vk S nk and a t . k with - 1 5 t,k <_ +1 to satisfy

(46)

	

I "k,-k(Gk) I > (1 + c46)' .

Apply now for "I,-k(x) Remes's theorem taking for the aggregate of intervals
of length t those intervals throughout which

(
+

c461
I lvk .nk(x) I S 1

	

22

Thus we obtain

(i+ c ) '2 k
ffrom which 0 < 6 < 2 - c47 where c47 depends only upon c46 and is independent
of nk . Hence throughout intervals 21 of total length greater than c47 ,
I l,k , nk (x) I >_ (1 + Jc48) nk . But then by the assumption made for the roots
of p(x) we may omit from $1 intervals of smaller total length than Jc4r such
that throughout the remaining f+ p(x) >_ c48 , where c48 depends only upon c47 .
Hence we had

f 1 l.k,nk(x)'p(x) dx ? J 1,,,.,(x)'p(x) dx
1

	

$+

nk
>_ C4g

$f + lpk,nk(x) 2 dx > c46 . 2'
1 + 2s

which contradicts the Shohat minimum property of the l,(x)'s (Lemma II .
Coroll . I .) . Hence lemma VII is established .
By theorem V and lemma VII we state
THEOREM VI. Let the weight-function p(x) be non-negative and L-integrable

in [-1, +1] and assume the aggregate of its roots to be of measure 0 . Then,
taking the suitable values of the roots we have upon the plane cut up along [-1, +1]

lim [wn(z)]un =
z +'0z2 - 1)

2n -M

uniformly in each interior domain .
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3.

In this section we consider c) problems . We prove following Fejérian
theorem
THEOREM VII . Assume the matrix S9)1 to be such that [-1, +1] possesses a

subinterval [b, a] _- [cos fl, cos a] with

14(x) 1 < c49 ,

and for the other fundamental functions

I lk(x) I < c,,o

throughout [b, a], if

t < a - 6,") d,+1 < . . . <

	

= < 'g„+1 .

Then

C49

2A (n)

	

(„)

	

(")
max (6 +1 - di ")) = n = dk+1

k=P,P+1, • • µ

[E(b - a)]' 1

	

>}k+i

	

C49 . Cb2(E, a, b, c6o, C61).

n -

	

-

	

n

	

'

if 13k" ) and dk+1 are in [a + e, 9 - e] , e denoting any small positive number .
PROOF. First we prove the lower estimate

l k(COSOk" ) ) - lk(costk+1))
16k") - 17k+1

dlk(cos 19)
dd

where O (
k" ) <= t9+ <__ ,9k+i . But then, lk (cos 6) being a trigonometric polynomial

of order (n - 1), by the Bernstein-Fejér-theorem we have

1

	

c49(n -1)
1Y;+1- ~k"' I

S
[E(b - a)]"

which proves the lower estimate .
Let us now consider the upper estimate . Suppose

a+e!5 6i") <0
(n
1+1 $-E

and we have to prove that A (n) remains smaller than a number independent
of n. We can suppose A (n) > 10 . Let r be the smallest positive even integer

_

	

(")

	

(n)

greater than [c61] + 4, .u the largest integer with u	
2

	 1 r <= n - 1,
e9k 2~k+1

= So

and

1

	

sin µ
ty250 *

	

sin k
6-50 '

(47)

	

'o(+~) =
µf

	

sin's + 60

	

+ sin's -so
2

	

2



Then p(d) is a non-negative, pure cosine polynomial of order (n - •1 ) at the
utmost, for which

(48a)

	

rp(So) > 1,

and if, without any loss of generality, we assume 0 < So < 2'

(48b)

	

I gyp ($) 1 5 1	1	 +	1	 5 9,rz '

	

2

µr sin' t$+So

	

sin'' - So

	

2µ (,g - BOY ,
2

	

2

Let us now represent (p(t9) by the nth Lagrange-interpolatory polynomial
taken upon 91 . Then by (48a) and (48b) we have

(49)
1 < 1 <p(So) I =

Let us divide the sum upon the right-hand side into two parts with v _5 k
or v >_ k + 1 respectively . As, according to the already proved lower estimate
in the first sum we have

SO
- #!nl > A(n) + (k - v)[e(b -aV

n

	

v/2 can
and in the second one

> A(n) + (k + 1 - v)[E(b - a)]'
n

	

i/2 c49 n

we obtain that the sum on the right hand side of (49)

< 2nr E
'-o (A (n)

< C49

1

+ v
[e(b - a)]Ilr
Cf9~2
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E ,%1))1,(Cos 60) <

	

girl
(

	

I l(cos So)
P-1

	

r-1 µYW(n) - SO) r

a+t:90N)<_~ a w1n) 1 So) r • \2/1/ r + (2µ, f cfi0nc`1
•~e n.

s

	

2

for

for ~(n) < - e
`

	

2'

2n'

	

cn-%/2

	

1

	

c69(e,a, b)c,9nr
< r - 1 [e(b - a)]} A - [ e(b - a)] '-1 <

	

A r-1

	

'

c49~/2 )

	

(2 )

as r >_ 4 and 2 > 5 > [e(b - )] (c49 >_ 1) . By substituting this into (49)
we obtain

1 <
C6s(C6, e,CIO) + C49 C66(€, a, b,C61) '

which establishes the upper estimate .
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The consequences of this theorem for sequences of strongly normal poly-
nomials, we already mentioned in the introduction . For orthogonal poly-
nomials we have
THEOREM VIII . If the weightfunction p(x) i8 non-negative and L-integrable

throughout [-1, +1], and if, throughout the subinterval [b, a] _- [cos fl, cos a]

0 < m 5 p(x) 5
-./

(M x2) , then for any e > 0

c6e(a, b, p,e)

	

(n)

	

c67(a, b, p,E)n

	

= dk+1 -
O (ft) <	

n
ifa+

	

<'t, <

PROOF. By (34a) we have for b 5 x 5 a

!t(x)2
<

	

2k,

	

m(a-

As k, < L p(t) dt, for b 5 x S- a,

2

	

1

	

1
(50) 14(X) 1 < [m(a - b) f l p(t) dt] •n ,

	

v = 1, 2, . . . n,

	

n = 1, 2, . • .

Further a fortiori from (34b)

E

kMlY
	

2

	

C333

5m(a
	 2b)n,

	

b~-2

	

2'
Sa-2,

i .e. by applying lemma V with u = b, v = a, n = Je for those l„(x), for which
b + e 5 x,~, n) <- a - ae we obtain

Alt
E

(
	 '~	(p, E)Il,,(x) 12 <	5	n,*C6f~+, E) - c" (P'

n

	

a-b'

b+25x5a-2.

Thus the premises of theorem VII are satisfied for [b + s e, a - ae] with c49 =
c69(p,E) ;

	

2

	

f1

	

1

a - b ] , cb0 = [m(a - b) Li p(t) dt] , cal = 1 ; hence theorem VIII is proved .

REMARK I . From corollary III of lemma II and from remark III of theorem

IV it follows that if -V(lm x2) 5 p(x) 5- ~(M x2) in [-1, +1], then

06

	

ME l,(x) 2 5_ coo - .
._1

	

m
REMARK II . By theorems IV and VIII we obtain that if in [-1, +11 the

non-negative p(x) is L-integrable and in a subinterval [b, a] 0 < m 5 p(x) 5

n2 .
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then I w n (x) I takes between any two roots lying in [b + E, a - e]

~/(1 - x2)'

a value greater than
c6I(a

b,

p, e) (b-a)n

We already mentioned in the introduction that if in the subinterval the
weight-function is supposed to be continuous there are asymptotic theorems
to be obtained . For sake of simplicity let us ascribe to p(x) besides the prop-
erties of being non-negative and L-integrable in [-1, +1] also continuity and
positiveness of p(x) ../(1 - x2) throughout [-1, +1] . The results are new for
this case, too, but the argument is very much clearer.

In (34c) for x = to = cos rpo we had

with To(x) = 1/\/2, T, (cos 19) = cos vd, v >= 1 . It is evident that for n > 1
On_IQo) = 1 and that by the formula of Christoffel-Darboux (which holds for
n > 1)

T.-1(to)Tn (x)-T n(So)T n-1(x) =
n-1

(53)

	

x - to

	

2 F, T,%)T.(x)

we may write for n > 1
w-I

	

n-1
E T,(k0)T,(x)

	

E T,(to)T.(x)
(54)

	

On-AX) =

	

n_I

	

= 2

	

,-o	
,

E T.(to)2

	

n - 1 + 1 sin (2n - 1)~po
.-0

	

2 2

	

sin S o

which means that ¢n_1(x) is that polynomial which, amongst
polynomials of degree (n - 1) with f (to) = 1 minimizes the integral

~-1
f( t) 2	dt

,~

	

_,/(1 - t2)

(55)

By (54) we have for any -1 5- to 5 1, -1 5 x S- +1

10a-i(x) 15_ cei

the f (x)

For ¢n-I (x) we require following two lemmas .
LEMMA VIII . If for n --> oo nceo -* + oo and n(r - +po) -~ oo, then the dis-

tance between Soo and the root of 0n-i (cos 4) = 0 nearest to 4 = rpo is 'r/n .
PROOF. According to (52) it will suffice to consider the roots differing from

6 = Vo of the equation

(56)

	

cos (n - 1)vo cos n19 - cos n po • cos (n - 1)19 = 0 .

1

	

2f(t)

	

dt =(51)
n _ 1 + 1 sin (2n - 1)~po .min

-01 - t2)
f(Eo)-1

Consider the polynomial

2

	

2

	

sin rpo

(52)
T"-1(eo)TR(x) - Tn(Eo)T.-1(x) . 1

x - to -
2
+ 1 sin (2nm- 1),pon

po
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CosAs each of the(n -1)intervals given by thendifferent real roots ofTn(x) = 0
contains just one root of the equation T„_1(x) = 0 it is clear that any equation
of the form JET„(x) + µT._1(x) hence also 0,_1(x) = 0, have a root in the interval

21+1
r, cos

21-1
r
J

(l = 1, . . . (n - 1)) . Thus equation (56) has a root
2n_

	

2n
in each interval of length 2r/n and consequently for the rightwards root Vo
next to (po we surely have I ~po - vo I C 2r/n. Then by simple transformation
we obtain from (56)

sin 2p̀0 sin (n - z)(6 + o) -sin2 V 0,sin (n - i)(o - 6) = 0

which for nVo - oo, n(r - rpo) -> w immediately leads to A

	

r if sco =
.po + A/n.
LEMMA IX. If for the weight-function p(x) in [-1, +11, q(x) _-

p(x) .%/(1 - x2) >- m > 0 and q(x) is continuous throughout the same interval,
then for 0 <_ (po < r, to = cos ~po

lim n
L1

d>„_1(t)2p(t) dt = rp(~o)1/(1 - o) lim

	

1
n_40

	

1

	

+ 1 sin (2n - 1)Soo
2n

	

sin rpo

i .e . if n o --* -, n(r - (po) -> o0

lim n f1 ¢„_1(t)2p(t) dt = rp(Eo) V(1 - Zo) .n-w

	

1

PROOF . For I x - to I ? 1/n} it is easy to obtain from (52)

10R-1(x)1 9 20n-1

i .e .

(57)

If I p(x')-/(1 - xj2) - pQo)1/(1 - d) I <= S for any I x' - to I =< n-1 , we have

I

	

f
-

(58)

	

it-eoi~n - 1 , •

i
-1_5t ;S+1

It-FoI-n-114

1

0._1(t)2p(t) dt < 400 J
1 p(t) dl .

0 n-1(t)2p(t) dt - p(to)%/(l - to) L1
(1

	 1(t)~2) dt

< n00 r
-1m ax p(x)~/(1 - x2) + S

J1
	 On-1(t)t A-8l2

	

a

	

_ (

	

2)



From (57) and (58) evidently

f l (t) 2 p(t) dt -
AP(E0)1/(1 - o)

1

	

1

	

1 sin(2n - 1)~po
n- 2 + 2

	

sin po

holds, then

REMARK. This lemma means that if the quadratic integral of the poly-
nomial normalized for 1 at x = to is "too small" in the interval [to - e, to + e],
it must be very large in some other parts of [-1, +1] .

PROOF. Without any loss of generality we may suppose to ?_ 0. Then
construct with the above f(x)

_

	

[}kbJ

F(x) = f(x) [1 - (1 + to)

2]

degree is less than k(1 + Z5) . In [-1, +1] we evidently

From (34c)

(59)

polynomial, whose
x-~o

< 1 .
1+61 -

(60)

	

1 F(t)2 	>
t2) dt =

k+2[4a]+2
on the other hand

(61)
f
1F(t)2 dt < (1 -

E2~ [}kli

f	f(t)2	dt + f fu+e	
f (t)2

	

dt,
1 1/(1 - t2)

	

4

	

t-f0 >a 1/(1 - t2)

	

fp-e \/ (1 - t 2)

a

have

ON INTERPOLATION. III

1
0n-1(t) 2 [p(t) -

p( ~(1(1t2)o) J dt
~

< n~2 [f 1 p(t) dt + -ma~x 1 p(x) .\/(1 - x2)I + 101076 .

REMARK . If p(x)\/(I - x 2) = q(x) has at x = :;o a discontinuity of first
order, then q(Eo) at the right-hand side in Lemma IX is replaced by
q(to + 0) + q(Eo-0)

2
LEMMA X. If for the polynomial f(x) of degree k f(>;o) = 1, to = cos ~po and

any positive a and S < 1, k >_ 16/6 and sin Soo > 8/kA the inequality

f	 f(t)2 dt < (1 - 6)
t2)

	

1

	

1 sin (2k+ 1)Soo
-Eoi_s .

	

k + 2 + 2

	

sin Spo-is-s_s+1

}kd

1 f(t) 2

	

a C1
+	 4~

J 1 \/(1 - t2) dl >
	

400k

+

7

N

1 sIn(2k+4[4]+1/~po

2

	

sin vo

Q.e .d .

541
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f

as in [-1, +1] the second factor of F(x) is non-negative but 5 1 . Making
use of the hypothesis after the arrangement we obtain from (60) and (61)

1 f(t) 2 	dt >
I

	 f(t)2 	dt
1 ~/(1 - t2)

	

I _f.l ? E -%/(1 - t2)

>

	

x

	

1
2 }k8

	

/

	

\

\ 1 4)

	

kS 1 1 sin12k+4 [
]+1

k

	

1

+ 2 + 2 + 2

	

sin co

	 1 - S	l>(1+'r_	

2

> a
	 \1	+	 4

}ki

	 2)

1

	

1 sin (2k + 1),po

	

IOOk2

	

2 sin . ]

	

400k
k+ 2

+ 2

	

sin Vo

Q.e.d.

According to what has been said before we may deduce asymptotic formulas
for the Christoffel numbers belonging to p(x) .
THEOREM IX . Let p(x)v/(1 - x2) be continuous and p(x)-v/(1 - x2) z m > 0}

in [-1, +1] ; then, if n - ~, we have for any x (. n) lying in

	

log n] s
n

x;n) S C1 - log n]}
n2

k:n)
= f , l.(t) 2p(t) dt r.,

lrp(x, n))Vnl - x,( n)')

PROOF . First we show that we have for any a and S independent of n if
64 }

n > n8 (S, e) and x,( ' ) 5
C
I - W-52]

(62)	 l' (t)2 	dt > (1 - a)	f
i_se

+i V(1 - t2 )

	

- 1 + 1 sin (2n - 1) 6,(" )n
it-z")I

	

2

	

2

	

sin #;n)

Suppose the contrary, then by lemma X we had
/

	

2 }M

l(t) 2

	

a/
1 + 4)

Ll V(1 - t2) dt >	50On

i .e . a fortiori
}bn

2

	

all+4~
~1 1,(t) p(t) dt z m	500n ,
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which contradicts the minimum-property of Shohat if n is sufficiently large .
Thus (62) is proved . But then by (62) for n > n9(S, e)

(63)

f 1 l,(t) 2 p(t) dt > Ix~min p(x) .%/(1 - x2)

	

f	 l,(t)2 dtt2)

ap(x,n) )V (1 - x,n) ')> (1 - S)

On the other hand by the minimum-property

(64) f'l,(t)'p(t)dt S f' 4n-1(t) 2p(t) dt ti	'rp(x ;n)) .%/(1 - x,n)=)	
1

	

1

	

1

	

1 sin (2n - 1)6,n)

n- 2 + 2 sin 6,n)

by lemma IX, if we replace 6 by x, n) ; (63) and (64) lead to theorem IX .
And now we may go over to the asymptotic representation of the funda-

mental functions .
THEOREM X . In [-1, +11 let p(x)V(1 - x2) be continuous and such that

}p(x)v/(1 - x2) ~; m > 0 . Then, if e > 0, n > no(e) I x,(" ) 1 5
C1 -

log2 n1
Jn

for -1 5- x ;5 + 1 we have uniformly (T,, (cos e9) = cos r6, r > 1)

l,.n(x) - yin-1(x) = 4(X) -	
Tn-1(x:n))Tn(x)-Tn(x:n))Tn-1(x) 	< e .

/

	

1

	

1 sin (2n - 1)13, n )\

	

cn>In-2+2

	

Sin 6,(nl
	 1(x-x, )

PROOF . Let us consider, with the above 0.-I(x), the integral

(65)

	

I, as f [l,(t) - 4n-1(t)J 2 p(t) dt.

n
As ¢n_3(x) -_ E ¢(xkn))lk(x) and

	

1, we obtain
k-1

(66)
I, = k; n> - 2 ~; 0n-1(xan)) ~1 ld(t)l,(t)p(t) dt

d-1

	

1

f' .0 ._j(t)2p(t) dt =
1

But then by theorem IX and lemma IX, for n
uniformly in v

(67)

	

lim nI, = 0 .
n --00

n
1
+ 1 sin (2n - 1)$, n)

---	2

	

2

	

sin 6,n )

-k,">
+ / 4n-1(t) 2p(t) dt .

.41

w I x; n> = 1 -log nl;
n J2
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From the premise and the remark to theorem VIII it follows for (-1, +11 and
v=1,2, • • • n

l.(x) I s co m
By this and (55) for 1, (cos tl) - 4'n-1 (cos t4) _ ¢(t4) we obtain

14416 ) 1 < C62(p) •

But then by the theorem of Bernstein-Fejér, in [0, tr] we have

(68)

	

14"(x) I < ca(p)n.

Let '(t9) assume its absolute maximum in [0, w] at 19 = yo and let this maxi-

mum value be D,. . Then in the subinterval i [i,o - ~gn , 70 + 242 of
n]

[0, ir], by (68) we have
D,

> D, - 2 =
D,
2

I, _- J 1 [l .(t) - "-1(t)]2p(t) dt = J x 0(6)'p (cos t4) sin 14 d6
1

	

0

> m 006)'0 > m
D. D.

( i )

	

celn~4
Thus by (67), for n -> oo a fortiori

mD; -4 0

i .e . D, -+ 0, which establishes the theorem .
From theorem IX and lemma VIII we easily deduce
THEOREM XI . Let p(x)V(1 - x2) be continuous in [-1, +1] with

p(x)-,/(1 - x2 ) ->_ m > 0, further let C(n), for n - oo arbitrarily slowly, tend to
infinity ; then for those roots cos top(") of the n°' polynomial orthogonal to p(x),
which satisfy

C(n) < Ni") <
41+71) < a -

C(n)

we have uniformly in k

lim n(t4k+i - 4k"))
_ 7r .

"-.CO

REMARK I . If we assume not p(x) .,/(1 - x2), but p(x) to be >= m and con-
tinuous and not in [-1, +1] but in the subinterval [a, b], then O"_1 (x) is to be
replaced by a polynomial of similar form but the Tchebycheff polynomials

4ca2
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T"(x) are to be replaced by Pn(x) Legendre-polynomials . Theorem IX and X
remain true for those k, and l,(x), for which a + e 5 x:" ) _< b - e and a + e
x<b- e.
REMARK II . If we attribute again continuity and positiveness in [-1, +1]

to p(x),\/(1 - x 2 ), it is probable, that theorem X holds for the fundamental
functions belonging to every x,(') . Theorem XI does not hold for every x,( ') in
the original form ; the difference 6k+i - :9k") will be asymptotically equal to the
distance between zYk"~ and that root of

cos (n - 1)z9k" > cos no - cos nok" ) cos (n - 1)6 = 0,

which is nearest, on the right, to zYk" ) .

4.
In this section we consider the number of roots of polynomials in a given

interval. We already mentioned in the introduction that if

(69)

	

lim [I l,(x) I]'/" 5 1
n-.

uniformly for -1 -< x 5 + 1 and v = 1, 2, . . . , n, then the fundamental
points of 97l are uniformly distributed . We present an elementary proof for
this Fejérian-theorem . Here and also later a theorem of M . Riesz 21 plays a
most important part, so-because of its shortness-we reproduce it as
LEMMA XI . If a trigonometric polynomial of order n, f(d), takes its absolute

maximum in [0, 27] at tY = 6o , then there is no root off(t9) in It7o - 2n, 40 + 2n
Suppose the theorem to be untrue . Without loss of generality let O o = 0,

f (O) = 1 and suppose, that the nearest root, the distance of which is less than
,r/2n, lies to the right . But in this case the curves y = f(4) and y = cos no
would have at zY = 0 at least a double point of intersection and by the premise
a third one in [0, ,r/n] . In any of the intervals [a/n, 2,r/n], [2a/n, 3,r/n], • • • ,
[(2n - 2),r/n, (2n - 1),r/n] they would also have at least one intersection ;
hence the trigonometric polynomial f(#) - cos n# of order n had in [0, 2,r]
(2n + 1) roots, which is impossible .
COROLLARY. If a trigonometric polynomial of order n takes its absolute maxi-

mum between two real roots, the distance of these roots cannot be less than ir/n .
The statement holds for all n.
THEOREM XII . If upon the matrix Tl

[I 4(x) I] l1 " _< 1 + E,

	

k = 1, 2, . . . n,

	

-1 < x < +1,

for n > nio(e), then we have for any 0 <_ a < R <_ ,r

lim 1
1: 1 = 0-a .

n- con

	

,

	

ir

21M. Riesz : Eine trigonometrische lnterpolationsformel usw ., Jahresbericht der deutschen
Mathematischerver, 1915, pp . 354-368 .
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PROOF . If the theorem would be untrue, we had in [0, rr] a subinterval
[a, 6] and a en such, that there would be an infinity of integers nl < n2 <
for which the number of the nkth fundamental points lying in [a, #] is less than
1
1 (,B - a - cu)nk . We may assume ca < ~

6 a and write instead of nk simply n.

Let

(70a)

	

Sok = a + k n -'}- 1

where k runs over the integers (positive, negative and 0), for which Sok lies in
lCO, a + 4 ; for n - oo the number of these pk asymptotically equals

a +
/ n

. Let further

(70b)

	

S+ l
n r 1

where l runs over the integers (positive, negative and 0) for which ¢1 lies in

C6 - 48 , u ; for n --> ao the number of these asymptotically equals

Ca - 8 + 4 n. Let further
ir

	

)

(71)

	

G(x)

	

(x - cos'a") II (x - cos 5ok) TI (x - cos ¢1),
V

	

k

	

1

where II' is to be extended over the 6kn ) lying in [a, ,B] . The degree of G(x) is
by the premise and the definition of (pk and ¢t , for sufficiently large n,

(72) < (ft - a - ces)n -F - (a -f 3) n -I- (a - ,B + 3) n 3) n.

As the order of the trigonometric polynomial G (cos 6) is less than n and the

distance of its consecutive roots in CO, a + 4 and [i3 - 4 , irJ is less than

C"

	

L63Tr/n, G (cos 0) takes, by lemma XI, its absolute maximum in
[a + 4 '

	

4 ]'
at a place t = y say . Let finally

(73)

	

F(x) = G(x) 1 -
(x - Cos y)2 to6an/8rl

4

where the brackets in the exponent denote the greatest integer contained .
Then, by (72) the degree of F(x) is

(74)

	

< ( 1 -
3

n }- 4 n = C1 -
12a)

n



and, like G(x), F(x) takes its absolute maximum at tt = y, too . Then
n

F(x) _ E F(x.n))l.(x)
V-1

i.e. for x = cos y
n

I G(cos y) I = I F(cos y) I =
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E F(xc(n))l,(co,s
y)

F-1

F(X,(n))l,(CoS
y) ~,

r

where, by definition of F(x), E" refers only to those ,Y, n) , which are not in
[a, 6]. But then, by the hypothesis, for n > nto(e)

G(cos y) I < ( 1 + E)n
E" I F(x .n) )

< (1 + E) n E" I G(x,( n) ) I (1 - (x
;n) - COs

y ) 2)C63n/8r .

V

	

4
As by definition of y

I G(cos y) I >= I G(x,n ) ) I,

	

v = 1, 2, . . . n,

we have a fortiori

(X,(") - Cosy) 2l c ;in/8r1 5_ (1 + e)n

	

4v

Cga

	

~E9n/8r

< n(1 + e)n Max 1 -
(cos a - cos

	 (a +	 4~~
4

	

'

1 -
(cos

(S	
-

	 4	- cos l3)2
`d
8n/sr

4

	

'

which is, with sufficiently small e, untrue for n > n11 (e) and thus the theorem
is proved .

By theorem XII and lemma VII we obtain
THEOREM XIII. Let p(x) be in [-1, + 1] non-negative, and L-integrable further

suppose that its roots form an aggregate of measure 0 ; then for the roots of the nth

polynomial cos 17, n) belonging to p(x) we have

lim1 E 1- P-a 7
n-ao n

1 419

where [a, #] denotes any fixed subinterval of [0, iS] .

If we want to secure uniform distribution with error-term, we require the
following Fejérian
THEOREM XIV. If for a matrix

Il,(x)I SD,

	

-15x5+1,

	

v=1,2, . . .n,

	

n=1,2, . . .,
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then for the elements of the nth row, coy tY, n ' (v = 1, 2,

	

n) and for any sub-
interval [a, 0] of [0, 9r] satisfying (t3 - a)n => c69(D, e) we have

1- ~
-a n

r

	

~r

V

< c7o(D, e) I(# - a)n I'+ ',

where we emphasize that e7o(D, e) is independent of a and ,B, too .
PROOF. Consider first the upper estimate . Let [a, ,#] be a fixed subinterval-

without loss of generality we may suppose f3 - a <= 4 -~~
a
n
J
= k and

assume

(75)

	

2 1 = k + l .

i

From a rightwards let us cut off k-times the distance A/n and leftwards [4l]-times
until we reach A, further from # rightwards also [4l]-times until we reach B ;

if a - 7r/n 0 or 3 + 7r/n [4l] >_ 7r, set A = 0, correspondingly B = 7r.
Let the points of division be rp, . Let further

(76)

	

G(X) _ II (x - COS ~pv) II' (x - COS rY„ n'),
µ

where 11' in the second product runs over the 0,n' lying outside of [a, 0] . In
this case G1(cos 6) is a pure cosine-polynomial, whose order <_ n - k - 1 +
k + 2[4l] < n - al. Then the distance of two consecutive roots of G1(cos 6) in
[A, B] is not greater than tr/n, i .e ., by lemma XI Gi(cos tY) takes its absolute
maximum outside of this interval, at a point tY = X, say. Let

(77)

	

F1(x) = Gi(x)T(}l)
\
-1 + 2 x - coS #

coy a - cos /'

where T1111(cos cp) = cos [il k. As the degree of F 1(x) is not greater, than
n - 4l, we represent Fl(x) by the Lagrange-interpolatory polynomial formed
upon the n1'' row of the matrix 5991 and obtain

n

F1(x) _- E Fi(x:n')l.(x)
i-1

(78)

	

I F1(cos A) I =

n

F, Fl(x, n) )l,(cos A)
V-1

= I E" Fi(x . n ')l,(cos A) 1,
r

where E" runs over integers, for which tY,' ) lies in [a, ~] . As for any 1 _<- v <- n

G1(cos A) I ? I G1(xr n' ) I ,



by (78) and the hypothesis we have

cos a - cos
T~itl -1 + 2

COS a - COS li
(79)

<D E

(82)

COS al - COS a2

ON INTERPOLATION . III

Y
«sv;~>s_d

Each term of the right-hand-side-sum is not greater than 1 and the number of
terms is less' than c71(D)k, i .e . by (79)

sin 81 sin
C
at

+ 81)
cos a2 - cos a3

	

2

	

2

2

	

2(sin - Sin a2 - -)

COS il, n) - COS
T[ l , -1 -f-2	

COSa-COS S)

549

(80)

	

T[pi

	

+ 2 cos x - cos 0 < c72(D) • k .(_i

	

Cos a - cos S

If A or B fall upon one of the borders of [0, ir] X cannot be there, thus from X it
may be assumed

min (IX -aI,Ia - $ I)

	

n[4]

Without loss of generality we may suppose X >_ S + [4l] 7r/n . Then we have

-

	

cos $ cos
	 (#	

+
7r [1)

(81)

	

-1 + 2 cos a -
CCos
OS$ > 1 + 2
	

COS a - cos 0
4

Suppose 0 <= a l < a2 < a3 -< In, a3 - a2 = 51 , a 2 - al = 62 ; then we obviously
have

sine	 2	82
> C73

52sin -
2

	

2)
sin 51 + -

CASE I. 1 >= k >= 20 . We apply (82) with al = a, a2 = $, a3 = a + L4l],r/n ;

then we have

S1? n(4 1) >= n(4 1)
>

5n > g 52

and

cos # - Cos
	 (P	+	 [	l	 I!)(83)

	

cos a - cos ~

	

74
	 n

> S2

	

k> ors > C75 •

As T,(x) increases monotonely for x > 1 and satisfies for p

(84)

	

T,(1 + p) > 4 (1 + /(2p))',

>_ 0 the inequality
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we have from (80), (81), (83) and (S4)

c,e < c72(D) k
1 < c77(D) log k

which together with k s l gives k 5 ka(D) .

CASE II. I < k, k ko(D) . In this case 61 < 4lir
n < 4n

kir < 4 and

cos I3 - cos ~~ +
	 n [4])

	

81 2

	

l

cos a - cos, #

	

- c78 (d2) > c79 (k)

2 .

From (90), (81) and (84) we have

2 / 1 + 2v/c7s k)
fill <-

Twww]
C
1 + 2C7s

(k)2)
< c 72(D)k

l < ow(D) (k log k)} . Q.e .d .

Let us now consider the lower estimate ; when again ~~ -
anJ

= k, let

(85)

	

1 = k - l .

Thus we have to estimate l from above . Now cut off from a to 0 leftward dis-

tances of the length n 1 + 10k _, , as many times as possible and rightward

[111-times until A' ; furthermore, from (3 rightward to 7r as many times, as possible
and leftwards [111-times until B'. As

2C
IIir la < ka 5 (3-a
4 n - 2n 2n - 2 '

we have A' < B'. We denote the points of division by 'pp . Let

(86)

	

G2(x) =

	

(x - cos

	

(x - cos 73K ° '),
M

	

R

where the second product refers to the t ' 's lying inside of [a,,8] . In this case
G2(cos t) is a pure cosine-polynomial of order

k-1+2C1~ {	na	 +	nGr - 13)
4

	

7r(1 + I kf')

	

7r! 1 + j0'i -')
< k.- l +

	

n

	

(7r - (fl - a))2
'r
C
1 + 10k")

< k - 2 + (7r(10k-' + 1))('r kn )
	n	10k'

	

k'+`

	

l

	

n

	

k'+'

	

l=n+ 10k4--'1+10ki-' + 10+k'-i 2<n-10k+-'+I+ 10 2



(89)

1

sin ,2

J F2 (cos AL I =
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Suppose that 1 > Skl+' is true ; then the order of G2(cos 6) would be

(87)

	

< n - 10k; + 1

and after lemma XI the place 6 = A, on which G2(cos 6) takes its absolute
maximum could be only in a root interval, whose length is

'	 1
degree of G2 (cos 6) > n Cl

	

10k*
-.) .

But on the outside of [A', B'] the distance of the consecutive roots of G2(cos 0)

is _<_ n
1 + lOk - ' ; so A could be only in [A', B'] . Without loss of generality

let 0 5 A 5 2; then we have for 0 5 4 5 7

cs1	
< I#-A1'

With this eel let M be the greatest odd number not exceeding 400 c81	
n

lOk}+' + 1

+1,N=2C
k

2' J800x81

1 sin M 62A N

	

sin
M*

2A
(88a)

	

¢ (cos z9) =
MN

	

r9 -}- A

	

+

	

6 - A
sin 2

	

sIn
6

and finally

(88b)

	

F2(x) = G2.(x)0(x) .

The degree of the polynomial ¢(x) is
M - 1 N < 200cs1n 0 = n <

2

	

10k}+' 400c81

	

20k'

	n	and according to (87) and (886) the degree of F2(x) is 5 n - 1, i .e .
10ki_ , + 1

n
E F2(x:' )l, (cos A)
V-1

1
-

sin

	

A
2

	 C81

< Ii - AI

"1
l

E' F2(x ;n')l, (cos A)
P

< D E' I F2(x,n' ) I,
r

the last two summations refer to the #,(n) 's lying outside of [a, F] . As I G2 (cos A)
~ I G2(x,(n ) ) I (v = 1, 2, • • • , n), we should have from (89)

(90)

	

14, (cos A) I < D E' I # (cos 6,1n)) I
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It is easy to see that

(Cos X) > 1,

	

14, (COs t0) I < 2
(

	 C81	

NM(t9 _ X) / '

and comparing this with (90) and with our theorem, we have

1 < 2D C81
N

Y (in1n,
	 1	M

	

(icn) - X)N

< 2D (cal	 1 	+	
N

	 1	+	1	 +
M

	

(IX - ~)

	

C827

	

0827N
a- 5n -Xa-2 5n -~ N

1

	

1

	

1

+(~-X)N+(~+ 82 -x)N+(+2r-x)~c5n

	

N+
. ,

Bur for 1 > c83 we have

Ix -aI>5n'

	

Ix -# I > 5n
and (91) gives k > cs4

(92) 1 < 4D cs,n

	

1 +	1

	

+

	

1

	

+ . .] < 4D localn N k
(5 )Na11I [IN

	

(1 + C82)N

	

(1 -{ 2cs2)N

	

C82 7rMl

further for l > ca we have

M > 40c81n

	

N > k2 .

0+.

	

800c81 '
which gives from (92)

4D

	

k +E N

	

4D

	

5 k2l/wce ,

1 <
C82 k (4al) < C82

k
(4a)

This means a contradiction for l > c8s (D, e) . Q.c .d .
THEOREM XV . If upon the matrix s9)

1k(X) I
<_ Cs7n` 88 ,

	

- 1 <_ x < + 1,

	

k = 1, 2, . . . , n,

	

n = 1, 2, . . .

then for any subinterval [a, ~] of [0, 7r]

1 - - a n < ces(cv, ces, E)n4+°•
Y

	

p
Q56 ()5Y

PROOF. It will be sufficient to prove that for any subinterval the upper
estimate holds, as in this case the respective application for the intervals [0, a]
and [,B, 7r] leads to

1-"n
r

	

'R
O~S~n)sa

< C8gn
3-fe



and respectively to

i .e.

if n(ft - a) > c92(p, e) .
INSTITUTE FOR ADVANCED STUDY, PRINCETON, N . J. ;

BUDAPEST, HUNGARY .

ON INTERPOLATION . III

	

553

F

	

7r
< c. n'"'

1=n- E 1- E 1> ~ -an-2csen~",
u

which establishes the lower estimate . The proof of the upper estimate is com-
pletely analogous to that applied in theorem XIV .

For a sequence of strongly normal polynomials, theorem XIV immediately
presents the uniform distribution of roots in [0, a] with the error-terms men-
tioned, but we do not state this in a separate theorem . For orthogonal poly-
nomials according to (50) and to the first remark appended to theorem VIII
we may state that if throughout [-1, +1] we have p(x) m > 0 and L-in-
tegrable, then

I

	

}

14W I < [ tr(t)dt] .n,m I

	

v = 1, 2, . . . n, n = 1, 2,	S_ x 5 +1,

or respectively, if in [-1, +1] is p(x) L-integrable and m <= p(x) -/(1 - x2) _<_ M
then

3
l'(x) 1 _<_ [cm M1

	

-1 < x
5555

..F1 , v = 1 , 2 , . . . n, n ° 1, 2, . .
m

Hence theorem XV and XIV are applicable and we obtain following two the-
orems :
THEOREM XVI . If the weight function is L-integrable and satisfies in [-1, +1]

p(x) Z m > 0 and the roots of the nth orthogonal polynomial are cos 6 ;" ) , then for
any [a, P] of [0, Ir] we have

1 - - a n < c9o(p, e)n*+
.

In
aSa ;">S~d

THEOREM XVII . If the weight function p(x) is L-integrable and satisfies in
[-1, +1] 0 < m <_ p(x) -/(1 - x2) <= M, then for the roots of the nth orthogonal
polynomial cos 6,(") and for any subinterval [a, $] of [0, ir] we have

< c9i(p, e) I(# - a)n]"
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