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In a previous paper I proved that the density of the positive integers of the form
P3+p3—aqi—q3, where the letters p, ¢, and later P, @, r, denote primes, is positive.
As indicated in the Introduction of I, I now give proofs of the following results:
The density of each of the sets of integers
4 4 2
pitpi-ph I p- X4 Zep (=il
18 positive. J

From a well-known result of Schnirelmannf, it follows that a constant ¢,
exists such that every integer is the sum of at most ¢, positive and negative lth powers
of primesi.

Throughout this paper n denotes a sufficiently large positive integer, § and ¢
sufficiently small positive numbers, ¢,, ¢,, ... and y positive numbers independent
of n. Also 0<y<1, and y is used as an exponent of n only in applications of
Lemma 2 of 1.

I

Lemma 1. Let f(x,y) = 27+ ... + ¥ be a polynomial in x and y of degree o with
tnteger coefficients all less than n in absolute value. Suppose that

a<l10logn, T[] (l +§)<c2,

pla

and let k be a positive number independent of n. Write

I (1+’§) if f(z,y) %0,

9, ¥) =1 g1 5z )
0 if fy)=o.

* “On the easier Waring problem for powers of primes. 1", Proc. Cambridge Phil. Soc.
33 (1937), 6. I shall refer to this paper as I.

t See, for example, E. Landau, Géttinger Nachr. (1930), 255-76, Satz 21,

i Vinogradov has reecently proved that every large number of the form 24k + 5 is the
sum of 5 squares of primes. See C.R. Acad. Sci. U.R.S.5. 16 (1937), 131-2.
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150 P. ErpGs
Then a constanl c4 exists such that
2= 2 glry,re) <75 (

MR
ré=rt{mod a)

where v(a) denotes the number of different prime factors of a.

nz av(a)
logn)? a

=

; 1\ k
Proof. From H(l-{-;:){ ]‘[(l+—) <ef
. pla P pla P
we obtain
k k 2(d) k@
y< 11(1+—) 3 1 (1+—)<c§’ b D "%.
»la P/ n<rsn q|firgr) q nEn=n 4| flr,r)
rmi=rd(moda) (g,a)=1 r*=ri{moda) (d, a)=1
g(rre)+#0 gl =0 (1)

If (a,d)=1, the number of solutions of the congruence f(z,y)=0 (modd)
with z*=y? (moda), 0<z, y<n, does not exceed 2"‘“’+2a""d)n(%+ 1). Suppose

now that d <n»t and (a, d)=1; then the number of solutions of the congruence
f(ry,75) =0 (mod d), 3 =73 (mod @), r; <7y <7 is not greater than
) + 2 gHied) 7 WagHd)  p2
om0 ) <*log % pldy it
since for fixed r; we obtain at most 2”@ +2g*@ possible residues (mod ad) for ryand,
by a result of Brun and Titchmarsh*, the number of primes not exceeding » and
congruent to z (mod ad) is not greater than

.
cﬁgﬁ(ad.) logn’
Thus by inverting the order of summation in (1) and using | f(z,y) | <c,n°* we
1 a a
pla p
ca%’( w pd) (ko) ® n? #4d) (ka)"“”ﬂ(ﬁJ, ]))
a d=1 d(logﬂ)z ¢(d) e Hi>d=nt d

obtain, by (2) and ¢(a) = a [] (l

pla

PIRS o

P@r n? ko ) wA(d) (ko )@ ( IuI)jI
+n? e e 1
s (log”)an( glg—1) v dgml d? +ﬂq<cE¢““ % q

It is well known that v(d) < o iortong 1g ggd’

thus (ko '@ < d¢ for sufficiently large d.
ko
Also T (1 +?) = O(N¢). Hence

g=N
220 gy 1 n? 2¥@
<c +m? +n(c,no ) | <cg— —,
S<es’y g™ B e | <o g

which proves the lemma
* E. C. Titchmarsh, Rendiconti Circ. mat. Palermo, 54 {1930), 416.
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Lemma 2. The number A of integers by, by, ..., b 4 not exceeding n having exactly
. " , n
] —_—,
different prime factors is not greater than ¢,, Wealoaal
Proof. By a result of Hardy and Ramanujan*, we have

A<, M (loglog n+¢4)t 7 (loglog 7 + ¢,4)108108 nters]
2logn ¢! Zlogn [oglogn+c,4]!

- n  elogloenicu(log log n + ¢y,)108 108 2oyl
¢
Ylogn [log log 7 + ¢4 108 108 n-+eys]

ﬂ 14 1 \ loglog n+c;y i
<5 (Jog log n)*( log logn+cla) = (oglogn)t’

Lemma 3. If A, denotes the number of integers b, which are multiples of d, then

logd 7

Aty (loglogn)?

Proof. The integers in question are evidently of the form dx with

t—v(d) <v(z)<t.

Thus, from Lemma 2 and from v(d) < ¢, ﬂ, we have
loglogd
n logd n
Az<cyvid) 7 <016 e
d (log isg :_;) d (loglog n)
'.‘?;2
Lemma 4. > owibi

b) .
vty P loglogn
Proof. Evidently

x n? 2 c}s(logd)? 2v@ n?
w(bs, b 2 9v(d) 16 .
b‘,zb, = :’nglAd <log10gnd=1 d? S loglogn

Lemma 5. With a suitable cyg, there exists a set of positive integers
cplogn<a,<a,<...<ap<10logn

with ] (l + i’l_)) < €qg, B >y logn, such that each of the equations Py, —Pi,= a; has
pla :

more than c s lutions in primes o K
18 (og n)? solutions in primes p; < o= o
The proof of this lemma follows immediately from the proof of Lemma 4 of 1.

* 5. Ramanujan, Collecled papers (Cambridge, 1927), pp. 262-75.
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152 P. Erpn0Os

LuMuma 6. There exists a set of positive inlegers ay, ay, ..., ag forming a subset
of the @’s of Lemma 5 such that all the a"s have exactly t prime factors, with
log, n — cos(logy m)t <t <logyn + csg(logs m)t,

Cy3 log

(logg n)t’
Proof. A result of Hardy and Ramanujan* states that for more than
(1—¢)10log n integers not exceeding 10logn the number of prime factors lies
between log,n— cys(logzn)t and loggn+cys(loggn)t, cg=cyy(€); thus for more
than B— 10elogn of the a’s the number of prime factors lies between the above
limits. Hence a ¢ exists such that the number of @’s having exactly # prime factors
is greater than

and

cyy B e log n
(logan)t ™ (logy m)t’

which implies the lemma.
Let a; be any integer of Lemma 6. Consider the sets of integers defined by

; P5,— 95,
where the p;’s are given by
; n
P, —P5, =% Py < %ng';% . (3)
A
Then B, 1}, = aiep, +aj) <gn-+ap <in

Now we prove

Lemma 7. Let p; be the primes given by (3), then the number of different integers
D not exceeding n of the form
2a;p; +a? +¢°
for any single a; is greater than
n_on
0252_,(&7;) = Cosgye
(These integers are evidently of the form p*—q®+r2.)
Proof. 1t is evidently sufficient to prove that the number D’ of different
integers of the form
2a;p;, +q% (logn)*<g<int, (4)

is greater than Cog g‘.

]
By Lemma 5 there are at least ¢, ﬂbﬁé values of p; and ';;Bg ”n values of ¢;

thus there are at least ¢y, ﬁwmtegers m, not necessarily all different, given by

)
2a; P5,+ [

* 8. Ramanujan, op. cit.
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Let A(m) denote the number of times m occurs. Clearly m <n and so

> Koy sog 2 5
i (M) o gy “
Almyz=0
n n?
We now prove that T AK M) < Cpg 2. 6
We denote by £ the number of solutions of
2a;p;, + 43 = 2a;p;, +43, (7)
with ¢;>¢,. Evidently 3 A%(m)=2E+ 3 A(m). (8)
m=1 m=1

First we estimate the number of solutions E(g,,q,) of (7) for fixed ¢, and g,.
We write (7) in the form
_96-df

D5, —DPj, = 5% (¢2=¢q2 (mod 2a})), (9)

and estimate the number of solutions of (9) by Brun’s methods. If p; <n?, there
is at most one value of p; for each p; , so that these p; give a contribution of at
most =7 to E(gy,gs). Suppose then that pj >p; >n”. Let P be an arbitrary prime
not exceeding n?, with P 1 2a}; then, by Lemma 5 and (9),

Pjg—o’ a{s 26&; ] a; 2(!; (mOdP):

and these four residues are all different if we assume P 1 f(¢,, ¢,), where

f41,92) = (B3 —43) (a2 + @3~ q3) (202 — g3+ 43).
(f(g1,92) #0, since ¢; #¢g, and (g3 —¢3) > (logn)® > 2a;%) Denote by £’(g;, g,) the

number of integers y < % for which
i

y#£0, —ay, T 7 (mod P),

for any of the primes P < n? not dividing 2z;. Then, by Lemma 2 of I,

Paua <" 1 (1-3)-

a; P<n?
P'rza';f(q‘\sQI}
Using the inequality l< (1 - ;’—J) (1 —%) (10)
for the primes P > 20 dividing 2a;f(¢,,gs), we have
CogT 5 4 Caq M ' 5
B , < 29’ (1+_) (]_ .._)< Taﬂ_ (1+_)‘
Wiy a; p| Sagl;(lqhq,l PJy <11}< nY¥ P ~alogn)p -J‘:!;.[u @) P

o 0 (1 4)< Ca®  ond II (1+%)< I (1+113)5ch0. (11)

20<= P<n? Pf (logn)4 Pig Pla;
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Now apply Lemma 1 with k=5, 0=6,

flz,y) = (@ —y?) (202 + 22— y?) 202 — 22 + ),
and replace n by int. We obtain

B nt 2@ n® o
wmarmaceap 8 < Corlog s o < % g mps
QhQS<hi
But E(gy:95) < B' (91, 42) + 77,

and so

n n
X A¥(m) =2+ 3 A(m)< 2 B(qy, q5) +n?
m=1 m=1 =g mod t2a;)
@, da<ink

2 2

n n
— ot 14y # e )
<Cgg (log n)? + RV 4+ 0 <Cgg (Iogﬂ)s

which proves (6).
By noting the elementary fact that the sum of the A’s being given the sum of
their squares will be a minimum when all the A’s are equal we obtain, by (5),

n C, ni 2 n3

2 ] e Lo N .
,El Aim) 2D (D'(log n)*) c”.D’(logn)a’
Alm)=£0

3 8
thus, by (6), D> e (logn) n

(log ) cpgn?2t — B30

which proves the lemma.

TuroreM 1. The density of the integers of the form p*+ q® —r? is positive.
Proof. The number of integers m for which

Tz

m = 2a;'p;, +a;l +q} = 207 pj, +al+ 4},

for given, unequal, a;, a;, is evidently less than the number of integers not

Ty
exceeding n which are quadratic residues both of @}, and of a],, i.e. less than
n o 21'(43;‘, a;’) n 2v(a;l, a;l)
2an;1_ a;l + a'l'1 a;, < 2 ovia; ) +v(ay) = 92t (12)

Consider now 2= of the a’s (7 an integer independent of »)

’

@iy iy s aig,_,.
For the number F of different integers of the form
2a; p;+ai+q®, (k=1,2,..,27)

we obtain from Lemma 7 and (12)

Cgs 2"(“31:1» “;:: )
F> n(?— p —gr—
Ry <l,<9i-T
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We now estimate > F=3Fr
LT T
We evidently have
[ C \e ey, 9 )
YF>a ( )_2_5 -2 ¥ D _,L___S.jl
- 23_"’ 21’ a‘;';’ a";al b ] aé,‘—f k<< 2T 22‘

T(C\e 1 (C-2 o]
= (2‘_’) 2 22i_1(2‘_7—2)¢<§:02 ) lf:I

= (2“") 2r _2_":(2"'—2)!».,2@2” i h’] ’
where by, by, ... denote the integers not exceeding 10logn having exactly !

different prime factors.
From Lemmas 4 and 6 we obtain

C\e 1 C-2
srod(£)3- (o]

o 625 2634 2#-—1'(2[——7 i 1} 2
Thus, finally, S F> n(Et—r) 97 24C(C—1) ]

C \(css Cas ¢
() (3 -5) > wnl
for sufficiently large 7.

Hence Max F >c44m,
a‘Elr a';',’a sees ﬂ'%’t—‘r

which proves the theorem.

We now prove that our theorem is best possible. We prove a stronger result,
namely that the density of the positive integers of the form m2— p?is 0. We give
only the outlines of the proof.

First we show that the number of integers & not exceeding » (not necessarily
all different) of the form m?2— p? lies between cg;7 and cggn, which at the same
time shows that our result is not quite trivial,

We have m2—p? = (m—p)(m+p)<n,
I n—e?
or, substituting m —p = e, p< 5
Th PN ala . i) 1
> > \
i /e§1 1W( 2e ) a§1 ﬂ'( ) Ca0 E , delogn > 8ok i
On the other hand, G< Z‘ ﬂ( )< “.E:]el en < CggM. (14)

* g and a) here run through the integers of Lemma 6.
T m(x) denotes the number of primes not exceeding x.
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We now state two lemmas.
Lemma 8. Denote by fy, fa, ... the integers not exceeding n having less than
Z log log n prime factors. Then
h ;: = o(log n).
Sketch of the proof. Evidently

1\2 1)\ [#1og log n}
1 C(zs) (=)
g | st D= N B L o
Dl m ot el ot Rloglogall
(loglogn +c4)*
<k€“°gmn——kl =~ = o(log n).

Lemva 9. The number of primes p not exceeding n for which 2p +e (e < }n) has

: . n
less than § log log n prime factors is o(log n) :

The proof is very similar to one given in the first part of my paper*: “On the
normal number of prime factors of p—1 and some related problems concerning
Euler’s ¢ function.” We omit the proof of the lemma because in spite of its being
rather long and complicated no idea is used not contained in the paper quoted.

TrEOREM 2. The density of the integers of the form m®—p?is 0,
Proof. We split the integers of the form
m2—p? = (m—p)(m+p) = e(2p+e)
into two classes. In the first class are all the integers for which e < in}, in the

second class all the others.
As in (14), the number of integers of the second class is not greater than

L () o op n
e=2§:n! w(g) <G, & elogn O(log n) =i,
so that it is sufficient to consider the integers of the first class.

Now split the integers of this first class into two groups. For the integers of
the first group the number of prime factors of ¢ is less than § log log #, the second
group contains all the other integers.

The number of integers in the first group, by (14) and Lemma 8, is less than

nt n int
m—)1<Cc = o|n
e§1 (6’ e c=El elogn "),
viey=%loglogn ve)stloglogn

which means that it is sufficient to consider the integers of the second group.

Finally we split the integers of the second group into two subgroups.
The first subgroup contains the integers for which 2p + e has less than § log log »
prime factors and the second one all the other integers.

* P. Erdds, Quart. J. Math. 6 (1935), 205-13.
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Replacing # in Lemma 9 by n/e we obtain for the number of integers of the
first subgroup the upper bound
int
> o( ) = o(n).
e=1
Thus we need only consider the integers of the second subgroup. But the number
of prime factors of the integers of this subgroup is not less than §loglog (n);
hence by a result of Hardy and Ramanujan*, the number of integers in it is o(n),
which completes the proof. This proof is very similar to the proofs used in
my papers: “Note on sequences of the integers no one of which is divisible by any
other”’t, and ““On the generalisation of a theorem of Besicovich™’}.

We could also obtain the stronger result: the number of integers not ex-

elogn

ceeding » which can be written in the form m?—p?is O(—n—-) s
(log n)ee

II

The proof used in this section is very similar to that of I. We require five
lemmas.

LemMa 10. For every positive € and 8 there exisls a cyy such that the number of

integers m not exceeding n with
1
=>4
Plzm P

P>ey
8 less than en.
Proof. For sufficiently large c,; we have
i 1 1 I’n] 1
5 = =| 5 |<n 55 < €O,
i PR P LR AP
>0

which establishes the lemma.

Lemma 11. Let @y <ay<...<a,<n, by<by<...<b,<n be two sets of positive
integers such that @, y >cyan; then a constant cys ewists such that, for at least two
integers a; and bj, (a;,b;) < cys.

Proof. The number of pairs such that (k,l)>cy, k,I<n is evidently not
greater than

2 2
d>zc.. ;le < g:—s <cini<ay

for sufficiently large cy5. This proves the lemma.

* 8. Ramanujan, op. cit.
+ J. London Math. Soc. 10 (1935), 126-8.
1 J. London Matk. Soc. 11 (1936), 92-8.
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Levma 12. There exist two positive integers oy and fy such that

(i) (a1 B1) < Cye

curlogn < oy, fy <c¢y5logm,

1 1
plll(l +ﬁ) 3 Qll_{r;(l - @) -

1 1
L =< a;
Jgjf e QQi' ¢
(ii) each of the equations
=p1—P» b=
has more than cg, i ; E solutions in primes p and q aatwfymg

P q (log n)3

Proof. From the proof of Lemma 4 of I we see that there exist at least c;,logn
integers g, satisfying the conditions

(i) ¢y logn < g; <eglogn,
1
1+ ——) < C493
PI]-L( 2 =
(ii) the number of solutions of g; = p, — p, with p, <5 ——— Tog L 7 is greater than
n
° log )’

By Lemma 10 it follows that at least (c5, —€)logn = c55log » integers satisfy
also the condition

1
=< 0.
P%&-P

P=ey

Hence, as in the proof of Lemma 4 of I, there exist among these integers two, say
a, and By, such that a, — 8, < %“—8 < €44, Whence
53
(001, 1) = (o1, (1 — 1)) S oty — By < Gy
which proves the lemma.

Lrmma 13. There exist two positive integers o, and f, such that

(i) (a1 Ba)s (as Br)s (s Ba) <54 (C5a>Cag),
cs5(logn)? < ay, By < cge(logn)?,

1 1
I1 (1+-1—,), 11 (1+—)<cm;
Plafatan) Q| Blia+89 Q
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(ii) each of the equations
% =P~ Pp Po=
has more than csg— Mo = soluumw in primes p,. p,, 4,, 4, satisfying

_pv_Pi’:pﬁ_p;b:al; QV_q;=ql,u_hg.’u=ﬂ1; P 4y <Cs1 (15)

Proof. Denote by ¥(x) the number of solutions of

.
(logn)*’

*=p,—p,
with p,, p, satisfying (15).
We first find a lower bound for

css(logn)®

Ve 2 e
zha
Split the interval (0 C51 o )3) into 1+|:05£%75 intervals each of length

¢s6(logn)? (except the first, whlch may be neglected) and containing ¥, ¥, ...
primes p, respectively. Then, taking in each subinterval any two primes p, whose
difference is not equal to «;, we have

2> Y3+ YR+ — 20— 2

Now by Lemma 12, and Lemma 3 of I, we have*

n
(10g n)5 ¢1+'ﬁ2 . >C!SB (10g n)ﬁ'

Further, if the sum of the ¢’s is given, the sum of their squares is a minimum
when all the ’s are equal. Hence by taking

/[ G5y 1 :I > 050‘956'
Vi = o {log (] ¢se(log )’ 51

c2,c8 Cs n n

. 2 > 550%6 st | .

woobtain  2p> | e | -2 s> o g (16)
for sufficiently large cg.
On the other hand, we now prove that, for z#a,,
n 5

X)<Cgp 1+=]). 17

V(@) <Cer (log n)7PI:v(1x_'I—u1*)( P) (17)

* For it follows from Lemma 3 of I that the number of solutions of &, =p;—p, with

< s is less than
Fa 1 (log n)?

e, i ( 1 + 1_) < _ti;
% (log 1ra,)'-"1c>l|—[m1 P T (logn)®
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We estimate yr(x) by Brun’s method. Suppose that p, in (15) is greater than
n?, and let R be an arbitrary prime not exceeding #n” with R+ a,. Then evidently,

by (15), P70, @, oy, x+a; (mod R).

These four residues are all different if we assume that P {x(x?—a2). Denote by

: n :
¥(x) the number of integers m < 5, Tognp®’ for which

m#0, x, ay, x+a, (mod R)
for any of the primes R <n? not dividing ;. Then, by Lemma 2 of I,
! n 4 .
Vo <on s L, (1-7):
-R'rﬂlﬂm’— ;%)
further, by (11) and Lemma 12, we have

’ n 5
V'@ <o liogay pdl m(l +?) :

: b
But evidently  ir(x) <¢/(z) +n? < g, ﬁg)? - (1;[ )(1 + ?) ;
alrt—o® /

which proves (17).

Consider first the values of x for which [] (1 +é) >¢5;. Then from
Pla@-an\ L
Lemma 1 of I, on puttingr = 3, k = 5,2, = 0, %, = a, 3 = — and replacing n by

cse(logn)?, we obtain

n
T)<6——.
1€Gu§8ﬂ)'¢( ) (logn)®
Ty
O (1+56/P)>cy
P | (@~ ")
Hence, from (16),
3 @) > (=€) s = Gy (18)
z<ewllogn) o (logn)s o (logn)>
Ty
O (1+5/P)<ey
Pla(@i—ar?)
. T
Noting from (17) that, for these @, ¥(x) < cgq {Togn)”’ we have
TY(2) > (Cos — Cs5Cs — Cs6 Cos) Tz = Corim—s  (Cgr>0),  (19)
55 ~66 56 58 (logn)"’ a7 (logn)'} 67 H

for sufficiently small ¢;5 and ¢y, where the summation is extended over the
z satisfying

cs(logn)? < <ege(logn)?,  Yr(x) > cgg(log n)?, 11 (1 + Ti) <z (20)
P a(z*—a,?) :
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Thus there must clearly be at least % (logn)? = cgg(logn)? terms in the sum (19).
a6
But by Lemma 12, for ¢gy > ¢4,

1
> 5<é
f’JaIP ’
P<ey

so that the number of integers # not exceeding c,4(logn)? for which (x, o) > ¢;,
does not exceed Houm)
Css 2 I: J2 T]<3‘353(108 n)2.

Pla;
Px>ey

Thus by Lemma 12 there exist at least

(ces — Ocgg) (log m)? = cgy(logm)?

integers x satisfying (20) and also (o, z) < ¢5,.
Similarly, denoting by ¢(y) the number of solutions of

y= QP_q‘u
satisfying (15), we find that there are at least cgy(log n)? integers y with (y, 8,) < c5,
such that
5 n
ce(log n)2 <y < css(logn)?, (1+—)<c i >Ca——a. (21
mllognf*<y<tuflognlt, T \1+p|<tm 0)>umm- (31)

Thus by Lemma (11) there exist two integers o, and S, satisfying (20), (21)
and (ala 482): (%!ﬂ])! (“2:/5'2){05@ which proves Lemma 13.

LeEMMA 14. There exist four positive integers oy, &, [y, £ sSuch that
(i) ey logn <oy, fy<cgglogm, cg(logn)® <y, fp < cye(log n)?,

(o129, B182) < €205

144

1
11 (1+j~J Q) <€y,

Pleiasdon-tes )’ Q Iﬂ:ﬁs(ﬂ:+£.)(
(ii) the number of solutions of the equations

— = 0y, —_ = § —_ = & +“,
P1—Pe 1 P1—Ps=0 P1—Ps= z} (22)

G—%=P1 h—%="F H—%=/F P

ts not less tham cgg m wn primes p and q satisfying

n
P2 gy

The lemma follows immediately by choosing for «,, a,, f;, f, the integers of
Lemmas 12 and 13.
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TuroreM 3. The density of the positive integers of the form §] p3— E} g3 is
positive. = =
Proof. Let oy, o, fiy, fa be the integers of Lemma 14. Consider the two sets
of integers defined by
Pi—pi—pi+pl, A-B-6+a
where the p’s and ¢’s are given by Lemma 14.

Then
P —p3— PR+ P} = 6o 0y Py + B0y Ay + &) < 6645C55C5 1A Cop(log m)t < G,
and similarly G- —ad+g<in

for sufficiently small ¢;,.

Since there are at least cgg ﬁ-c'g—?;)? values for each of p, and g,, there are at

2
least ¢Z ﬁ integers m, not necessarily all different, given by

6oty oty py + 618294 = m. (23)

Let A;(m) denote the number of times which m occurs. Clearly m <=, and so
n 8

Y Am) ety

mh=‘1 1( ) Csg (log n)u

We estimate A;(m), as in the proof of Theorem 1 of I, by Brun’'s method. If
py<m? there is at most one value of ¢, for each p,, and similarly if ¢ <m?. Sup-
pose then that p,,q, >m?. Let R be an arbitrary prime not exceeding m? with

R+ 60cycy 1 Bty + og) (By+ Pa)-

m m 2
Then PaFEO0, —oy, —ay, —ay—ay, 6oy ory’ 6051052+£:£:,

= m +ﬁ1ﬁ§’ m _I_ﬁlﬁz(ﬁl‘i'ﬂz) (mod R),
X0y G0y Bayay &1 &g
by (28) and (24). These eight residues are all different if we assume that Rt f(m),
where
f(m) = m(m + Baay) (m + 62y o) [(m + 6t agler; +tp)] (m+ 651 5)
X (m+ 6483 B, + 6ata,) (m + 653 B, + 6o, of) [(m + 651 B, + 6oy oty(a; + 2t5) ]
x (m+ 64, f3) (m+ 6/ f5 + 6afs) (m + 6, f5 + 62y af)
% [m+ 68, f3+ 60y ota(oty + 0ta)] [m+ 68, Bol B+ Fe)]
X [+ 64, Ba( By + Ba) + 6afog] [m + 64, Bo( By + fo) + 6y 4]
X [m+ 681 By(f1+ Ba) + 6oy ag(ty + a3)].
(Evidently f(m)#0.)

(24)
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Denote by Ay(m) the number of integers x < for which

m
6oy oy
m m +ﬁ%ﬁs
ba,a,’ 6aja, aya,’

2
m +131482, m +ﬂ1ﬂz(ﬁ1 +£s) (mod R)
Gogoy Oy Bog oty Oy Uy
for any of the primes R <m?” not dividing 6o, oty £, Ba(ay + ot5) (81 + B5) f(m), and
also for which m—6oya,=0 (mod 68, 4,),

so that  may be one of (x, a,, f, f,) different residues (mod g, 4,). By Lemma 2
L G NA - (1 8 ) :

Ap(m) < cam
7 By a1 f R<m? R
R A Gotyog(as+as)(fi+ fa) flm)

AV 8
1<(1+§)(1u§), R>72,
for the primes R>72 dividing 6o, 0,0, f(c + ) (f;+ 8s) f(m) we have, by
Lemma 14,

x7_é0‘! _al: _az: _al_aw

On using the inequality

Cq M ( 9) ( E) m ( 9)

m)<— 1+ 1—=) <€p—ms 1+=].

Aa(m) alazﬁlﬂlel;{m) R 72<RH<m?’ R . (logm)“ml;{m) . R
Now apply Lemma 1 of I with k=9, r=16, f(z)=f(m). We obtain

2

1'&_‘ n
mélﬁ.g(m) < 67(10g e

II (1+9/R)=cn
R f(m)

But Ay(m) < Ag(m)+ 2m?,

d 5 A o roivrsen
anda so m§1 1(m)<W+ ¥ L €W.

II (149/R)>¢p
R | f(m)

Hence from (24), (25) and by choice of a suitable ¢,

(25)

n % . 9 n2 n2
> —_ —_— . —_— A
ﬂEl l(m) =1 (058 6) (lognJ” >Cq7 {lOg ﬂ)n' (26)

II (1+9/R)<cn
B f(m)

But for the m in (26) we have

Ay(m) <c

n
Ag(m) < €75C74 (

log )4’ % (log n)'4’

; n n
hence in (26) at least ¢4, W/c.,s (logn)te = CyN
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of the A;(m) are not zero. Hence also there must be at least c,yn integers of the

form 62y cta g+ 61 faqa+ 3oty da(ay + o) + 351 Ba(By + fa)-

These integers are obviously less than » and are of the form
pi-pi-p3+pit+ai—a3—-ai+ai,

which proves Theorem 3.

111

The proof of Theorem 4 is very much more complicated than that of Theorem
3, but since no new idea is applied we do not give the details,
We require here the following analogue of Lemma 14:

LeMma 15. There exist 21 — 2 integers oy, oy, ..., &_y, B, Pos --.s fi_y such that
(i) cgologm<ory, fy<cg logn, cg(logn)?<ay, f,<cgllogn)? ...,

cgollogn)? ™t <oy_y, fr_y < cgy(logn)?~*

1
IT (1 + ?) <Cga>
P |ttty i1 II (@itay) 11 (ei+aj+ar). (ot ast ... +ar—y)
1<i<i<i—1 1<i<j<k<i-1
1
and I+ 0 <Cgs
Q| fify... i1 II (Bi+ 57) II (Bit Bi+fe)e o (Brtfut oot fi—y)
1<i<j<i—1 1<i<j<k<l—1

(i) the number of primes p and g not exceeding Cgy HE:;FG Jor which the
integers
s P'}'ai: ?"‘ai“‘“j (3’!.?‘_‘ 1’ 2: "‘sz_ 1)) seey P+‘x1+a2+ +a£—1:

g ¢+B8p q+Pi+F; (,j=1,2,..,1=1), .., g+ 1+ Ba+... + By

n

are all primes is greater than cg, (log—n)_ﬂfl o

We omit the proof since it is similar to that of Lemma 14.

TaEOREM 4. The density of the positive integers of the form

B
Y epi+ X 64
i=1 i=1

28 positive.
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Consider the integers of the form

a

(P+ag+ag+...+o ) — > (pHay, +or,+ ..o +ay )
151 <fg<...<ip-a=i—1

* z (pto+ .t ay f =+ (= 1P

1<t <ty<...<fj—,=l-1
=logag... 0 1 P +J(ay, &g, ooy ) <Ulehi eggn 4 [0y, g, .. 04 1) < 3m,
(g+br+ ot +B)—  Z g+ B+ B+ -8y )
1S <iy<...<ij_g=i—1

+ p3 g+l + - By Y — .+ (= 1)¢

1€t << .. <fj_<I—

165

F(27)

=U B Bowe Biaqd +F(Brs Boy s Bra) <Ulegi cgan+f(Brs Bas -5 fis) < A, )

for sufficienitly small ¢g5. (9, g, ;, f; are the integers of Lemma 15, which
that the 211 terms on the left side of (27) are all primes and that f(x,, a,,
is a polynomial.)

implies
ey ®g)

We now obtain by the method used in § 2 (Brun’s method) that the number

of integers not exceeding z of the form

&y PPl Prag
is greater than cg;n. This proves Theorem 4.
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