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In a previous paper I proved that the density of the positive integers of the form 
& +pZj - qf - q& where the letters p, q, and later P, &, T, denote primes, is positive. 
As indicated in the Introduction of I, I now give proofs of the following results: 

The density of each of the sets of integers 

P?-tPE-Pi, i,Pf - ,il $3 Vil eppt (%= * 1) 

is positive. 
From a well-known result of Schnirelmannj-, it follows that a constant cl, 

exists such that every integer is the sum oj at most cl positive and negative lth powers 
of primes 5. 

Throughout this paper n denotes a sufficiently large positive integer, 6 and E 
sufficiently small positive numbers, cr, c2, . I. and y positive numbers independent 
of n,. Also 0 < y < 1, and y is used as an exponent of n only in applications of 
Lemma 2 of I. 

I 

LEMMA 1. Let f(x, y) = xv -+- . . . -I- y” be a polynomial in x and y of degree c with 
integer coeficients all less than n in absolute value. Suppose that 

a< lOlogn, 

and let k be a positive number independent of n. Write 

dX,Y) = 
I-I (If;) if f@,Y)#O> 

nlf(z,lh 

0 if f(x,y)=O. 

* “On the easier Waring problem for powers of primes. I “, Proc. Cambridge Phil. SOC. 
33 (1937), 6. I shall refer to this paper as I. 

7 See, for example, E. Landau, GGttinger Nachr. (1930), 255-76, Satz 21. 
$ Vinogradov has recently proved that every large number of the form 24k+ 5 is the 

sum of 5 squares of primes. See C.R. Acad. Sci. U.R.S.S. 16 (1937), 131-2. 
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Then a constant c3 exists such that 

c= c 
r,<r,<7L 

where u(a) denotes the number of different prime factors of a. 

Proof. From 

we obtain 

t-,*=+s*(mod a) (q, a)= 1 ?,*=rsz(mod a) (d, a)= 1 
c7w,r,)#o cew-~) # 0 

(1) 

If (a, d) = 1, the number of solutions of the congruence f(x, y) E 0 (modd) 

with x2 s y2 (moda), 0 6 x, y < n, does not exceed Z”(~)+W(‘% . Suppose 

now that cl < n* and (a, d) = 1; then the number of solutions of the congruence 
f(r,,r,)=O (modd), r$rri (m o d ) a , rl < r2 f n is not greater than 

p(a) + 2@(d) 

c4 (log?%)2 n(&+l)ic5$$$ti&, (2) 

since for fixed rl we obtain at most 2V(a)+ W(~ possible residues (mod ad) for rz and, 
by a result of Brun and Titchmarsh *, the number of primes not exceeding n and 
congruent to x (modad) is not greater than 

‘~5 Q(adT;og n* 

Thus by inverting the order of summation in (1) and using 1 f(x, y) 1 < c,ng+l we 

obtain, by (2) and #(a) = aza( 1 -a, 2 a 

C8 2da) 
cc,- 

~2’ p2(d) (ka)Y(d) n2 

El d(logn)2 &@j+c,nr+zd,nt 

It is well known that v(d) < cg 
logd 

___ ; thus (kc+@) < d” for sufficiently large d. 
log log d 

= O(W). Hence 

2v(a) 
r, < c8T- [ 

Cl0 n2 1 
(log n)” +n2d~n+d2+n(c7n~+l)s --3(logn)z, 1 

n2 2dd 
which proves the lemma. 

* E. C. Tit&marsh, Rendiconti Circ. mat. Palermo, 54 (1930), 416. 
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LEMMA 2. The number A of integers b,, b,, I .*, b, not exceeding n having exactly 

t different prime factors is not greater than, 
n c 

l1 (log log n)+ * 
Proof. By a, result of Hardy and Ramanujan*, we have 

n (loglogn+c,,)t 
A<clalogn 

n (log log n + c13)~og10gn+cl~l 
t! < ‘12 log n [log log n + c13] ! 

* 

< ‘1410g n 
elOg log n+%(log log n f c13)POg lOg~+%l 

[log log n + c,,][l”g log n+%sl 

n 
l-l- 

1 log log n+q, 

iC15(loglogn)~ log log ?a + $3 

LEMMA 3. If A, denotes the number of integers b, which are multiples of d, then 

Ad&y (log;gn)t * 
Proof. The integers in question are evidently of the form dx with 

t - v(d) < v(x) < t. 

Thus, from Lemma 2 and from y(d) CC 
log d 

~ 
‘loglogd’ 

we have 

LEMMA 4. 

Proof, Evidently 

LEMMA 5. With a suitable c18, there exists a set of positive integers 

c,,logn<a,<az< . . . <a+ 1Ologn 

B > cS1 log n, such that each of the equations piI -pi2 = ai has 

mO+‘e thiZn C18(lo;n~3 
n 

solutions in primes pi < ~ 6010gn’ 

The proof of this lemma follows immediately from the proof of Lemma 4 of I. 

* S. Ramanujan, Collected papers (Cambridge, 1927), pp. 262-75. 
10-z 
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LEMMA 6. There exists a set of positive integers a;, a;, . . . , a& forming a subset 
of the a’s of Lemma 5 such that all the a'% have exactly t prime factors, with 

log, n - c&log, n)+ < t < log, n + c,,(log,n)a, 

c23 1% n 
’ ’ (log, n)+ ’ 

Proof. A result of Hardy and Ramanujan” states that for more than 
(1 -E) 10 log n integers not exceeding 10 logn the number of prime factors lies 
between log, n - czz(log, n)* and log, n -t- cz2(log3 n)t, c22 = C&E) ; thus for more 
than B - 10s log n of the a’s the number of prime factors lies between the above 
limits. Hence a t exists such that the number of a’s having exactly t prime factors 
is greater than 

‘23 log n 
(1Z~3f)* > (log, n)*’ 

which implies the lemma. 
Let a; be any integer of Lemma 6. Consider the sets of integers defined by 

where the pj’~ are given by 
P31 -P& 

Pjl -Pj, = 4, pj, -c ---?--- . 60 log n (3) 

Then 

Now we prove 

~3~--p5~ = a~(2p~p+a3<+n+a~2<+n. 

LEMMA 7. Let pj, be the primes given by (3) ; then the number of different integers 
D not exceeding n of the form 

for any single ai is greater than 
2a;pj, + a;” + qz 

n n 
c25 2”(f4) - = c25i2- 

(These integers are evidently of the form p2 - q2 + r2.) 
Proof. It is evidently sufficient to prove that the number D’ of different 

integers of the form 
24pj, + q2, (log n)3 < q < &a*, (4) 

is greater than 
n 

‘25 51. 

By Lemma 5 there are at least c c2& ~ 
15(10in)3 

values of pj, and ~ 
log n 

values of p ; 

n* 
thus there are at least ca7 (log n)4 ____ integers m, not necessarily all different, given by 

2&J ja -I- q2. 

* 6. Ramanujan, op. cit. 
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Let A(m) denote the number of times m occurs. Clearly m < n and so 
It n+ 

Iz h(m) 2 c27 (log n)4’ 
m=‘i 

A(rn)#O 

(5) 

We now prove that 
n n2 
C AZ(m) < c28 2t-. 

(log n)” 
(f-3) 

m=l 

We denote by E the number of solutions of 

2a;pj2 + qy = 2a;piz + & 

with qz > ql. Evidently 2 AZ(m) = 2E+m$lA(m). 
m=l 

(7) 

(8) 

First we estimate the number of solutions E&q,) of (7) for fixed q1 and q2. 
We write (7) in the form 

G-IT? __ p;g-pjl = cJa; (q! = qi (mod 2a;)), (9) 

and estimate the number of solutions of (9) by Brun’s methods. If 21j, < nr, there 
is at most one value of pi, for each ~j,, so that these ~j’jl give a contribution of at 
most nr to E(p,, a2). Suppose then that pi, > ~j3je > ny. Let P be an arbitrary prime 
not exceeding G’, with P 7 2a; ; then, by Lemma 5 and (Q), 

pjz = 0, -a;, &-a? -~ 
2a; ’ 

-ai-‘g (modP), 
i 

and these four residues are all different if we assume P ff(ql, a2), where 

fh n2) = (8 - rr?) Wi2 -t- rrt - q3 IW - a”z + &)- 

(f(s;, p2) # 0, since ql # q2 and (qi - qf) > (log n)3 > 2ai2.) Denote by E’(p;, 4r2) the 

number of integers y < $, for which 
I  

@i-q? ~$0, -a;, -2a', -a! z - ‘9 (mod P), 
i 7, 

for any of the primes P < nY not dividing 2a;. Then, by Lemma 2 of I, 

Using the inequality l<(l+;)(l-.g (10) 

for the primes P > 20 dividing 2ay(ql, qz), we have 
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Now apply Lemma 1 with k = 5, v = 6, 

f&y) = (x2-y2)(2a;2+x2-y2)(2a;2-x2$y2), 

and replace n by +n*. We obtain 

But 
and so 

r, 
n2 2Ybq 

E'(!h, (r2) < c32 (log n),j a;2 < 
n2 

c 
q~P=&nod(2a;) 33 (log n)8 2"' 

41, Q-= ta* 
-Wh q21 G -Wh ~7~) + n% 

n2 
2’f d+’ f na < $8 

which proves (6). 
By noting the elementary fact that the sum of the h’s being given the sum of 

their squares will be a minimum when all the A’s are equal we obtain, by (5), 

thus, by P), 

which proves the lemma. 

Dr, c2,n3 &w-Q8 n ~~ = c2551' (log n)8 c2s n2 21 

THEOREM 1. The density of the integers of the form pQ -I- q2 - ~2 is positive. 
Proof. The number of integers m for which 

m = 2a;FpjS + a;,” + q: = 2a;fp;1 + aif + q& 

for given, unequal, a& a;,, is evidently less than the number of integers not 
exceeding n which are quadratic residues both of ail and of a&, i.e. less than 

Consider now 2t-7 of the a’s (T an integer independent of n) 

ai,, ai2, *.., a&.7. 

For the number P of different integers of the form 

2ai,pj + (1;: + q2, (E = 1,2, . . . ,29 

we obtain from Lemma 7 and (12) 

(12) 
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We now estimate 3, F=EF. 
a: a. 

We evidently have 
zll 2%) -.-P ai8L--7 

where b,, b,, . . . denote the integers not exceeding 1Ologn having exactly 1 
different prime factors. 

Prom Lemmas 4 and 6 we obtain 

Thus, finally, 

for sufficiently large 7. 
Hence Max F 

a! at ’ 
2 cs6n, 

ql, 2%’ . . . . aiy 
which proves the theorem. 

We now prove that our theorem is best possible. We prove a stronger result, 
namely that the density of the positive integers of the form m2 -p2 is 0. We give 
only the outlines of the proof. 

First we show that the number of integers G not exceeding n (not necessarily 
all different) of the form nt2-p2 lies between c3,n and cS8n, which at the same 
time shows that our result is not quite trivial. 

We have m2-p2 = (m-p) (m-t-p)<n, 

or, substituting m-p = e, 
n-8 

PGx* 

Thus? 

* a,’ md a; here run through the integers of Lemma, 6. 
7 r(t) denotes the number of primes not exceeding 2. 
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We now state two lemmas. 

LEMMA 8. Denote by fi, f2, . . . the integers not exceedirq n having less than 
Q log log n prime factors. Then 

Sketch of the proof. Evidently 

< 22 (1% log n + c4Jk = o(log n) 
k~Etloglogn k! 

LEMMA 9. The number of primes p not exceeding n for which 2p + e (e -c in) has 

less than $ log log n prime factor5 is 0 -?- 
( 1 log n 

. 

The proof is very similar to one given in the first part of my paper*: “On the 
normal number of prime factors of p - 1 and some related problems concerning 
Euler’s # function.” We omit the proof of the lemma because in spite of its being 
rather long and complicated no idea is used not contained in the paper quoted. 

THEOREM 2. The density of the integers of the form m2 -p2 is 0. 
Proof. We split the integers of the form 

m2-p2 = (m-p)(m+p) = e(2p+e) 

into two classes. In the first class are all the integers for which e < &a*, in the 
second class all the others. 

As in (14), the number of integers of the second class is not greater than 
d n 

= c-1 
7r 

e=tn* e 
KC40 

g "-=oL@ 
,+telogn ( 1 

= o(n), 

so that it is sufficient to consider the integers of the first class. 
Now split the integers of this first class into two groups. For the integers of 

the first group the number of prime factors of e is less than 5 log log n, the second 
group contains all the other integers. 

The number of integers in the fist group, by (14) and Lemma 8, is less than 
-Qn’ 
c 27; <c4o x 

e=1 0 

tn* 
n= 

e=l elogn o(n), 
v(e)4tloglogn v(e)$*loglogn 

which means that it is sufficient to consider the integers of the second group. 
Finally we split the integers of the second group into two subgroups. 

The first subgroup contains the integers for which 2p f e has less than 8 log log n 
prime factors and the second one all the other integers. 

* P. ErdBs, Quart. J. Math. 6 (1935), 205-13. 
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Replacing n in Lemma 9 by n/e we obtain for the number of integers of the 
tist subgroup the ,upper bound 

$(“) = o(n). elogn 

Thus we need only consider the integers of the second subgroup. But the number 
of prime factors of the integers of this subgroup is not less than *log log (n); 
hence by a result of Hardy and Ramanujan *, the number of integers in it is o(n), 
which completes the proof. This proof is very similar to the proofs used in 
my papers. a “Note on sequences of the integers no one of which is divisible by any 
other “t, and “On the generalisation of a theorem of Besicovich “$. 

We could also obtain the stronger result: the number of integers not ex- 

ceeding n which can be written in the form m2-p2 is 0 

II 

The proof used in this section is very similar to that of I. We require five 
lemmas. 

LEMMA 10. For every positive e and 6 there exists a ch3 such that the mmber of 
integers m not exceeding n with 

I; ;>a 
Plm 
P>c, 

is less than en. 

Proof. For sufficiently large caa we have 

which establishes the lemma. 

LEMMA 11. Let a,ca,< . ..<a.<n, b,<b,< . . . <b,<n be two sets of positive 
integers such that x, y >.cJan; then a constant c,, exists such thut, for at least two 
integers a, and b,, (ai, bj) < ~4~. 

Proof. The number of pairs such that (k, I) >cp5, k, I < n is evidently not 
greater than 

dg ~c~c:c~,n2ixy 
46 

for sufficiently large cJ5. This proves the lemma. 

* S, Ramanujan, op. cit. 
p J. L0vz.do-n Math. Sot. 10 (1935), 126-8. 
$ J. London Math. Sot. 11 (1936), 92-8. 
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LEMMA 12. There exist two positive integers aI and /I1 such that 

(4 @l~/hkC46~ 

c47 log n < q, Pl < ca log n, 

(ii) each of the equations 

%=i%-Pa9 Pl=Pl-P, 

n 
has more than cm IlOg nj5 5olution.s in pknes p and q satisfying 

P, q< c51(lo;n)3. 

Proof. From the proof of Lemma 4 of I we see that there exist at least c52 log n 
integers gi satisfying the conditions 

0) cp7 log n < gi < cb8 log n, 

pl,(l++49; 
I  

(ii) 
n 

the number of solutions of gi = pi -p2 with p1 < cSl h3 is greater than 

-* 
c50 (log n)3 

By Lemma 10 it follows that at least (c52 - E) log n = cE3 log n integer5 satisfy 
also the condition 

2 &6. 
p I si P=-cm 

Hence, as in the proof of Lemma 4 of I, there exist among these integers two, say 

c~i and pi, such that a, -pi 6 z < c46, whence 

h Pl) = h @1- Bl)) G al- A< %63 
which proves the lemma. 

LEMMA 13. There exist two positive in&gem a2 and ,!!I2 such that 

(9 (%Pab @2r/u (cc,, Pa) cc54 (C54'C43)J 

c55(10g nJ2 < % p2 < %6(l”g n)‘, 
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(ii) each of the equatiw 

“2 = Pv-Pp A = CL-Pp 
n 

has more than cS8 (lOg *), solution8 in prime8 p,, pp, qv, qp satisfying 

plv-p; = p/&-p; = “1; qv-!I; = &i--q; = I% 

Proof. Denote by +(x) the number of solutions of 

x = Pv-Pp 
with pV, pP satisfying (15). 

We first find a lower bound for 

Split the interval 0,~ Li(&3) into I + [c,,!~~~n)S] intervals each of length 

c&log n)2 (except the first, which may be neglected) and containing 1//-r, $a, . . . 
primesp, respectively. Then, taking in each subinterval any two primesp, whose 
difference is not equal to al, we have 

211r~~~+1CF~f...-2~,-2~,- .,.. 

Now by Lemma 12, and Lemma 3 of I, we have* 

n 
----->@~S$~t...>C 

n 
c5B (log n)5 5*(logn)“’ 

Further, if the aum of the @‘s is given, the sum of their squares is a minimum 
when all the $‘s are equal. Hence by taking 

we obtain 

for sufficiently large cs6. 
On the other hand, we now prove that, for z # cci, 

(16) 

(17) 

* For it follows from Lemma 3 of I that the number of solutions of al=p~-p), with 

is less than 
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We estimate p(x) by Brun’s method. Suppose that pV in (15) is greater than 
ny, and let R be an arbitrary prime not exceeding ny with R f al, Then evidently, 

These four residues are all different if we assume that P-r+?- at). Denote by 

$(x) the number of integers M < c 
n 

61 ___ for which (log ?%)a ’ 

m$O, x, al, xf a1 (mod R) 

for any of the primes R < ny not dividing al. Then, by Lemma 2 of I, 

further, by (1’1) and Lemma 12, we have 

which proves (17). 

Consider first the values of x for which P,rgral’)(l+;)‘~57* Then from 

Lemma 1 of I, onputtingr = 3, k = 5, x1 = 0, C.Q = a, x3 = -a and replacing n by 
cas(log TT,)~, we obtain 

x<C&&I~(“)<E&~ . 
z+a, 

II 
p I ti*- ai’) 

(1+5/m>c‘s 

Hence, from (16) 
n 

Iz lw+(G31-q&p= c -* 
zCc,dlogn)’ 65 (log n)5 w 

we have 

W(x) > CC65 - C5SC66 - C56C58) & = C67 (j&y7 CC67 > Oh (19) 

for sufficiently small cs5 and cs8, where the summation is extended over the 
x satisfying 

%5(1% %I2 < x < %dlog nJ2, $(x) > c&log n)2, p,ti~~a,*)(l+;)<%7= (20) 
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Thus there must elearly be at least 2 (log n)2 = css(log n)” terms in the sum (19). 

But by Lemma 12, for c5* > c4a, 

c ;<s, 
I’lw 
p< c.4 

so that the number of integers x not exceeding css(log n)2 for which (x, q) > cbl 
does not exceed 

Thus by Lemma 12 there exist at least 

Ok3 - &,) (log n)” = css(log n)2 

integers 2 satisfying (20) ‘and alao (a,, x) < c5*. 
Similarly, denoting by #(y) the number of solutions of 

Y = CL-P, 

satisfying (M), we find that there are at least c,,(log n)2 integers y with (y, ,!3r) < cs4 
such that 

c&g nj2 < Y < c564og nj2, ply(I~-B,‘)(1++%7r 16W68&. (21) 

Thus by Lemma (11) there exist two integers a, and p2 satisfying (20), (21) 
and (q, p2), (dZ, PI), (dZ, p2) < cs4, which proves Lemma 13. 

LEMMA 14. There exist four positive integers a,, a2, ,&, p2 such that 

0) ck7 log n < al, B1 < caa log n, c&g N2 < a2, P2 < cdlog nj2, 

@,~2,/w2B,) -=c70, 

l-I ( 1 1+;, II 
( 1 

1+J <c,,; 
PI =i~r(al+~*) Q I ACI(A+B~) Q 

(ii) the number of solutions of the equutirms 

pl -p2 = aIt p1-p3 = a2, P,-P~ = ad- 012, 

P1-q2 =A !h-!73 =t423 !h-ph =P1+P2, 

n 
is not less than c65 (log n)4 in primes p ud q satisfying 

?w%l(10~n)8. 

(22) 

The lemma follows immediately by choosing for al, a2, pl, p2 the integers of 
Lemmas 12 and 13. 
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THEOREV 3. The density of the positive integers of the form i pp,3 
i=l 

positive. 
Proof. Let aI, as, PI, pz be the integers of Lemma 14. Consider the two sets 

of integers defined by 
P~-Pc--P~+PL n:-a;-~:+& 

where the p’s and p’s are given by Lemma 14. 
Then 

pf -pi -p$ +pi = 6a,a,p, + 3a,a,(a, + a,) < 6c,,c,, csln + c&log n)4 < in, 

and similarly 4’:-4h~+&+ 
for suftlciently small cjl. 

n 
Since there are at least cb8 (log n), values for each of p4 and p4, there are at 

n2 
least c& - 

(log n)14 
integers m, not necessarily all different, given by 

6%azP4 + 6PlP2cl4 = *. (23) 

Let A,(m) denote the number of times which m occurs. Clearly m < n, and so 

(24) 

We estimate h,(m), as in the proof of Theorem 1 of I, by Brun’s method. If 
p4 < my there is at most one value of q4 for each p4, and similarly if qJ < my, Sup- 
pose then that pa, ph > my. Let R be an arbitrary prime not exceeding my with 

JQWa2i%P2@,+a2) (P1+P2). 

Then 

I APi m m 

6a,a, ala2 6a,a, 
+ i4b2b% + 82) (mod R) ? 

ala2 

by (23) and (24). These eight residues are all different if we assume that R f f(m), 
where 

f(m) = m(m + 6aTa2) (m + 6a,aE) [(m + 6a,a,(a, f a2)] (m + 6@/3J 

x(m+6P~182+6a~~2)(m+6P~P2+6a1a~)[(mf6P2,P2+6~la2(a,+a2)l 

x (m+ %P3 Cm+ G%BE + Wa2) (m + 6Pdi + %a3 

x [m+66118~+6a,a2(a,+a2)l ~m+%P2(P~+B2)l 

x Ilm+%P2(/& +P2) + 6afa21 [m + fV1B2@1 +B2) + f%agl 

x Em+ %%P2(Pl+B2)+ %a,(% +a2>l. 

(Evidently f(m) # 0.) 
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Denote by h,(m) the number of integers x < & for which 
12 

x$0, -al, -as, -ccl--a,, -I!?- 
6a, a2 ’ 

; l&P2 m 
%a2 w%’ 

7i-L [ At% m I ala2cPl+P2) (modJq 
6a,a, alas’ ba,oc, ala2 

for any of the primes R < my not dividing 6a,a,p,p,(a, + a,) (bl +/3Jf(m), and 
also for which m-6a,a,=O (mod6&3&, 

ao that 2 may be one of (a, az, pi,&) diff erent residues (modP&). By Lemma 2 
of I, 

On using the inequality 
Rf s~r,;r,(ar+a,)(Bl+B,)f(m) 

for the primes R > 72 dividing 6a1a&Pz(a, + az) (PI+ PJf(m) we have, by 
Lemma 14, 

h,(m) < 
Now apply Lemma 1 of I with k = 9, T = 16, f(x) =f(m). We obtain 

Pa= 
5 h,(m) < 8 (logn)l* - 

m=l 

II (lf91BbCm 
R I f(m) 

But h,(m) <h,(m) + 2my, 
2 

and so n2 
5 h(m) < (lo;&4 + 2n1+y < 2e (log n)l*. m=l 

l-I (l-l-g/m>% 
R I f(m) 

Hence from (24), (25) and by choice of a suitable e, 

(25) 

It n2 
z h,(m) 2 (c:, - 2~) ____ 

n2 
--___ 

m=l (logn)14 > c77 (log n)14’ 
II (l+QIR)Gcrs 

R If(m) 

But for the m in (26) we have 
n 

h2(m)<c75c76~logrL)14' 

(26) 

hence in (26) at least n ~ 
c77 (log n)l* I 

-__ '76 (log:,)14 = '79% 



164 P. ERD& 

of the h,(m) are not zero. Hence also there must be at least c7an integers of the 

form 6~,a,lp,+6~~$2qh43ala,(a,+a,)f3P~Pz(P1+82>. 

These integers are obviously less than S, and are of the form 

which proves Theorem 3. 

III 

The proof of Theorem 4 is very much more complicated than that of Theorem 
3, but since no new idea is applied we do not give the details. 

We require here the following analogue of Lemma 14: 

LEMMA 15. There exist 21- 2 integers a,, az, . . ., al-,, ,&, ,&, . . ., /3,-, such that 

ti) c80 log n < a1p PI < Cal log % cSo(log n)2 < u2, p2 < csl(log n)‘, . . . , 

cSo(log n)21-a < al-1? hl < cSl(log n)“l-” 

PI dllCI,...al--l rI (eri+aj) II (ar4~j+ur)...(alSa,+...+al-l) 
l<i<j<Z- 1 l<i<j<k<l-1 

(ii) the number of pimes p and q not exceeding csS 
n 

(log n)zr-L1 for which the 

integers 

p, p+ai,p+ai+a5 (i,j=l,2,...,1- l), . . . . p+a1+a2+...+ul~l, 

q, cl+/% q-l-Pi-+-@j (&j-l,2 ,..., l-l), . . . . q+Pl+P2-i-...+&, 

are all primes is greater than egg 
(log:)“‘-l* 

We omit the proof since it is similar to that of Lemma 14. 

THEOREM 4. The dewity of the positive integers of the form 
lp’ .p-’ 
25 VP): + jgl Ejd 

i=l 

is positive. 



On the easier Waring problem for powers of primes. II 

Consider the integers of the form 

165 

(pfa,+cc,+...+a&,)‘- c ’ 
l<&<i*<...<iz-*<Z-l 

+ zz * . l<t,e~<..k<i~-84Z-1 
(p+cc,,+...+cz~,~,)~-...+(-l)~p~ 

=l!cc,cx, .,. qlp ,4-f@,, a2, . -. , d&J 7 I! C&C83a+f(cl,,a,, S..) q-1) < 4% ’ (27) 
(II+A+Pz+ *..+A-l)z- . 22 

l<i,<~<...<~-~~l-l 
((I+,8,,+Pi,+...+PiZ-,)Z 

for sufficiefitly small ca3. (p, 4, cl{, pj are the integers of Lemma 15, which implies 
that the 22-l terms on the left side of (27) are all primes and that f(q, a2, . . . , q-J 
is a polynomial.) 

We now obtain by the method used in $2 (Brun’s method) that the number 
of integers not exceeding n of the form 

ala2 . . . ~Z-,P+PlP2~**bLlrr 

is greater than cg5n,. This proves Theorem 4. 

THE UNIVERSITY 
MANCHESTER 


