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ON THE ASYMPTOTIC DENSITY OF THE SUM OF TWO SEQUENCES
ONE OF WHICH FORMS A BASIS FOR THE INTEGERS. II.

BY PAUL ERDOS (Manchester)

Let @y, a,, ... be any sequence of positive steadily increasing integers,
and suppose there are x = f(#) of them not exceeding a given number w,
so that
d: =1 0pg1s
The Schnirelmann density & of the sequence is defined as the lower
bound of the numbers f(n)/n; wu=1, 2, .... Thus, if a1, 3=o0.
Clearly f(n)=an.

The asymptotic density 3, of the sequence is defined as lim inf f(n)/n.
fi—~— o

Suppose also that the steadily increasing set of positive integers
Ay=0, 4y, 4, ...

form a basis of order / of the positive integers. This means that every posi-
tive integer can be expressed as the sum of at most I of the A4's.

In a previous paper’, I proved the following

Theorem. If 3 is the Schunirelinann density of the sequence a4+ A,
i oo of the integers which can be expressed as the swm of an a and an A,
ieen R R
L8 (1—2) .
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In § 1 of the present paper I prove the following

Theorem. Lot ay<lay<... be a sequence of positive integers of asym-
ptotic density 3. Let Ay=0, 4, A,<... be a sequence of positive integers such
that for every e>o0, an M exists so that every integer m=M is the sum of at
wost 1 positive and negative A's, where the absolute value of the negative A's
is less than zm. Then, if &y is the asymptotic density of the sequence a -+ A,

f

aa'-au "!‘

v

aa(I — )

2l

! «On the arithmetical density of the sum of two sequences one of which forms a
basis for the integersn. Acta Arithmetica 1 (1936), 197—200. I shall refer to this paper as L
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In § 2, by aid of this result, I prove that cvery large integer is the sum
of two primes and a bounded nwnber of squares of primes. This may be cont-
rasted with the result proved in a previous paper? that every integer is the
sum of a bounded pumber of positive and negative squares of primes. It was
conjectured that every large integer is the sum of a bounded numoer of
positive squares Of primes®.

In § 3, 1 consider results analogous to the following theorem of Khin-
tchine: Let a,=o<a,<..., b,=0<b;< ... be two sequences of Schnirelmann

- -~ I o - 5 . B v - =
density 3=-—, then the Schnirelmann density of the sequence a+-b is =23.
2
Dr Heilbronn and I coniectured that if av=o0, @=1<a,<..., and
i b2

b,=o0, by=1<bs< ..., are two scyuences of asymptotic density 5,= —, then

I
2

the asvmptotic density of the scousnce a—+5 is = -
- o+ 13

Z:. I prove this conjec-

Ya

ture in the special case when tie two sequences ¢ and & are identical, i e.
the following
Theorem. Let a,=0, ay=1<a,< ... be a sequence of integers of

- . - I 7 9 ¥ . -~
asymptotic dmsnf_\' Buz= —, then for the asympitoric a}’f’fm.‘_v 8. of the SEQUENCE
aitaj,

12 | 23
o7
]

v 4 . - 2w B -
On the other hand, it is easy to see that if 3,>>- -, every sufficiently

-

large integer is of the form & 4 ¢; i.e. the asymptotic density of the se-
quence «; + ¢; is 1.

It is easy to see that this theorem is best possiole. For let a,, a,, a,, ...
be all the integers=o0, or 1 (mod 4). The asymptotic density of this seauence
is 1/2. The sequence « + a; consists of the integers=o0,1 or 2 (mod 4) and
its asymptotic density is 3/4. This example is due to Dr Heilbronn.

§1

The argument of this chapter is very similar to that of I As there, we
prove our theorem as a particular case of a more general one. Let n be suf-
ficiently large and let the positive integers = # not included among the a's
be denoted by by, by, ..., by

2«On the easier Waring Problem for powers of primes I». Proceedings of the Cam-
bridge Philosophical Society, Vol. XXXIII. Part 1. January 1937, 6—12.

3 Since this paper was written, this conjecture has been proved by Vinogradsff
«Einige allgemeine Primzahlsitze». Travaux de Dlnstitut Mathématigue de Thilissi 11l (1938),
35—07.
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Put
E=b+-by+...+by — % y(y+1),

so that E=o, since b,= 1, b,=2 etc. Then I prove the existence of at least

E M , . ; ;
X+ T e 2zn integers =n of the form « -+ 4, where in fact only
it
A = o0 and a single other 4 need be used. This is deduced from the result
E M , ‘ , |
that at least il 2z of the Is can be represented in the form a-+.d
(554 -

where in fact only a single 4 is used.
We require two lemmas.

; L : E .
Lemma 1. If M is any given inieger with o <M<, an integer I>M
i

exists such that there are at least— — M of the bs =n in the set oy-- 1,
i

i, —!— [.. s
For the eguation
a+v==>0

has at least E—nM solations in the wvariables v>M, @, b. Thus, for given
bh=5, there are at least b.—r of the a's not less than &, and hence at least
br—r—~M of the a'snot less than #,— M. We find from each of these a's a solu-
tion v and summing for r=1, 2, ..., v, the total number of solutions is not

less than

Y | (b= r)—yM>E—nM.
=1

But there are at most n—M possible values of v, namely, M+,
M+2, ..., n, and so, for at least one value of v, say [, there are not less
than

E—Mn E
= >——M
n—M i

of the b's in a+4 I This proves the lemma.
Lemma 2. If & is the munber of b's =n in the set a-+U where U is any

given integer, and n is the uwmber of s in a —U, then n=5+U.

Let us denote by a,<a,<...< a the a's not exceeding #» — U. Evidently
7=x— U. Thus the number of a's in the sequence a,+U, a,+ U, ..., a.+U
is not less than z—E=x—F—U, hence the number of a's in a—U is also
not less than x—E&—U. Thus the number of b's in ai— U does not exceed

£ 4+ U, which proves the lemma.
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Now we proceed to prove our main theorem. We express I as the sum
and difference of exactly / of the A's say

i= g A.', g =8 == =1, g+1=pqa=...=g1=—1,

H

¥=1

by including a sufficient number of A;s among the A's if need be and where
4, need not denote the first, 4, the second etc. of the ASs.

Denote by p, the number of s =# in the set a+z.dy s=1, 2, ..., L
I ptove now that

91"'312‘1"---11*‘+‘Ar+1—f—z4v-+g—f—...—'f—.4xf_-f—i—— M.

For in the set of integers given by a+A4,+d, there are at most u, -+,
of the #'s. Thus the set a+44, contains p; of the &'s together with some a's.
When we add 4, to the numbers of the set a+A4,, the p, bs, give at most
w, b's, while the a's give at most p, b's. Now take the set a + 4, + 4, + 4,.
This contains at most g,+n,+p, of the &'s by precisely the same arguments
applied to the sum of a+A4,+4, and 4,. Similarly the set a+4,+4.+...+ 4,
contains at most p,+p,... 4 of the &'s. We now assert that the set
at+ A, +4,+ ...+ 4. — A.4q contains at most py -+t e+ Aesa
of the #'s. For if we subtract 4,-4 from the members of the set a+ 4,44,
+...4+A,, the nm+p+...4p, bs give at most w,+p, ...+ b's while the
a's give at most p,+; of them. Also the members of the set a+4,+4,4...+A-
exceeding # give at most 4,44 &'s. By the same argument, the set a+4,+
+4,+...+ 4 —A4rs1—...— 4 i.e the set a-+[ contains at most p+p,+
ettt Adpia b Args o 4 of the bs. But by lemma 1 the set a1
contains at least if — M, of the #'s and hence the result.

Aris, Ariay, ..o Ar are all less than en, thus we have

.

> — — M—len.
i
- . E M . .
Hence one of the ps, say, wm= T en, and so if 2=y, or from
i /
lemma 2. by taking U=4; if k>r, the number of 0's in a4+ A is not less
M
than — — 2en ——
In /

We may suppose without loss of generality that the a's have asym-
ptotic density s, say 8, with 3<1. We have f(bg) = (5—v) be, every
>0 if bp>N=N(%); hence

2 P
be—p=f(be)=(3—n) be, be> ———

~ ’
I—38+7
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and therefore

L, ' v (y+1 1244y  y0O+1
E=b+b+...+by, — 'ﬂ(—-_’“"l = I_S_H;rj i (}a )‘“ N, ()
5—1
= ———— y(y+1)—N,
2(1_5_;'__]?)J(‘ 5 I) i

for sufficiently small .
Hence for the number T of integers not exceeding 7 in the set a + A
we have

53—y M

T=x+——~— = ———2e1—N,.
SRy T e e B S
Write
s e =)
TV e —Brn W v e
For
x=(8—n)n
o 35— 2(n—x) _ B
# (%) et W o
T B
. M M
T=¢(x)— 3 e =N, = 9[(G—n)n] — e 2en—N,
N _ — (1—38+47)*n? M
=@—nn+ =B s “— —= —z2e—N,.
Hence

1

T=u (5—1}—-—23-1'— (8—"7!) (IJ—G‘F‘G‘))_ }'; s B

This proves the inequality

and estaplishes the result.

Let p, p1s «oos G5 Gq; ... denote primes; k a positive integer. Romanoff*
proved that the density of the integers of each of the forms p+&* and p+2*
is positive. By his method, I can prove that the density of integers of the
form p-¢* is positive. I have, however, proved in my paper® that every

4 «Uber einige Sitze der additiven Zahlentheorien, Mathematische Annalen, Band
109 (1934), 668—678.
3 Loc. cit.
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integer s is the sum of a bounded namber of positive and mnegative squares
of primes The proof shows that the primes in the representation of m may
all be taken less than m. I prove now that the primes whose squares have a

negative sign may be taken less than m’“ by aid of a 1esult of Tchudakoft®,

namely, that for sufficiently large # the interval u, !'—‘—H‘ " contains at least
one prime.
For sappose m is sufficiently large, and p, is the greatest prime not

. o
exceeding n?; then from Tchudakoff’s l'esuit, we obtain

n—p = (m T—py) (m T p ) <m* .

If now p, is the greatest prime not exceeding m-—p, then m—p;—pi<im, and

similarly
m— E ik <m <m "".

Thus from the representation of the left hand side, a constant exists such
that every sufficiently large integer is the sum of / positive and negative
squares of primes where the negative squares may be supposed to be less
than m.

Let the asymptotic density of this sequence p+gq; be 31 then by
the asymptotic density of the sequence p+ ¢; + ¢; is not less than

oy G
' 9l .

In the same way, the asymptotic density of the sequence p+qj+¢—+¢
ke N

2l

Hencé a constant ¢ exists such that asymptotic density of the integers of
the form p4-g;4+-q;+...4¢ is greater than ?/,. From this it follows immedi-

€1

is not less than 3® -

ately that every sufficiently large integer is of the form pi+p2—|—;(ﬁ.

§13

Let ¢, =1<a,<...<{a: =n<d:41... be a sequence of asymptotic density
5.=0, and let ¢ be an arbitrary number. Let m be the greatest integer such
that f(m) = (8—e)m but for y>m, f(3)>(3—¢)y. Then m—+1 is an a, for
if not f(m+1)=f(m)=@F—e)m<(3—e) (m+1). It is easy to see that the

Schnirelmann density of the positive members of the sequence @ —m is not

¢ «On the difference between two neighbouring prime numberss. Recueil Mathéma-
tique 1 (1936), 799-813.
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less than 5—=z. Hence from a result of Khintchine, it follows that the Schni-
relmann density of the sequence (#:—wm)—+ (a;—m) i e. the density of the
sequence |ay—i, @i+a;—2#n; the members of which are given by the sequen-
ces ay—m, ai-—a;—2m is not less than 2(3—z), i.e. for suflicently large u
the number of integers not exceeding » of the sequence {a; + i, a; + a;} is not
less than 2(3—e¢)u — 2. Let now u be sufficiently large and denote by
;;-J,lq-_:a___.2<,_.{gﬁ.v the integers not exceeding #—m which afr—,l-m does not
occur in the sequence a; - a5 Since m-+1 is an a, it follows that

R
fH-1

.
;1;-’_—-!— m==d; _

- ks = . -II'— f
a!,-—: il & L

E

is not an a. Thus for the number of = intezers of the sequence {ai, aitaj)
rot exceeding # we have the inequality

T=max{x +TF, (25—2)n—2m—T1"] = max [(3—e)n+T,(258—2¢)u
—om— ] = 2 (B—2m—2m.
2

“This means that the asymptotic density of the sequence a; +a,; is not less

[

than-= 3 and proves the result.

3

University Manchester.

(Received 27 Julyv, 1937.)

IT. BPAEHI

ACUMIITOTHYECRAA IIOTHOCTH CVMMbI JABYX [OCJAEAOBA-
TEJABHOCTEM, COCTABJMIONNINX BA3MC 1EABIX YUCEJ. 1L

(Pezmwue)

Hycre acwvnrornueckas mniornocts 8, mocteioparearkoctn (4) metsx
THCET

(<1, ...
OIPERACACHEA TuK:

- . PO -
Go=lim inf — Y 1.

= N am=i
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Ilyrem oiemeBTAPHNX MeTPHYECKNX COOGpAiienmil aBTOp JI0KA3WBAET Cile-
AVIOULYI0 TEOpeNy:

Feau 8q acummmomuueckasd  naompocns nocaedosamemnocmn  (@); Ay=o,
A< Ay<C... nocaedosamensnocmy (A) neanx wucer; Kk 2000MY NOAOKUMEILHOMY
ciygecmsyent maioe M, wmo ecakoe weaoe m=M npedcmasuno 6 eude cymmv |
cumaenny euda + Ay, wpuuen 300y kamooro onipuyameivnow wucad — Ay menviue
ueM em; By acuMmmomumecxas naomuocns nociedosumesnocmu (a+A), (r. e.
COBOKYHHOCTH YHcea BHAA &; + A;)—

To
3.1( 1—384)

5@%5.1 ) 2£

Orcwda aBTOp BHEOINT, MOJAR3YACE OAHHM 113 CBOHX TMPERHHX PEBY.Ih-
TATOB 0 OLEHKOW

putr—pu=0 (,_Pnc%+s)

‘lynakopa: Besicoe docmamouno Goavuioe yed0e npedeinasiao 6 eude cymmpl 08y
HPOCHINA U OIPAHUUEHHOIO UUCAA K6AOPANIOS NPOCHIBIX.

(Oror pesyarrar npeszoitien Teopemoit § padorn M. M. Bumorpaiora
«Heroropue ofmme TeOpeMH, OTHOCHIMECA K TCOPHH MPOCTHX HHCED»
(cm. crp. 29 sroro toma Tpyios), m3 KOTOPOil cIelyer, UTO BCAKOE IOCTA-
TOYHO GOJBLIOE HETOE MPEICTABEMO B BHIE CYMMH He OOJ1€e IeBSTH KBaIPad-
TOB NPOCTHX. )

33.'1"6:»1 ABTOP JA0KA3BIBALY, OUATL DIEMEHTAPIBIM IIyTEM:

Eean a,=0, a;=1<a,<... nocaecdosamevnocitn (@) yeasx wuce.d deunino-

I
THUEC ROl NAOIHOCHIIL Cu=—, M0 ACHAMUROMUNECKAR NA0MHOCHTD HOCALOOBAINEAL-
2

nocini (a + a) (T. e. COBOKYNHOCTH 4HCea BHIA & + 4;) Ho kpaiied Mepe pasia

(18] | i
(a7

Oroit TeopeMH HeIb3s VAVILIAT, KAK [IOKA3HBAET Npivep

4G=0, G;=1, B,=4, a;=3, 4,=8, 4,=9, ....




