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ON FUNDAMENTAL FUNCTIONS OF LAGRANGEAN
INTERPOLATION

PAUL ERDÖS AND BÉLA A . LENGYEL

Introduction. It was shown in a number of recent papers that inter-
polation with fundamental abscissas chosen at the roots of various
orthogonal polynomials is of considerable interest .

Let I= Ice, S] be a closed interval on the real axis, and let p(x) be
greater than zero in I. The orthogonal polynomials with respect to
p(x) will he denoted by ¢„(x) . Thus, by definition,

(1)

J p(x)(b„(x)4m(x)dx = Snm,
a

Erdös and Turán* proved important properties of the interpolating
polynomial for the case when the zeros of 0„(x) are taken for abscissas
of interpolation . The theorems so deduced enabled the authors cited
to draw important conclusions concerning the distribution of the
roots of orthogonal polynomials . The proofs of Erdös and Turin are
based on some properties of the fundamental functions of interpola-
tion

lk

	

y,n(x)n x) =

	

,
(x - xk" )-O„ ( xk")

which we do not intend to repeat here . However, it is our purpose to
add a few theorems concerning the properties of these fundamental
functions. Our main result is the following theorem :

THEOREM . If M _> p(x) >= m >0, and if p(x) is continuous in the finite
interv c I = [a, l3] and the abscissas of interpolation are chosen as described
above, then the maximum of l, (x) in [a+ E, ,Q-,E ] tends to one as n tends
to infinity for all k for which a+e<xk" <(3-e, a being an arbitrary
positive number .

We shall make use of the following relations :

a
p(x)l in (x)lk^ (x)dx = 0, if i 0 k .

a

n,m=0,1,2,,,* .

* On interpolation. 1, Annals of Mathematics, (2), vol. 38 (1937), pp . 142-155 .
f The function lx^(x) is not the nth power of lb(x) ; it stands for lk(^)(x) . Similarly,

xk* stands for xk ( °) . The upper indices will be omitted completely in all formulas
where there is no risk of misunderstanding .
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(2)

	

NAP f p(x)l: (x)dx = f p(x) [lkn (x) ] 2 > 0 .
a

	

a

Erdös and Turin have proved that if p(x) > b > 0, then for any Rie-
mann integrable function f(x)

lim f [f(x) - L„(f)] 2dx = 0,
fl~~ a

where
n

Ln(f) _-

	

f(xr)l+ (x) •
i=1

Then from this theorem follows the well known property of x, that
the maximum of the distance of two consecutive abscissas tends to 0
as n tends to infinity :

max I x; - x;-1

	

0,

	

n -3 00 .*
i=1,

	

, n

For, if this were not true, then we could find a number S >0 and a se-
quence of integers n1 , n2 i • • • such that ank >= 5>0, for k =1, 2, • • • .
The centers of the respective intervals which have the length S nk

would have at least one limit point X in I . Thus there would exist a
subsequence m1 , m2, • • - such that the interval with the center X and
the length S/2 would contain no roots of Omk(x) . The function f(x),
equal to one in this interval and zero elsewhere, is integrable,
L., (f) = 0, and

f s [f - Lmk(f) ] 2dx = 2 00,
a

in contradiction to the theorem . The same reasoning shows that
xln -a and (3-x,n also tend to zero with 1/n .

1 . A minimum problem. We start with a well known minimum
problem : Given p(x) ->_0, to determine the polynomial f. (x) of degree
not exceeding n -1 subject to the condition f (a) =1, (a :9 a :!9 S), which
makes fap(x) [f (x) ] 2dx minimum. To solve this problem we write
fn(x) =E _ 1aili(x), where the coefficients ai have to be determined .f
The condition is

* This has been proved by Fejér for p(x) ==1 . His proof applies to the general case
without any essential change. See also J. Shohat, Théorie générale des polynomes
orthogonaux de Tchebichef, Memorial des Sciences Mathématiques, vol . 66, p. 49 .
The dependence of a on n has been investigated by Erdös and Turán, On interpola-
tion, II, Annals of Mathematics, (2), vol. 39 (1938), p. 702 .

t Cf. the second footnote.
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(3)

(4)

n

fn(a) _

	

aili(a) = 1,
i=1

and the integral which has to be minimized is

a
p(x) [fn(x)] 2dx =

J
p(x) E Z a ia 1l i (x)l 1(x)dx .

a

	

a

	

i=1 i=1

In consequence of equations (1) and (2) this becomes

n
Xiai

%=1

If we consider the quantities aiXi 1 " 2 and li(a)/Xi1" 2 as components of
vectors in an n-dimensional space, then it becomes evident that (4)
attains its minimum if aiAi 112 =Cli(a)/X11 / 2 , where

1

[li(a)] 2

Thus we find*

1

	

1 j(a)1 j (x)
(5)

	

fn(x)
_ [Ii(a) ]2

	

xi

C=

i=1 Ni

In the special case when a coincides with a root of O n (x), say x kn,
we have fn (x) =-l kn (x) ; that is, the fundamental function is the mini-
mizing function. This can be verified directly .

Let A and B be positive numbers . The polynomial fn(x) of degree
less than n, which has the value A at the point Xk and the value B
at the point xr and minimizes the integral of p(x)[f(x)]2 over I, is
Alk(x)+Bl r(x) . In fact, let

n

Mx) = E ail i (x) .
i=1

The two conditions are

* The same solution is given in the theory of orthogonal polynomials in the
form f„(x)=F- o¢i(x)oi(a)/y_ ;_ooi2(a) • Comparing with equation (5) we get
F;_o0 .'2 (a)=F_i_ili2 (a)/Iii, and this evidently holds for any a (both sides being
polynomials) . Cf . J . Shohat, On interpolation, Annals of Mathematics, (2), vol . 34
(1933), pp . 130-1_46 ; p . 145 .
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n

	

n

~, aili(xk) = ak = A,

	

aili(xr) = a r = B .
i®1

	

i=1

The sum EnQ,ai X i has to be a minimum . Evidently a i = 0 if i 3x~k, and
iXr.

2 . Bounds of the fundamental functions . It was supposed in §1
that p(x) >--_ 0 . From now on we shall suppose that p(x) is continuous in
I and remains between two fixed positive bounds, M _>_ p(x) >_ m > 0 .

Let fn (x) a , or briefly fn(x), denote the polynomial described at the
beginning of §1, that is, the polynomial of degree n-1 which mini-
mizes the integral of p(x) [f (x) ] 2 over I under the restriction f (a) = 1 .
The subscript a is applied to indicate the dependence of fn on a .

THEOREM 1 . If a is in the interior of I, then to every 6 > 0 there corre-
sponds an e such that

1 93 81

(6)

for all n, whenever I x-a I <,E .

If a is restricted to any closed subinterval of I, then there exists an e
independent of a such that (6) holds if I x -a I < e .

If the theorem were not true, then for given a and any small e > 0
there would exist at least one n such that for some 2 n

(7)

	

J ++(Sn) = 1 + 6

and a<=a-e< n<a-F-e<_0 . Here we use the fact that a is in the in-
terior of I. Without loss of generality we can assume that a=0 and
that ~n<a. We introduce the function gn(x)=fn(c.x)/(1+8), where
cn =En/a<1 . Evidently gn (a)=f,( n)/ (I + 6) = 1 ; hence

(8)

	

f p(x) [gn(x)]2dx > J p(x) [fn(x)] 2dx .

On the other hand, setting y=c nx, we obtain*

f
[fn(y)]

2dy
0

	

cn(1 + W 0

<

	

1

	

/('~

cn(1

	

6)210 p(x/c~[fn(x)] 2dx .

By hypothesis, 0 < a - ~ n = a (1- c n) < e, 0 < 1- cn< e/a . Hence if S and
a are fixed, then e (independent of n) can be chosen so small that

(9)

* For x># we define p(x)='($) .

fn(x)a < 1 + S
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c.(1+6)>1. Thus by (8) and (9) we have the following inequality :

e

	

a

(10) (1 + 3) f0 p(x) [fn(x)]2dx < f
o

p(x/cn) fn(x)] 2dx,

or

(11)

	

Sf 0 p(x)[fn(x)] 2dx < f [p(x/cn) - p(x)][fn(x)]2dx .
0

	

0

However, this last inequality contains a contradiction . For, if e is
small enough, then on account of the continuity of p(x),

p(x) - p(x/cn) I < am

for all cn such that 1 > cn > 1- E/a . Hence (11) leads to a contradic-
tion, namely

S fap(X) [fn(x)]2dx < 3mf a [fn(x)] 2dx < S fa p(x)U.(x)] 2dx .
0

	

0

	

o

This proof depends on the possibility of making 1-cn small by choos-
ing e small enough. This was possible for every fixed a because of the
relation 0 < 1-cn < E/a . Of course e depends on a . However, if a is
confined to a closed subinterval I', wholly in the interior of [0, M,
then there exists an e for which (6) holds for all a throughout I' .
Thereby Theorem 1 is proved .

THEOREM 2 . Let I' be any closed subinterval wholly in the interior
of I, and let e be a fixed positive number ; then for all k for which x kn is
in I' the maximum of le (x) in the set consisting of I' minus the interval
[xkn -E, xkn +E] tends uniformly to 0 as n tends to infinity .

The word "uniformly" has to be understood as follows : Let A nk
be the maximum of le (x) in the set described in the theorem ; then
for every?? > 0 there exists an N such that A„k < 77 whenever n > N for
all k such that xkn is contained in I' . This theorem states the fact that
the fundamental functions le (x) which belong to abscissas entirely
in the interior of I are small everywhere, except possibly at both ends
of the interval I and in a small neighborhood of the respective ab-
scissas to which they belong .
PROOF . Let I" denote the difference of the set I' and the open in-

terval [xkn -E, xkn +E] . The interval I" will depend on e, n, and k;
it will consist of two intervals [a', xkn - E] and [xkn -+, ,(3'] . Let ~ be
the abscissa in I" for which le Q) =A k . Evidently ~ cannot coincide
with any root xi, for le (xi) = 0 if i /- k . We may assume that xka = 0,
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since we can always introduce, if necessary, anew variable x'=x-xk" .
We may also assume that ~ >= xk° +E = E .

If n is large enough, the roots of qn(x) extend beyond both ends of
the interval I', in consequence of the fact explained in the last para-
graph of the introduction . Therefore ~ lies between two roots of 95,(x)

(12)

	

xr_, < ~ < xr .

Let c=E/X <1. (It will be well to remember that x r, , and c depend
on n, and that we use them as abbreviations for x°, s,,, and c..) The
polynomial f (x) = l kn (cx) has the following properties

(i) It is of degree n -1 .
(ii) f(0) =lkn (0) =1 .

(iii) f(xr) =Z AP (cxr) =A n k .
It follows from the results of §1 that

d(13)

	

f8p(x)

	

« [lk(cx) ] 2dx _> fa p(x) [lk(x) + Anklr(x) ] 2dx

= Xk + AnkXr .

Substituting y = cx, we obtain

f p(x) [lk(cx)] 2dx = 1f ~ c p(y/c) [lk(y)] 2dy

1

	

a
< - f p(x/c) [lk(x)]ldx .

c a

(14)

	

C

	

«C

According to the last paragraph of the introduction, the maximum
of Ix;'-xfi iI tends to 0 with 1/n . Moreover, by hypothesis E>e ;
therefore, given any q < 1, there exists an N such that, by virtue of
(12), q < ~n/xn = cn < 1 for all n > N. On account of the continuity of
p(x), for any 1j>0 there exists a q such that I p(x)-P(x/c)I <17m,
if q < c < 1 . Hence

f
Q

[p(x) - p(x/c)][lkn(x)] 2dx < 17mf [lkn (x)] 2dx
a

	

«

a

f p(x) [lkn(x)] 2dx = 17Xk .
a

We now obtain from equations (13), (14), and (15) the relation

1

	

/1-c

	

1
Xk + AnkXr < - Xk(1 + 77) _ Xk + Xk

	

+ -1]
C

	

c

	

C ) .
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Here 1-c and 17 can be chosen arbitrarily small provided that n is
large enough. Thus, if we write out the indices n and divide by X r > 0,

Ank <-~en,
r

where e, tends to 0 with 1/n . In concluding the proof of the theorem
we shall prove the following lemma :

LEMMA . If the conditions of Theorem 2 are satisfied, then there exists
a positive constant K (independent of n) such that X in /A kn <_ K, for all x n
and xkn in I' .

In other words, the generalized Cotes' numbers belonging, to ab-
scissas which do not come too close to the ends of the interval I are
of the same order of magnitude .

We may assume that I is [0, 1] and that xk<Xi . If Xk?Xi, the
statement in the lemma is evident with K=1 . If Xk <X,, we introduce
the notation c=xk/x;<1 and y = cx . By reasoning similar to that
used in the proof of the theorem we obtain

I
(17)

	

J
p(x) [lk(cx) ] Idx > X j,

a

J I

	

M
p(x) [lk(cx)] 2dx <- Ak.

u

	

cm

By hypothesis xk >=a' > 0 andx;<1, therefore c >a' and

1MA tin

am

which we were to prove .

THEOREM 3 . If I' is any closed interval wholly in the interior of I,
then the maximum of l kn (x) in I' tends to 1 as n tends to infinity for all
xkn in I' .

For if any S >0 is given, then, according to Theorem 1, we can find
e > 0 such that for any abscissa xkn in I', le (x) < 1 + S whenever
x-xknI <e . Outside this interval, that is, in [a', xkn-e] and in
[x+ e, (3'], the maximum of l kn (x) tends to 0 with 1/n by Theorem 2 ;

therefore there exists an N such that the maximum of l kn (x) in I" is

less than one whenever n > N. Finally, l kn (xkn) =1 .

VICTORIA UNIVERSITY OF MANCHESTER AND
WORCESTER, MASS .
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