
NOTE ON THE EUCLIDEAN ALGORITHM 
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1. The E.A. (Euclidean Algorithm) holds for a quadratic field R(2/.m)? 

when, for any two integers a, ,G in R(~/m.) with /3 + 0, a third integer y in 

B(~/w) can be so det,ermined that 

(1) 1 N(a-/3y) / < j N(P) ( or \ N(a/fi---y) 1 < 1. 

The existence of the E .A. is undecided in the following cases; p, q denoting 

primes : y 

I. m=p= 13+24n (,n> 1); 

II. m=p= 1+&L (n> 7); 

III. m =pq wit#h 23 = q- 3 or p = qz 7 (mod S), and pq > 57. 

In this paper, we show that the E.,4. does not exist for large p in thefirst two 

mm, i.e. it can exist only in a finite number of quadratic fields 3(1/Ip). 

The integers in R(dp), where pr 1 (mod 4), are given by +(x+ydp), 

where x: y a,re rational integers and x-y {mod 2). Instead of (l), we can 
write 

1 h'(a+b dp--&(z+y2/P))1= i (a-$~)~-p(b-&#j < 1, 

xvhere a, b. denote rational numbers, i.e. 

(2) j(x-22a)2--p(y-22b)2] < 4. 

..-A ___- 

* R,eceired 12 March, 1937; read 1s March, 1937. 
7 Behrhohm and R,Cdei, ii Der E. A. in quadratischen KGrpern “, Journal fiiiir Math., 

174 (1936), 193-205; Hofreit,er, ” Quadratische K&per mit und ohne E. A. “, Monat- 
shejfe jiir MatL ,ltnri Phys., 42 (1935), 397400. 
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LEMMA 1. (Belwbohm and Re’dei.) The E.A. does not exist in R(1/p). 

p = 1 (mod 4), {f there exists a. qwdratic Tesidue r of p, wh.ere 0 < F < p, such 
tha.t each of the equ,ations 

(3) px2- Y2 = -44r, px2- Y2= 4($%--r) 

is impossible in integers x, Y. 

For suppose that x2= r (mod p). Take a = 0, b = x/p. Then, from (2), 

123x2- (py-222)21 -=c 4p. 

Since the term on the left under the modulus sign is congruent to -422 

(mod 4~), the result follows by putting Y =27y--22. 
Now, by special choice of r, we have 

LEMMA 2. The E.A. does not exist in R(dp) for p= 1 (mod 4), 

if p ca?z be expressed in the form 

A,Q,+A,Q,, (Ai> 0, Qj> 0, i= 1, 2) 

where Q1, Q2 are odd prhes, A,, Q1, Q2 aTe qua,d&ic non-residues mod p: and 

A,, A, are not di?i;isible by odd powers of Q1, Q, respectively. 

Since (A, QJP) = (A,,$) (QJp) = 1, we can talie r= A, Q1 in Lemma 1, 

and then (3) becomes 

(4) px2- Y2 = -4A, Q1, pxa- Y2 = 4A, Q2. 

Since (p/Qi) = (Qi;‘~) = - 1, and Ai is not divisible by odd powers of 

Q& = 1, Z), bothequations in (4) are nof solvable and so the Lemma follows. 
The proof of the main theorem requires also the following Lemma, of 

which the proof is given in $2. 

LEMMA 3. I;c?t PI, q2, (r3 be the least three odd p&e quadratic n,on-residues 

of p. Thew, fop+ large p, p>p(~), 

q1c?2q3 < P1-?, 

uAere 77 < * 001 is a:n a:rbitrary pos&ive con.8ta.n.t. 

THEOREX. The E.A. does not exist in R(dp) fey Ilarge p, wh.en 

p- 13 (mod 24) or p= 1 (mod 8). 

I. Then p= 13 (mod 24), 

(2,“p) = -1, (3jp) = 1, 



Let ql, qa be the two least odd prime quadratic non-residues of p. Define 

B,, 4 by 

P = 3qlq,-k%, p = q1qnt2B,. 

Since p = 3B,-24, one of the B’s must be odd. Suppose first that B, is 
odd; by Lemma 3, B, > 0. Since 

W,/P) = (-W,q,/‘p) = (-11p)(3::‘p)(ql/P)(q2/p) = 1, 

we have (&/PI = (2/P) = - 1, 

and so B, contains a,n odd prime factor, say q3, such that (qJ$) = -1 a.nd 

B,lq, is not divisible by an odd power of q3. Hence, by Lemma 2 with 
Q, = ql, A, = 3q2, Q, = q3, the E.A, cannot, exist. A simila’r proof holds 
when B, is odd. 

II. When p- 1 (mods), 

(VP) = 1. 

Let ql, qz, qs be the three least prime quadratic non-residues of p. 

Suppose first that q, < p’ (E < 7). The congruence 

p-q,q,x= 0 (mod ql) (0 -=c x < qJ 

is always solvable, and, by Lemma 3, p-xq,q, > 0. By the definition of 

41, (x/23) = 1. If 

p-q2q3x+0 (mod q12L 

we can express p in t’he form of Lemma 2 with Q1 = q2, A, = q3x, Q2 = ql> 
and so the theorem is proved. Otherwise, we can replace CC by ‘( 1 -+a,) x 

to make 

p--U+q&q2q3~0 Imod q12). 

Obviously Lemma 2 applies, since, by Lemma 3, 

~14q,)xq2q3 < 41”q2q13 <P for E 611. 

Suppose next that ql >p’. The argument above shows that the 

theorem is proved if x exists such that 0 < x < q1 and 

p-qzq3x=0 (mod qJ but +O (modq12). 

Suppose then that 

p-qzq3x = 0 (modq12) ; 
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we prove that there exists at least one quadratic residue of p among the 
integers 

XSPl, x+2q,, . ..) W-P l%P,l. 41. 

By the prime number theorem, Dhe product of the primes not exceeding 
2 logq, is 

e2ht7ltO ClWh) > q1 > x. 

Thus there exists a prime qO < 2 Iogq, <ql, i.e. (q,,/p) = 1, and &+x. 
Since qO is a divisor of one of t,he set x, z+q,, s+2g1, . . ., X+ (qo- 1) ql, say 

x+yq,, Y > 0, x+yq, = qos, s -=c Pl. Hence x+yq, is a qua’dratic residue 
mod p, since (s/p) = 1, and 

z-+-42q&+yqd % 0 bods2). 

Also, by Lemma 3, 

$2 q3I”+Yql) = PO SC?2 93 -=c %l w crl) * q3 43 -=I Q+ lWP -=c P, 

and hence, by Lemma 2, the theorem is proved, 

2. It remains now to prove Lemma 3. This requires the following 
lemma, the proof of which is similar to that’ of the well-known Satz 494 of 
Landau’s ZaMentheorie, Bd. 2, S. 178. 

LEMMA 4. Par 1 <<f < (p-+)/d, 

k x(c+nd) < -\/2 him 
n=l 

wJ&ere G, d are rational integers, p is an odd prime and x is may character mod p 

except the principal one. 

Let ql, q2, . . . . q, be the odd prime quadratic non-residues modp up to 
$+I (0, 01 > El > 0). By the prime number theorem, z < 2~9+‘l/log~. 
Let X: be the number of odd quadratic non-residues mod y up to 2~4~~1. 

Then 

since each odd non-residue must contain at least one qi. If F, denotes the 
number of odd quadratic residues mod p up to ~‘~‘1, then 

From Lemma 4? we have 



NOTE ox THE EUCLIDEAN ALGORITHM. 

hence 2k >p~+“(B--logp:~“)-l. 

Thus, by (5), 

hence 

T 

with 0 < c2 = ~(p, Ed) < 2.10-5. 

Suppose first that q1 ,<pc3 (0 < Ed < iq). Then, since q1 > 3, 

If a2f 5, li l/q, > l/S- Ed-- l/7 > l/43. 
i=3 

From the prime number theorem, 

pzg l/P = log logy+~+~(l), 

where P denotes a prime, and C is a constant. Hence 

c l/P = log logp ,+‘l--log log&‘4+0(l) < l/43, 
pt-Q<p<ph+~, 

by choice of Ed > 0. We see also that we can take Ed > 2~. Hence 

q3 -=c P? 

and so 

!h!12q13<41432<P 
~~+I-23 < plttv-39 = pl-?. 

If q2 = 5, by Lemma 4, with c = 1: d = 30, there exists at least one quadratic 

non-residue among the positive integers of the form 30n+ 1 up to p*+~, 

since p*+Q > y’13 logp, and so 

q3 <p*+ and q1 q2 q3 = 15q, < pl-v. 

Suppose next that q1 >pE3* Since q2 > q1 >pE3, from (6), we get 

~ l/qj > ~-Eel, 
i=3 

where 0 < E%’ < 10-5. Since, by choice of Ed (0’008 > Ed > O-007), 

I2 l/P = log logp*+~l-log logpl12”e”5 < +--EZ), 
p 1 ?~e~Sr,<P<pi+s, 
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we have*, from (7), 

Hence (rlq‘2P3 <P 
3/WC-c3F, <j+* 

This proves the lemma. 

We should like to thank Prof. L. J. Mordell for his help with our 

manuscript. 

The University of Manchester. 

* Vinogradov proved that the least quadratic non-residue mod p is less than 

p’ we (log p)*, 

See J. iK Vinogradov, “ Sur la distribution ries r&i&Is et des non-rCsidus des puissances “, 
Journ. Physico-Math. Sm. of Penn, 1 (1919), 94-98; or “ On the bound of the least non- 
residue of n-th powers “, Trans. American Math. Sac., 29 (1927), 218-226. 


