NOTE ON THE EUCLIDEAN ALGORITHM

PavL Erpos and CHAaOo Ko*

[Extracted from the Journal of the London Mathematical Society, Vol. 13, 1038.]

1. The E.A. (Euclidean Algorithm) holds for a quadratic field R(+/m).
when, for any two integers a, B in R(4/m) with B £ 0, a third integer y in
R(4/m) can be so determined that
(1) [N(a—By)| <!NB)| or [N(aB—y)I<L

The existence of the E. A isundecided in the following cases, p, ¢ denoting
primes :

I. m=p=13+24n n=>1);
II. m=p=14+8n (n=17);

II1. m=pg with p=¢=3 or p=¢=17 (mod 8), and pg > 57.

In this paper, we show that the E.A. does not exist for large p in the first two
cases, i.e. it can exist only in a finite number of quadratic fields B(4/p).
The integers in R(4/p), where p=1 (mod 4), are given by }(x+y+1/p),

where x, y are rational integers and 2=y (mod 2). Instead of (1), we can
write

| ¥ (a+by/p—@+yvp))| =] a—keP—pl—lyP| <1,

where a. b. denote rational numbers, <.e.

(2 |(x—2a)?—p(y—2b)%| < 4.

* Received 12 March, 1937; read 18 March, 1937.

+ Behrbohm and Rédei, ** Der E. A. in quadratischen Korpern », Journal fir Math.,
174 (1936), 193-205; Hofreiter, ~* Quadratische Korper mit und ohne E. A.”, Monat-
shefte fiir Math, und Phys., 42 (1935}, 397-400.
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Lemya 1. (Behrbohm and Redei.) The E.A. does not exist in R(+/p).
p=1 (mod 4), if there exists a quadratic residue v of p, where 0 < » < p, such
that each of the equations

(3) pi—Y2= —4r, pa?—Y2=4(p—r)
is impossible in inlegers x, Y.
For suppose that 22=r (mod p). Takea=0,b=z/p. Then, from (2),
| pa®— (py—22)*| < 4p.

Since the term on the left under the modulus sign is congruent to —4z2
(mod 4p), the result follows by putting ¥ = py—2z.
Now, by special choice of r, we have

Lemma 2. The E.A. does mnot exist in R(\/p) for p=1 (mod 4),
if p can be expressed in the form

Al QI_I_AQ QE) {Al> 0! Qa > 0, i= ls 2)

where @y, Q, are odd primes, Ay, Qy, Q, are quadratic non-residues mod p, and
Ay, A, are not divisible by odd powers of Q). Q, respectively.

Since (4, Q4/p)= (4,/p)(@:/p) =1, we can take r= A4, @, in Lemma 1,
and then (3) becomes

(4) pt—Ti=—44,Q, pa®—Y2=14,0,

Since (p/@;)= (Q;/p)= —1. and A; is not divisible by odd powers of
;e = 1, 2), bothequationsin (4) are not solvable and so the Lemma follows.

The proof of the main theorem requires also the following Lemma, of
which the proof is given in §2.

Lemma 3. Let q,, ¢, q5 be the least three odd prime quadratic non-residues
of p. Then, for large p, p>p(n),

19293 <P,

where 1 << 001 is an arbilrary positive constant.
TureorEM. The E.A. does not exist in R(+/p) for large p, when

p=13 (mod 24) or p=1 (mod 8).

I. When p=13 (mod 24),

(2/p)=—1, (3/p)=1.
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Let ¢4, ¢, be the two least odd prime quadratic non-residues of p. Define
By, B, by

P=3¢19+2B;, p=0q,9,+2B,.

Since p = 3B,— B, one of the B's must be odd. Suppose first that B, is
odd; by Lemma 3, B, > 0. Since

(2B,/p) = (—3q,4x/p) = (—1/p)(3{p) (q1/P)(g:/P) = 1,
we have (By/p) = (2/p) = —1,

and so B, contains an odd prime factor, say ¢, such that (¢;/p) = —1 and
B, /g, is not divisible by an odd power of ¢;. Hence, by Lemma 2 with
Q,=q,, 4, = 3¢,, @, = ¢4, the E.A. cannot exist. A similar proof holds
when B, is odd.

II. When p=1 (mod8),

(2/p)=1.

Let ¢, ¢, g5 be the three least prime quadratic non-residues of p.
Suppose first that ¢, <p* (e <7%). The congruence

P—4¢2=0 (modg) (O<z<q)

is always solvable, and, by Lemma 3, p—2g,¢;> 0. By the definition of

P—y¢sx5= 0 (mod gy?),

we can express p in the form of Lemma 2 with @, = ¢,. 4, = ¢, &, =q,.
and so the theorem is proved. Otherwise, we can replace @ by (1-+q,)a
to make

p—(1+4)20: ¢, F 0 (mod g,7).
Obviously Lemma 2 applies, since, by Lemma 3,
A+a)2:t <" Rta<p for <<z

Suppose next that ¢, >p‘. The argument above shows that the
theorem is proved if z exists such that 0 <z < ¢, and

p—goq;2=0 (mod gq;) but =£0 (mod g?).
Suppose then that

p—qagzx =0 (modg?);
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we prove that there exists at least one quadratic residue of p among the
integers
x+q, 2+2¢, ..., v+ [2loggy]. ¢y

By the prime number theorem, the product of the primes not exceeding
2logq, is
e2loggi+o (loggy) e

Thus there exists a prime g, < 2logq, << ¢y, 1.e. (gy/p)=1, and g,+x.
Since ¢, is a divisor of one of the set =, x+-¢;. *+2q,, ..., v+ (g,—1) ¢;, say
r+yq, Yy >0, x4-yq;, = ¢o8, s <g,. Hence z+ygq, is a quadratic residue
mod p, since (s/p)=1, and

P—q295(x+yq,) F0 (modg,?).
Also, by Lemma 3,
92 93(T+¥91) = 9059295 < 2q,(logq;) . 9.5 < 2p1~" logp < p,

and hence, by Lemma 2, the theorem is proved.

2. It remains now to prove Lemma 3. This requires the following
lemma, the proof of which is similar to that of the well-known Satz 494 of
Landau’s Zahlentheorie, Bd. 2, S. 178.

LeMma 4. For 1 << f< (p—e)/d,

4
| Z x(c+nd) ‘ <+/plogp,
where ¢, d are rational integers, p is an odd prime and x is any character inod p
except the principal one.

Let gy, ¢4, ..., g, be the odd prime quadratic non-residues mod p up to
Pt (0001 >¢€,>0). By the prime number theorem, z < 2p**a/log p.
Let & be the number of odd quadratic non-residues mod p up to pi+e.

Then

. 1 2 ] pita
5 E<iptta B —Jfez<ipita D —42+—,
%) M i=1 9 3 i=1 9 i3 log p

since each odd non-residue must contain at least one ¢;. If & denotes the
number of odd quadratic residues mod p up to p+e, then

Btk dphts — 1.
From Lemma 4, we have

[h—k] < ptlogp;
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hence 2k > pita(t—logp/pt)—1.
Thus, by (3),

z 1 pl tey . ,
1 93+e E R 2 >;} E-I.-cl }_10 1 int ___:l;
e B oA e e g logpip®) i
hence

({)) E =i %_523

with 0 < = e5(p, &) < 2.1075,

Suppose first that ¢, < ps (0 << ¢ << I9). Then, since ¢, = 3,

Z

If ¢, 55, Y 1g,> 1/6—ep—1/7> 1/43.

(]

From the prime number theorem,

2 1/P=loglogy-+C-o(l),

P=y
where P denotes a prime, and C is a constant. Hence

z 1/P = log log pt*t1—log log p*~<44-0(1) < 1/43,

pt—e<P<phtn
by choice of ¢, > 0. We see also that we can take ¢, > 7. Hence
g3 <p'™,
and so
010295 < g 4a® < prsti-Fa L ptth=in = pl=n,

1f q, = 5, by Lemma 4, with ¢ = 1, d = 30, there exists at least one quadratic
non-residue among the positive integers of the form 30n-4-1 up to pite,
since ptta> 4/plogp, and so

gs<<pita and ¢;¢,9;= 153 <p'.
Suppose next that ¢, > p%. Since g, > ¢; > p%, from (6), we get

ke

(7) lfff(> %'_52’3

=3

where 0< e, <1073, Since, by choice of €5 (0°008 > ¢5 > 0°007),

= 1/P = log log pt*1—log log p/*Ve+ss < 1 —e¢,,
plavetea P pite,
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we have*, from (7),

gy < PV,
Hence 41 Q2 Gy < PYHHIC < plov,

This proves the lemma.
We should like to thank Prof. L. J. Mordell for his help with our
manuscript.

The University of Manchester.

* Vinogradov proved that the least quadratic non-residue mod p is less than
prave(log p)t.
See J. M. Vinogradov, ** Sur la distribution des résidus et des non-résidus des puissances ”,

Journ. Physico-Math. Soc. of Perm, 1 (1919), 94-98; or * On the bound of the least non-
residue of n-th powers ’, Trans. American Math. Soc., 20 (1927), 218-226.
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