ON THE DENSITY OF SOME SEQUENCES OF
NUMBERS (II)

Pavrn Erpos*.
[Extracted from the Jowrnal of the London Mathematical Society, Vol. 12, 1937.]

The functions f(m) and ¢é(m) are called additive and multiplicative
respectively if they are defined for non-negative integers m, and if, for
(my, my) =1,

f(mymy) = f(my)-+f(m,),
B (mymy) = b (my) (my).

In my paper “On the density of some sequences of numbers{™ I
proved the following

TrEOREM. Let the additive function f(m) satisfy the following conditions :
(1) f(m) =0,
(2) f(py) Zf(ps) tf Dy, ps are different primes.

Fuvther let N(f; ¢, d) denote the number of positive integers m not exceeding

n, for which
¢ <fm) <d,

where ¢, d are given constants; when d = oo, write N(f; ¢) for N(f; ¢, 00).
Then N(f; c)/n tends to a limit as n—> 0.

I shall now prove that condition (2) is superfluous. Just as in (I), it
is sufficient to consider the case when f is such that f(p)= f(»*), for any
positive integer a. I use throughout the notation of (I).

The case in which % i(‘—g—] diverges may be settled just as in (I).
»
Suppose then that EJ:%J) is convergent.
»

First take the case in which X & converges. Denote by a;, a,, ...
fp)#0

the integers composed of the primes p for which f(p)#0. Evidently

1 1
S—= I —F——
a; gm0 1—(1/p)

converges.

* Received 6 June, 1036; read 18 June, 1936.
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Let us denote by a(m) the greatest a, contained in m. Since X ?%
fip)+#0

converges, it easily follows from the sieve of Eratosthenes that the density

of integers not divisible by any p, with f(p) # 0, isequal to 1l (l- %) :
flp)=0

Hence the density of the integers m for which a(m)= g, is

L (l—i).
@ f(@)#0 P
Finally, since X 1/a; converges, the density of the integers for which
flm) =c is equal to
i (1—1) g

fp)#0 P/ japze %

And so the theorem holds,

Take next the case in which X ?;— diverges. The proof is similar
fp)#0
to that of (I). We require the same lemmas, and nothing is to be altered

except that Lemma 1 of (I) must be proved without using the hypothesis

J(p1) #f(ps)-

Lemma 1 of (I). We can find a positive number 8 such that, for ail
sufficiently large n,
N(f; ¢, c+8) <en.

The new proof requires two lemmas. The first is the same as Lemma 2

of (I), namely:

Lemma 1. Let fi(m)= X f(p), where p, denotes the k-th prime.

pim
PEPK

Then the number of iniegers m << n, for which
Jlm)—fi(m) >3,
ts less than Len for sufficiently large k = k().

The proof of this did not involve the hypothesis f(p,) 7 f(p,).

Now we split the integers m <n for which ¢ <f(m) <¢+8 into two
classes, putting in the first class those for which f(m)—f,(m) > 8, and in the
second class the others. By Lemma 1, the number of integers of the first
class is less than jen. For the integers of the second class,

c—8 < film) <o+5;
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hence we see that Lemma 1 of (I) will be proved if we can show that the
number of integers m < n for which ¢—38 <{f).(m) << c¢+3 is less than len for
sufficiently large &= k(e).

We now denote

(1) by g, the primes less than or equal to k for which f(g,) > 23,
(2) by 7; the other primes less than or equal to k,

(3) by q; the squarefree integers compoged of primes less than or equal to
k for which ¢—38 < f(a) <c+3,

(4) by By, Bs, ... the squarefree integers composed of the g;,
(5) by v4, vs, ... the squarefree integers composed of the 7,
(6) by d,(m) the number of divisors of m among the a;,
(7) by d,(m) the number of divisors of m among the y;,

(8) by dy(m) the number of divisors of m among the squarefree integers
composed of primes less than or equal to %,

(9) by c¢,, ¢, ¢; absolute constants.

Now choose § so small and % so great that

Bt s el
q;

where A is sufficiently large. This is possible since X L diverges.

f@y#0 P
We then prove*
LeMmma 2. b :1‘; < elogk.
We evidently have
M ] ]
5 da(5)=2[‘]~£:l>2 2w, (1)
I=1 a LGy ai @
M
We write 2 d()=2,+Z,
1=1

* The proof runs similarly to that of Behrend, ““ On sequences of numbers not divisible
one by another”, Journal London Math. Soc., 10 (1935), 4244,
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where X, contains the I's having less than A4 divisors among the ¢, and
2, all the other I's. Then

1
¥ u 1 - (1+§)
3, <243 d,()=24% —:I <M24T (1+—) — Modesk\ P/
=1 yi LYi r. L | l
(1
M 24 1og i S
g%<saﬂflogk,
€

for sufficiently large 4 = A (e).
We now estimate 2,. Let [ be an integer of X,, then, if 8=¢,¢5... ¢,
y="175...7,, we have
L= B,

where x > 4 and ¢ is eomposed of primes greater than & and the factors
of By.

We estimate d,(l) as follows. Any al|lis of the form a = B;y,, where
B:|B, y.|y. The B/s belonging to the same y, cannot divide one another,
for if we had a, = 8, vy, a, = B, v, and B;|B,, then

28 = flag)—/f(ay) = f(Bo)—f(B1) > 28,

an evident contradiction. From a theorem of Sperner* it follows imme-
diately that a set of divisors of the product ¢,¢,...¢,. of which no one is

divisible by any other, has at most ( ) elements.

z

(3]

Further, from Stirling’s formula
(2m)innttem < nl < (2m)inntieneln,

we eagily deduce that

2%] b AR
r+
so that <y <4l
Hence
S 40
v 206) a1\ _e,Mlogh
— 3 =1 czine ) el i & g 3 3
< Idl)<=g— <l (1+p)g 2 < ¢ Mlogk

for sufficiently large 4.

* Bperner, ““ Ein Satz iber Untermengen einer endlichen Menge”, Math. Zeitschrift,
27 (1928}, 544-548.
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Finally, from (1), we have
z i < 2eloghk+1< logk,

and so Lemma 2 is proved.

We now prove our main theorem.

We split the integers m <<n for which ¢—38 < f,(m) <¢+8 into two
classes. In the first class are the integers for which m is divisible by a
square greater than 1/e*, and in the second class the other integers. The
number of integers of the first class is evidently less than or equal to

E 1?)2— £ Gl €2’R.
rlfe?
The number of integers of the second class we estimate as follows. We write
K(m)= II p. Since ¢—38 < f(m)=[f[K(m)] <c+8, K(m) is evidently

p=k
pim

an a. The integers m of the second class for which K(m)=: «; are of the
form a;ut, where p is composed of the prime factors of o, and ¢ is composed
of primes greater than k; m is divisible by a square greater than or equal
to p, for, if p—=pZapZ=.. p2A+l, . m is divisible by

2a) 5y 2ap 28:1+2
Pl pioE,

Thus p << 1/e*. Hence it easily follows from the sieve of Eratosthenes
that the number of integers m of the second class for which K (m) = a; is
less than or equal to

Lnn (1-1) 3 1)
o | p<k P/ op<ifet .U'[

Hence the number of the integers of the second class is less than or equal to

1 1 1 1
c,n 11 (1—— 22— X —<cgnetlog—5 << ten;
z p<k .p) A u<lfet M she g et i€
hence the result.
Similar results hold for multiplicative functions,since, if ¢(m) is multi-
plicative, log #(m) is additive. Hence we find that, if ¢(m) =1, N(¢; ¢)/n
tends to a limit as n—oo.

The University,
Manchester.
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