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Hardy and Ramanujan* proved that v(m) is almost always loglogn,
i.e. that for any positive e there are only o(n) integers m <n for which
either v(m) > (1-}-¢)loglogn or v(m) < (1—e¢) loglog n.

We use the following notation:

1. 7' denotes the closed interval [(logn)¢, ndeelesn =]

2. »'(m) the number of different prime factors of m in 7',

3. 41, Qs -, 4, symbols for the v primes ¢ of 7',

4. a,, @, ... the integers composed of g;,

5. a®, o, ... the integers whose factors are powers of k different
¢; (k< 2loglogn),

6. A(m) the greatest @; contained in m,

7. U, the number of integers m < n for which 4 (m) is an a®,

8. ¢4, €y, ... absolute constants,

9. x—E . ; from the formula X %—-loglogy—,—cl—i-o(l), it imme-
<y

dately fo]]ow s that x=loglogn—4 logloglogn—Ilog 6-+o(1).
We require four lemmas.

Leymya 1. The number of infegers m < n for which
v(m)—v'(m) > (logloglogn)?
18 o(n).
We evidently have

S (vm)—v/(m)) = X ””':| z[”]

m=1 r=n
— ¥ —”’-]Jr b [3
p<(logn)® [f’ whoglgn Fepgn L P
= O(n logloglogn),

which implies Lemma 1.
LrmMma 2.
2% 1 , 1 ok
kT ({logn)a) = E a® D

1 Srinivasa Ramanujan, Collected papers (1927), 2
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where the dash in the summation means that the summation is extended
over the square-free a®’s only.

We have
1 k
B =
wl \gg/ _ &
T R T T

t
/ k
By expanding (E %) / k! by the multinomial theorem we see that the
a

coefficient of the terms whose denominator is a square-free a® is 1,
but the other terms contain in their denominator the square of a ¢, i.e. a
square greater than (log#)12 and have coefficients less than 1. Finally, the
denominators are all less than n%@°&1e"® gince k < 2loglogn. Thus

; k

(2 %) 1 1 1 1 1

At T R > -_;-:2'—-%0(—-),

. a T 2
k! i “‘-‘.‘l r>(logn)8

1 &
%'a%w(—}%?—)—*?(*)’

5
&

1 1
5 i e
and hence < a® ST ((logn)*)’

i

which establishes Lemma 2.

at* n
i = e ¥ — 1 e

Lemma 3. Up=mne* 27 0((10gn}2)'

First we evaluate the number of integers m < n for which 4 (m) = a{®.
The number of the m <{n divisible by the square of a ¢ is less than
o O(L) If m is not divisible by the square of a g, A (m) is
c ¢ \dogay g 2 Alm)
square-free, and the number of the m for which 4(m)=a{® is equal to
the number z of integers
%

m < a®’

no one of which is divisible by ag. We calculate z by Brun’s method. We
have

n L n
Y T R T
I:a?"):l q qatih g<g L1T2 aii)

(—=1y = [—”’E@, Fr (i}
¥

g<n<.<g LNl U
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We write
7
om 2 L]
f f<ga<..<g L QQ"'Q:-Q'ED
7
and 8! = g Bl
" h<n<i<g G182 400
i
so that we have z= % (—1)s,. (19
r=0
Now, evidently,
Z (Hl}r‘?r"_ % Brgz g z (_._l)l'sj__l_ z Sy (2)
rei10log log n r>10log logn r<10loglogn r>=10loglegn
but
1 A%
; (=4
S &8s I s'<qpy T -~odo
al ¥
r>10loglogn r>10loglogn i r>=10loglogn -
.. “ (loglogn)" _ 2n (loglogn)i®loelsnl
af® ,~101cglogn 7l a® 10 loglogn]!
2nelfleelozn(10 loglogn+1) 2n
a{(k) 1010 loglogn < (I-[v'@ 910loglogn (3)
1 W
]
since Yl > = y

Hence, from (1'). on noting the right-hand inequalities in (2) and (3) and
omitting the square brackets, we obtain

i= X (—1)"8,.’—|—O((1+?,v)1tﬂos=os»j+0(_#J%_____), n

k) ol
r<10loglogn ag Y 210Toglogn,

the v term arising from a possible error 1+v+( q; )+ up to 10 loglogn

terms.
From (3), (4), and 1+4v < nle€18m~* we obtain

a n -
z2=3X(—=1)s/+ O (n10/loglogn) +0(m) : (5)
T aat T !
Now we have
n S(~/D+0(1/e%) n ‘O(U-z‘)
E.('"l)r&,.} -[—‘H 1-— —(A:")B"’ -—-—'—me”'
T a‘_ q a-,l

i

P o
e~ ¢O(1/(logn)®) — % e 1+0(
B al® \ (log ?")Q

3
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Thus
n
2= ﬂ-{” ad (1 - 0 ((log n j—l— O(nlﬂ/ﬂosloznjﬂ} + O ( (k} 310 luglogn) (6}

From (6) we easily obtain
1 \ ! 1 an/{lo 2
Vi “‘”"x(”o(uog—ms) J¥ apt o

+O(.‘N‘_1%W : a"")TO((logn)‘) (7

since the number of the square-free af*) < n is less than
(1_!_1;)5: < nm,-’ﬂoxlogn]‘,
and finally, from Lemma 2 and from

1

E (f»)< E = O(log n),

we have U,=mne= 7 —i—o ((logﬂ.)z) (8)
Thus Lemma 3 is proved.

Lumma 4. The number of integers m <u for which v'(m) >loglogn is
Into(n).

Evidently v'(m)=v[4 (m)]; thus we have only to consider the integers
for which v[4(m)] > loglogn.

First we prove that the number of integers for which v[4 (m)] > @ is
ind-o(n), ..

T U,=1inton).
k>z
Since % d(r)= O(nlogn), the number of integers m <{n for which
re=1
v(m) > 2 loglogn is O(n logn/22181%6") — o(n), so that we have to prove

k€2log logn

= 1}?‘1--{*0(‘”),
k>z
e., by Lemma 3,
2loglogn qk
ne"' ;E 7 = ln+o(n). (9
&
But it is known that*
E - = §e*+-0(¢?) (10)

* Srinivasa Ramanujan, (?of-’ected papers, 323, Question 294
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and

k 2loglogn 2loglogn 2loglogn (o
5 % <3 % < 2 e le | 87 (2 Iog‘_‘}og],ﬂ-i—l}
E>2loglogn M- [2 log lOg ?1} 28%8 °g”‘(10g logn)_ 0R0gm

2¢2loglozn (3 1go log n--1
2('..’log]oggn g )::O(e’x)! (ll)

and (9) is an immediate consequence of (10) and (11). We now have
to prove that there are only o(n) integers m < n for which

x<<v'(m) <loglogn.

From Lemma 3 we see that, since #*/k! assumes its maximum value for
k = [2], the number of integers m << n for which v'(m)= £k is, by Stirling’s
formula, at the utmost

ne [x]!_l_o(logzn, <Vm' (12)

Hence the number of integers m <<n for which @ <<v'(in) <loglogn is

0 (%’_ (log log n—m)) =0 (%) = o(n),
which completes the proof of Lemma 4.
We now proceed to prove our main theorem.
By Lemma 4, we have only to prove that the number of integers
m < un for which v'(m) < loglogn but v(m) > loglogn is o(n).
We divide these integers into two classes.
In the first class are the integers for which

v'(m) < loglog n— (loglog log n)2.

For these, v(m)—v'(m)> (logloglogn)?, and so, from Lemma 1, the
number of them is o(n).
For the integers of the second class

loglog n— (logloglog n)? << v' (m) < loglog n.
From (12), it follows that the number of them is less than
Cy T s __ ~(n(loglog logn)*\
27 ((loglog logn)?+1) = o(m(log e ) — o(n).
Thus our theorem is established.
In consequence of the exceedingly slow increase of loglogn we can

easily deduce from our theorem that the number of integers m <= for
which »(m)>loglogm is also in+-o(n).
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Let f(m) be the number of prime factors of m, multiple factors being
counted multiply. We easily deduce that for every e there exists a ¢, such
that the number of integers m < n for which f(m)—v(m) > ¢4 is less than
en, and from this it is clear that the number of integers m < n for which

f(m) > log logn
is dn4-o(n).
By similar methods we can prove the following theorems:

TurorEM 1. Let vi(m) and vy(m) denote the numbers of prime factors of
m of the forms 4k--1 and 4k--3 respectively. T'he number of inlegers m < n
for which vi(m) = vy(m) is in-to(n). The same holds for v (m) < vy(m)
and hence the number of integers m << n for which v;(m) = vy(m) is o(n).

THEOREM 2. Let A,(m) and A,(m) denole the product of all prime
factors of m of the forms 4k-+1 and 4k-+3 respectively, multiple factors
being counted multiply. The number of integers m <n, for which

A (m) = A,(m) is Into(n).

THEOREM 3. The number of integers m <<n, the greatest prime factor
of which is a prime of the form 4k-+1, is tn-+o(n).

The University,
Manchester.
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