ON THE REPRESENTATION OF AN INTEGER AS THE SUM
OF k k-TH POWERS

Pavrn Erpos®.

[Bxtracted from the Journal of the London Mathematical Society, Vol. 11, 1936.]

1. Let f(m) denote the number of representations of m as the sum of
k k-th powers of non-negative integers. Hardy and Littlewood{ con-
jectured (* Hypothesis K *’) that f(m)= O(mm") for every ¢ == 0. In the
opposite direction, Chowla has recently provedi that, for fixed % =3,
flm) 5 0(1). In this note I give a simple proof that, for an infinity of m,

) f(m) > en (logm/log logm)_
where ¢; (as also ¢,, ...) is a positive number depending only on £§.

Dr. Mahler has just proved that, for k = 3, f(m'*) > ¢, m, which shows
that Hypothesis K is false for k= 3.

2. We first suppose that % is odd.
Levma 1. If ptk, and (p—1, k) =1, then for every x =£ 0 (mod p)
there exists exactly one y (mod p*) such that y* =z (mod p*).

Proof. It suffices to prove that, if y,y, =0 (mod p) and y, FEy,
(mod p*), then y,* =£ y,* (mod p*). Hence it suffices to prove that 2% =1
(mod p¥) implies z = 1 (mod p*), This is clear, since zP*2""' = 1 (mod p¥)
and (k, pF—p* 1) =1

* Received 10 December, 1935; read 12 December, 1935,

t Math. Zeitschrift, 23 (1925), 1-37.

1 Indian Physico- Mathematical Journal, 6 (1935), 65-68.

§ Bince writing this paper, I have heard from Prof. Chowla that he has also proved (1).
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Let pq, Py, .... », be consecutive primes greater than % for which
(p—1, k)y=1. Let A=p,ps... p,, n=A% BlA, 4= BC. Let Sg
denote the number of solutions of

(2) 2, <n, ;=0 (mod B) (i=1,2, ..k,
(3) k=0 (mod n),
(4) (@ +... kg, 0) =1,
in non-negative integers ay, ..., @;.
LemMMma 2. Sz > (1;3?';;:'

Proof. For each of x}, ..., 2;_, there are n/B values to satisfy (2).
When =, ..., ;, have been chosen, there are (n/B)II (1—p?)
plC

values for x;,_; to satisfy (2), (4). When xl, x.z, .+» ¥ have been chosen,
@, is uniquely determined mod BC* by ( (3) and so can be given
n/BC* values.

iy c3 k-1
Hence S = = B”” C" H (1 —p~1) > 5%,

To prove (1), we now observe that the number of solutions of
(5) v, <n, F4..4xrf=0 (modn)
-1
13 at least 28> G#sziz—,
BlA log p,

since the same value of @, cannot arige from two different B’s. Hence
there is an m << kn®* which has at least

ey 2rmkt 1
logp, kn’-t

representations as the sum of £ k-th powers. Now, by the prime number
theorem for arithmetic progressions, p, << c¢,r logr, and

logn =k (logp,+...4+logp,) <csrlogr,

so that r>Co lolgolgoz e

Hence m has at least e@ogn/logloen) yepregentations as the sum of & k-th
powers, which establishes (1) for odd k.

3. We now deal with the case in which k is even and greater than
2. It is easily seen (as in the proof of Lemma 1) that, if p+% and
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(p—1, k) = 2, every k-th power residue (mod p¥) prime to p is also a
quadratic residue, and conversely.

Lemya 3. If Cis a product of different primes, each of which satisfies
ptk, p=3 (mod 4), (p—1, k) =2, then the nwmber of solutions of
ak+Ly* = q (mod C¥), where (a, 0) =1, is

CrII (14p7Y).
nlC

Proof. We shall prove that the number in question is the same as
the number of solutions of #?+4*=a (mod C¥), and by a well-known
result®, this has the value stated. It is sufficient to prove that the
congruences
(6) atyt=a (mod p),

(7) w*+v2=a (mod p¥)

have the same number of solutions for every p|C. First, by the
above remark, there is a (1, 1) correspondence between the solutions of (6)
with p {2y, and of (7) with p+uv. Secondly, for any = 0 (mod p), and
any % = 0 (mod p), the number of solutions of »?=a—wu? (mod p*) and
y* = a—ax* (mod p*) is the same, since a—u? £ 0 (mod p) and a—a* £ 0
(mod p). Similarly for any y=0 (mod p) and v =0 (mod p). This
exhausts the possible cases, and the lemma is proved.

Let py, ..., p, be consecutive primes greater than %, for which p =3
(mod 4) and (p—1, k) =2, and let 4, B, C, n be as in §2. Let Sy
denote the number of solutions of (2}, (3), and
€9 (zy* ... 42 5, C)=1.

For each of #y, ..., %;_5 there are n/B values to satisfy (2). For z;_, there
are at least (n/B) II (1—2p~1) values to satisfy (4"). By Lemma 3, there
?IC

are Ck II (1+4p1) pairs of residues (mod C*) for z,_;. 2, to satisfy (3),

plC
and so
_n IT (14p1)
B2C* ¢ &
pairs of values.
sy, BE
Hence N BE Ok pl|]c (14+p ) (1—2p7Y)
nh-1
~ % logp,)*"

The rest of the proof now proceeds as before.

* Dickson, History of the theory of numbers, 1 (1919}, 225, note 1,



136 AN INTEGER AS THE SUM OF % k-TH POWERS.

4. By the same method we can prove that, if a,, @y, ... are integers,
and 1/k;+...41/k,= 1, there are an infinity of m with more than

et {logm/log logm)
representations in the form
a, eht-ag abe 4. gt (2, >0).
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