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TurorcHOUT this paper p, q. 7, p’, ¢, ', 8, P are used to denote prime
numbers; ¢ an arbitrarily small positive number; n all sufficiently
large integers, i.e. n > n(e); N(p,m) the number of the primes p not
exceeding m and belonging to a defined set. The (' denote positive
absolute constants, not always the same in each occurrence. 1 prove
the following

TrEOREM. If f(n) is the number of solutions of the equation

(p—g—1)r—1)=n (1)
in primes p, q, r no two of which are equal, then
lim f(n) = co.
n—o

I believe, but cannot prove, that a similar result holds for the

solution of (p—1)g—1) = n.

We require the following
Lemva.*  If the primes p are such that p—1 has. more than
(1+4¢)loglog n or less than (1—e)loglog n different prime factors, then
n
J_'v 7l —]. 2
N = of i) @
This result is included in the more general one that, if I, denotes
a prime such that P,—1 has exactly k different prime factors, then
N(Py, n)log*n < Cn(C-+loglog n)*+3,
From this is deduced exactly as in my paper quoted above that

2 A,{Pk: n)_}_
k<{(1—e)loglogn
where 8 = 8(¢) > 0.

I prove from (3) that, if P denotes a prime such that P—1 has

more than (1+e¢)loglog P or less than (1—e)loglog P factors, then

Ia“;-(l-l—%oslogn

* P, Erdés, Quart. J. of Math. (Oxford), 6 (1935), 205-13.
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> P! converges. It suffices to show that

n
PR 4
where &' is a positive constant. In (4) either P < +n, i.e. there are
at most v, values of P; or n» = P > wn, and then

N(P,n) = a(

loglogn = loglog P > loglog n—1,
(1-+e)loglog P > (1-1e)loglog n,
(1—e)loglog P < (1—%e)loglog n.

and so

Hence the P’s exceeding v are included among the primes @ (< n) for
which @—1 has more than (1-4-je)loglog n or less than (1—}e)loglog n
different prime factors. Then from (3), with 8" = §(1e),

NPn) <ol o) dnt = o " ).

(P,n) o((log ,n_)lT-B) n O((log n)1+8')
Typify by A the positive integers not exceeding = such that
pgr = A4,

where no two of the primes p, g, » are equal, and p—1, g—1, r—1
each have more than (1—e)loglogn factors. I prove that

N4, n) > 010“ : (5)
g?’b

Denote by p’ (or ¢, r’) the primes such that p’—1 has more than
(1—e)loglog n different prime factors. Take the primes, say #/, less
than n/p'q’ for arbitrary and unequal p’, ¢, and multiply them
by p'q’. The integers p’q’r’ belong to the A’s, and each A can be
obtained at most six times in this way. Hence

-N' ) ; 2\:” 4 i).'i
ol > > (v (®)
the summation being extended over all different »’, ¢’, and N’
denoting the omission of p’, ¢’ among the ¢’ in calculating N. It
suffices for our object to take only those p’, ¢’ for which

nt < p',q <ni

I prove now that -}; = C\ (7)
ni{-_n'«(n*p
1
For — = loglog n--C'4-0(1),
Z 7 glog

p=n
3685.7 c
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and so % = L (8)

nt<p<nd P

The primes p in this sum such that »—1 has less than (1—e)loglog n
different prime factors occur among the primes P (r# << P < n?) which
are such that P—1 has less than (1—Je)loglog P different prime
factors. For clearly

(1—e)loglog n << (1—4e)loglog P,
since loglog n—log 8 < loglog P < loglog n—log 4.
Hence, since the series 3 P-1 converges,
P11 < e say,

ntP<nt
for arbitrarily small positive e, and n greater than some n(¢). Then
(7) follows on omitting the P from the p in (8). On squaring (7),
p'EY 1
—= 0, (9)
ni<y’, q<nip q
the omission of the terms in which p’ = ¢’ being allowable, since
> 1/p* converges. On subtracting from the number of primes s
less than n/p’q’ the number of those for which s—1 has less

than (l*ae)loglog-—q_ different prime factors, i.e. o(pg /l 0g —— ,)
from (2), by replacing € by ie and n by #/p'q’, we have
)
p'q] " p'q'logn

2 Cn
4 et P ‘g logn logn

Hence, from (6),

6N(4,n) >

by (9).

Denote now by B;, B,,... the different integers in the set ¢(4)
where A does not exceed n and ¢ denotes Euler’s ¢-function. The
B’s are clearly of the form

(@' —1){g'—1)('—1).
I prove that N(B,n) = o(nflogn). (10)
Define the quadratic part of an integer I = p°gP... as the product of
the powers p® with indices exceeding unity. Split the B’s into two
classes B,, B, according as their quadratic part has respectively more
than or not more than eloglogn different prime factors. Obviously
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the integers B, have a divisor which is composed of prime factors, in
number exactly [eloglogn] (= j, say), each occurring with a power
exceeding unity. Hence

i ) 7
N(Byn) < n(z iﬂ) 2 o n(ﬁ') e o(lﬁ)
S X J ogn
where the summation extends to all primes p and all indices « exceed-

ing unity so that the double series converges.
Each of the integers in B, is of the form

(P =g —=1)("—1),
where p’'—1, ¢'—1, r'—1 each have at least (1—e)loglogn different
prime factors, and so at least (3—3e¢)loglogn prime factors, not
necessarily all different. But from the definition of B,, p'—1, ¢'—1
can have as common factors at most eloglogn different primes; and
similarly for ¢'—1, '—1, ete. Hence each integer in B, has at least
(3—6e)loglogn different prime factors and so at least 2G-6eloslogn

divisors. But i
> d{t) < Cnlogn,
=1

* N(B. g Cnlog 5 /2B—8eloglogn — i
and so (B, n) << Cnlogn/ O(IOgn)’
if we now suppose ¢ taken so small that

23-6€ = g2 — (2-71...)2

Hence N(B,n) = N(B;,n)+N(B,,n) = o(nflogn).
This is (10).

Then, from (5), N(4,n) = 1E\T(B, n) for every positive constant e,

€

if n > n(e). Hence at least one of the B’s less than » is represented
at least 1/e times in the form ¢(N) for every 1/e if n > n(e). This
concludes the proof of the main theorem.

* It is here that the method breaks down for the solution of

(p—1)g—1) = »n.



