
NOTE ON SOME ADDITIVE PROPERTIES
OF INTEGERS

By PAUL ERDÖS, Manchester .

I. It is well known that for suitable n's both the equations n=xe y2
Cl

and n=x 2+y' have more than n log lo g n solutions . I show that for suitable
n's the number of solutions of the equations n=p2-q2 resp . n=p 2 +q 2

C 9
(p, q primes) is greater than nloglogn

I sketch the proof for n =p'-q' .

Let A=2 .3 . . . p r , the product of consecutive primes, be sufficiently
large . By elementary method we prove that the number of solutions of
the congruence p2-q2 =-0 (mod A) with 0 < q < p < A is greater than
	1	

A 1 + 41og log A . But the integers of the form p 2-q 2 with 0 < q< p < A lie
all between 0 and A', hence there exists a multiple of 4 say n(<,4")
such that the number of solutions of the equation n=p 2-q2 is greater than
	1	1	

A4 log log A > n8 log log n

The proof for n=p2 +q 2 is much more complicated but also elementary .
It requires Brun's method .

2 . Schnirelmann proved that there exists a constant c$ such that
every integer is the sum of c8 or less primes . Some time ago Heilbronn-
Landau-Scherk proved that c8S 71 . By Brun's method I proved that there
exists a constant c4 such that any integer is the sum of c 4 or less positive
and negative squares of primes . The same result holds for any powers
of primes. It can be proved also that the density of integers of the form
p 2+q2-r2-s2 is positive .

3 . Now I sketch some new results of N . P. Romanoff (Tomsk) .
Let us denote by f(x l , x2, • • ' , Al ; Yl)Y2, . . . Yk2In) the number of

integers not exceeding n belonging to the sequence xi, y; and x;+y; . It
is an old and most important problem of the additive theory of numbers
to determine the value of f for given xi and y1 . But this can be solved
only for special sequences . Romanoff deduced 4 formulas for the mean
value off for general sequences of integers .
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First mean-value-theorem

Z f(x1 , x21 . . . , x k1 ; y1,y2, . . . .yk2 I n)
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where Ck= (k) and y'z denotes the complementary sequence of yZ .

Second mean-value-theorem
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Third mean-value-theorem :
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Fourth mean-value-theorem :

Z f(xl, x2 r . . .
xk1 xl x 2 i . . . xk I n)

1-x1<x2< . . .<xk~n

n]

=nCk-2Cn -Cn 1 +2k+3C[ J+ 2k+1(1+2 En) C'
[
+

with En=O if n even, and En=1 if n odd .
The proof depends on elementary combinatoric methods .
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