NOTE ON SEQUENCES OF INTEGERS NO ONE OF WHICH IS DIVISIBLE BY ANY OTHER

PAUL ERDÖS*.

[Extracted from the Journal of the London Mathematical Society, Vol. 10 (1935).]

1

Let a_1, a_2, a_3, \ldots be a sequence of integers, say (A), such that a_m is not a divisor of a_n unless m=n. Chowla, Davenport, and I proposed the question whether the density of every sequence (A) is zero. Besicovitch† proved that this was not so by showing that, if d_a is the density of integers having a divisor between a and 2a, then $\lim \inf d_a = 0$.

We can easily prove that the upper density of any sequence (A) does not exceed $\frac{1}{2}$. In fact, (A) cannot contain n+1 elements $a_1, a_2, ..., a_{n+1}$ at most equal to 2n. For, if $a_m = 2^{a_m} b_m$, where b_m is odd, and so has at most n different values, two of the b's must be equal. If these correspond to indices m_1, m_2 , clearly a_{m_1} is divisible by a_{m_2} if $m_1 > m_2 \ddagger$.

We prove now that the lower density of (A) is zero§. This follows from the

Theorem. $\sum_{n=1}^{\infty} \frac{1}{a_n \log a_n} converges.$

More generally, we show that if p_n denotes the greatest prime factor of a_n , then

$$\sum_{n=1}^{\infty} \frac{1}{a_n} \prod_{p \leqslant p_n} \left(1 - \frac{1}{p} \right) \leqslant 1, \tag{1}$$

where the product refers to the primes not greater than p_n . It follows that

$$\sum_{n=1}^{\infty} \frac{1}{a_n \log a_n} < c,$$

where c is a constant independent of the sequence, since

$$\prod_{p\leqslant p_n} \left(1 - \frac{1}{p}\right) > \frac{c}{\log p_n} \geqslant \frac{c}{\log a_n}.$$

For suppose that (1) is not true; then, for some integer N,

$$\textstyle\sum\limits_{n=1}^{N}\frac{1}{a_{n}}\prod\limits_{p\leqslant p_{n}}\left(1-\frac{1}{p}\right)>1.$$

^{*} Received 30 November, 1934; read 13 December, 1934.

^{† &}quot;On the density of certain sequences", Math. Annalen, 110 (1934), 336-341.

[‡] This proof is due to M. Wachsberger and E. Weissfeld.

[§] A different proof has been given by Behrend, Journal London Math, Soc., 10 (1935), 42-44.

127 P. Erdős

Consider the a's to be arranged according to the magnitude of their greatest prime factors. Let n be a sufficiently large integer, and denote by n(a) the number of integers not greater than n divisible by at least one of the a's, and by $n(a_k)$ the number of integers not greater than n divisible by a_k but by no a_i with i < k. Clearly

$$n(a) = \sum_{k=1}^{\infty} n(a_k) > \sum_{k=1}^{N} n(a_k).$$
 (2)

The $n(a_k)$ integers include among their number the integers not greater than n of the form $a_k x$, where all the prime factors of x are greater than p_k . The number of integers $m \leq n/a_k$, not divisible by any prime $p \leq p_k$, is, by the usual argument based upon the sieve of Eratosthenes, at least

$$n(a_k) \geqslant \frac{n}{a_k} \prod_{p \leqslant p_k} \left(1 - \frac{1}{p}\right) - 2^k,$$

and this is, a fortiori, a lower bound for $n(a_k)$. Hence, from (2),

$$n > n(a) > \sum_{k=1}^{N} \frac{n}{a_k} \prod_{p \leqslant p_k} \left(1 - \frac{1}{p}\right) - \sum_{k=1}^{N} 2^k.$$

This gives a contradiction for large n since N is independent of n.

We conclude by proving that in Besicovitch's theorem lim inf may be replaced by $\lim_i i.e.$ for every $\epsilon > 0$, and $a > a(\epsilon)$ say, the density of integers having a divisor between a and 2a is less than ϵ .

We require the following lemma, easily proved by the method of Turán*.

Lemma. The normal number of prime factors less than a of an integer is $\log \log a$.

This means that, for arbitrary $\epsilon > 0$, $\delta > 0$, and $a > a(\epsilon, \delta)$, $n \geqslant a$, the number of integers not greater than n having either more or less respectively than $(1+\epsilon)\log\log a$, $(1-\epsilon)\log\log a$ prime factors less than a is less than δn .

We divide the integers lying between a and 2a into two classes. Put in the first the integers b_1, b_2, \ldots, b_y having at most $\frac{2}{3} \log \log a$ prime factors and in the second those, say c_1, c_2, \ldots, c_z , having more than $\frac{2}{3} \log \log a$ prime factors.

^{* &}quot;On a theorem of Hardy and Ramanujan", Journal London Math. Soc., 9 (1934), 274-276.

The number of integers not greater than n divisible by a b is less than

$$\sum_{i=1}^{y} \frac{n}{b_i} < \frac{n}{a} \ y < \frac{1}{3} \epsilon n,$$

for from the lemma, replacing a and n by 2a, we have $y < \frac{1}{3}\epsilon a$.

The integers divisible by a c can be arranged in two sets. In the first are those of the form $c_i x$, where $x < n/c_i$ and has at most $\frac{2}{3} \log \log a$ prime factors less than a. The number in this set is less than

$$\frac{1}{3}\epsilon \sum_{i=1}^{z} \frac{n}{c_i} < \frac{1}{3}\epsilon \frac{nz}{a} < \frac{1}{3}\epsilon n.$$

The second set includes the integers of the form $c_i x$, where x has more than $\frac{2}{3} \log \log a$ prime factors less than a. Hence these integers have more than $\frac{4}{3} \log \log a$ prime factors less than a and so the number of them is less than $\frac{1}{3} \epsilon n$. This proves the theorem.

I have since proved the following generalisation of Besicovitch's theorem:

The density of the integers having a divisor between n and $n^{1+\epsilon_n}$, where $\epsilon_n \to 0$ as $n \to \infty$, tends to zero as n tends to infinity.

The University,

Manchester.