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In December 2010 the János Bolyai International Mathematical Prize of
the Hungarian Academy of Sciences was awarded to Professor Yuri Ivanovich
Manin. In this note we wish to present Professor Manin to the readers of
Acta Mathematica Hungarica. The first part is a general overview of his sci-
entific achievements, in the second part we provide some more details about
his broad mathematical work.

I.

Yuri Ivanovich Manin is widely regarded as one of the outstanding mathe-
maticians of the 20th century. His work spans such diverse branches of math-
ematics as algebraic geometry, number theory and mathematical physics.
But mathematics is not his only interest. He has been interested and pub-
lished research or expository papers in literature, linguistics, mythology,
semiotics, physics, philosophy of science and history of culture as well. He
is one of the few mathematicians who determined essentially the Russian
science in the second half of the 20th century.

Yuri Manin was born in 1937 in the town of Simferopol, in Crimea. His
father died in the war, his mother was a teacher of literature. His mathe-
matical abilities became apparent already during his school-years, when he
slightly improved Vinogradov’s estimate of the number of lattice points in-
side a sphere. Between 1953-58 he studied at the faculty of Mechanics and
Mathematics of the Moscow State University, the most prestigious mathe-
matical school of in USSR. His class and the following class included sev-
eral other talented students: Anosov, Golod, Arnol’d, Kirillov, Novikov and
Tyurin. Starting from the second year he became an active member of the
seminar led by A. O. Gel’fond and I. R. Shafarevich targeting the work
of Hasse and Weil on the ζ-function on algebraic curves over a finite field.
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mailto:nemethi@renyi.hu


2 A. NÉMETHI

At this time his first publication appeared containing an elementary proof of
Hasse’s theorem. After graduation he continued his postgraduate studies at
the Steklov Institute of Mathematics under the supervision of I. R. Shafare-
vich. During these years an algebraic geometry seminar led by Shafarevich
began to operate, with the active participation of Manin. These two semi-
nars determined his major mathematical interests and passions: the interface
of algebraic geometry and algebraic number theory.

He enriched these fields by numerous fundamental contributions, includ-
ing the solutions of major problems and the development of techniques that
opened new possibilities for research. The top of the iceberg contains two
outstanding results in algebraic geometry. The first one was the proof of
the analogue of Mordell’s Conjecture (now Faltings’ Theorem) for algebraic
curves over function fields. In Faltings’ classical case the statement is the
following: a curve of genus greater than 1 has at most a finite number of ra-
tional points. Over a function field, in Manin’s version, the curve depends
on parameters. In this proof a new mathematical object played the key role.
Later this was named by Grothendieck the Gauss–Manin connection, and it
is a basic ingredient of the study of cohomology in families of algebraic va-
rieties in modern algebraic geometry. The second outstanding achievement
was a joint work with his student V. A. Iskovskih: it provided a negative
solution of the Lüroth problem in dimension 3. They proved the existence
of nonrational unirational 3-folds via deep understanding of the geometry of
three-dimensional quartics.

The early research on the set of rational points of bounded height on cu-
bic surfaces was continued and generalized via studying the asymptotics of
the distribution of rational points by height on Fano varieties. This gener-
ated a sequence of deep conjectures and results, for example the ‘conjecture
of linear growth’, developed and finished by Manin in a joint work with
some of his students (Batyrev, Franke, Tschinkel). Moreover, motivated by
Mordell’s conjecture, Manin and Mumford formulated the so-called Manin–
Mumford conjecture which states that any curve, which is different from its
Jacobian variety, can only contain a finite number of points that are of fi-
nite order in the Jacobian. This problem later solved by M. Raynaud, has
developed into the general ‘Manin–Mumford theory’.

In number theory, or arithmetic algebraic geometry, Manin developed the
so-called Manin–Brauer obstruction to the solvability of Diophantine equa-
tions. The Manin obstruction associated with a geometric object measures
the failure of the Hasse principle for it; that is, if the value of the obstruc-
tion is non-trivial, then the object might have points over all local fields but
not over the a global field. For torsors of abelian varieties the Manin ob-
struction characterizes completely the failure of the local-to-global principle
(provided that the Tate–Shafarevich group is finite).

He also obtained fundamental results in the theory of modular forms
and modular symbols, and the theory of p-adic L-functions, classification of
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isogeny classes of formal p-divisible groups; he proved the Weil conjecture
for unirational projective 3-folds.

Manin obtained a series of outstanding results in mathematical physics
as well, including Yang–Mills theory, string theory, quantum groups, quan-
tum information theory, and mirror symmetry. These papers show the strong
symbiosis of mathematics and physics and how they strongly influence each
other. For example, an article of Atiyah, Drinfel’d, Hitchin and Manin pro-
vided a complete description of instantons by algebro-geometrical methods
emphasizing the potential power of algebro-geometrical tools in theoretical
physics. Symmetrically, ideas from physics solved crucial open problems in
algebraic geometry, see for example the papers of Kontsevich and Manin
about quantum cohomology of algebraic varieties. His work with Kontse-
vich on Gromov–Witten invariants and work on Frobenius manifolds (later
on ‘F-manifolds’ developed with C. Hertling) created new areas of mathe-
matics with strong mathematical machinery and several applications.

He has also written famous papers on formal groups, noncommutative
algebraic geometry and mathematical logic.

Professor Manin is the author and coauthor of 11 monographs and about
235 articles in algebraic geometry, number theory, mathematical physics,
history of culture and psycholinguistics. In some of his books he created and
developed new theories (like in the first one in the next list). Some titles of
his books and monographs emphasizing the diversity of subjects:

Cubic forms: algebra, geometry, arithmetic published in 1972,
A course in mathematical logic (1977),
Computable and noncomputable (1980),
Linear algebra and geometry with A.I. Kostrikin published in 1980,
Gauge fields and complex geometry (1984),
Methods in homological algebra and Homological Algebra with Sergei

Gelfand (1988-89),
Quantum groups and noncommutative geometry (1988),
Elementary particles with I. Yu. Kobzarev (1989),
Introduction in Number Theory with A.A. Panchishkin (1990),
Topics in noncommutative geometry (1991),
Frobenius manifolds, quantum cohomology and moduli spaces (1999).

The famous book Mathematics and physics or the selected essays Math-
ematics as Metaphor provide a deep insight in his philosophy of science.

Manin’s pedagogical activity started in 1957 at Moscow State University,
and he remained there until the early 90’s. At parallel, he was principal
researcher at Steklov Mathematical Institute. In the period 1968–86 he was
not allowed to travel abroad, but starting from 88 he was visiting professor
at several Universities including Berkeley, Harvard, Columbia, MIT, IHES.
He accepted a professorship at Northwestern University in the United States,
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and the position in the Board of Directors of the Max Planck Institute in
Bonn in 1993. He became Professor emeritus at the Max Planck Institute
in 2005.

During these years he was continuously surrounded by a large number of
students, the most talented ones wished to be guided under his supervision.
He was advisor of 49 students, some of them became celebrated mathemati-
cians. Just a few of them: Kapranov, Beilinson, Zarhin, Danilov, Iskovskih,
Shokurov, Drinfeld, Wodzicki, Tsygan, Tschinkel. Manin was a very popular
professor with a lot of energy with vivid presentations and real pedagogical
vein.

Professor Manin was six times invited speaker at international con-
gresses, he was invited plenary speaker at European Congress of Mathe-
matics. He received several international honors. He was awarded several
prices:

Highest USSR National Prize (the so-called Lenin Prize) in 1967 for work
in algebraic geometry,

Brouwer Gold Medal in Number Theory from the Dutch Royal Society
and Mathematical Society in 1987,

Frederic Esser Nemmers Prize in Mathematics from Northwestern Uni-
versity in 1994,

Rolf Schock Prize in Mathematics of the Swedish Royal Academy of Sci-
ences in 1999,

King Faisal International Prize for Mathematics from Saudi Arabia in
2002,

Georg Cantor Medal of the German Mathematical Society in 2002,
Order Pour le Mérite and Great Cross of Merit with Star from Germany

in 2007 and 2008; and the
János Bolyai International Mathematical Prize of the Hungarian

Academy of Sciences in 2010.

He is elected member of several scientific academies: Academy of Sci-
ences, Russia; Academy of Natural Sciences, Russia; Royal Academy of
Sciences, the Netherlands; Academia Europaea, Max-Planck-Society for
Scientific Research, Germany; Göttingen Academy of Sciences; Pontifical
Academy of Sciences, Vatican; German Academy of Sciences; American
Academy of Arts and Sciences; Académia des Sciences de l’Institut de
France.

He is recipient of several honorary degrees of famous universities: Sor-
bonne, Oslo, Warwick.

II.

Since the scientific activity of Professor Manin covers many areas, and
in all of them his impact was so huge, in such a short presentation neces-
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sarily we have to make some selection. In this note, we concentrate on his
mathematical achievements, but this also is so wide that I decided to discuss
only few of them. The choices are subjective and very selective, nevertheless
even this selection guides the reader through many areas of mathematics.
In this presentation we also wish to give a little historical background of the
corresponding mathematical achievements, and mention some further de-
velopments showing their fundamental role and impact in the evolution of
mathematical ideas.

1. The proof of Mordell conjecture over function fields

The origin of Mordell conjecture goes back to the search of non-zero
rational solutions of a homogeneous equation f = 0 in three variables with
rational coefficients. Usually, the complex algebraic curve C, the zero set
of f in the complex projective plane CP2 is also associated with such an
equation. If C is smooth then it is a Riemann surface of genus g ≧ 0, and
its geometry/topology has a qualitative effect on the previous Diophantine
question as well.

For example, if g = 0, then f is either linear or quadratic. A linear equa-
tion, with rational coefficients has evidently infinitely many rational solu-
tions. On the other hand, a conic either has no solution (like x2 + y2 = 3z2),
or infinitely many (like x2 + y2 = z2).

The g = 1 case is incomparably more interesting. It corresponds to
smooth elliptic, degree three curves E of CP2. The complex points of such
a curve form an abelian group. In order to define this, one first fixes an ar-
bitrary point O for the neutral (zero) element. For example, in the case of
y2z = x3 − xz2 (the projective closure of y2 = x3 − x) we can take for O the
inflection point at infinity E ∩ {z = 0}. Then, in the group law of E, P ⊕Q
⊕R = O if and only if the points P , Q and R are the intersection points
of E with a line.

If O is a rational point (that is, all its coordinates are rational numbers),
then the set of all rational points E(Q) form a subgroup. For example, for
the previous equation y2z = x3 − xz2,

E(Q) =
{

O; (0, 0, 1); (1, 0, 1); (−1, 0, 1)
}

≈ Z/2Z× Z/2Z.

Mordell proved in 1922 that E(Q) is a finitely generated abelian group. In
general, the rank of E(Q) is not necessarily zero, for example, if C is the
closure of y2 + y = x3 − x then (according to Tate) E(Q) = Z. It is interest-
ing to mention that the torsion part is seriously obstructed. Indeed, in 1977
Mazur proved that E(Q)tors is isomorphic to one of the following 15 groups:
Z/nZ for n = 1, 2, . . . , 10, or 12, and Z/2Z× Z/2nZ for n = 1, . . . , 4.

One can try to generalize the result of Mordell in two directions.

Acta Mathematica Hungarica



6 A. NÉMETHI

First, one can consider a larger field of ‘coefficients’ over which the equa-
tion of the curve is given. For example, for elliptic curves defined over
number fields (finite field extensions of Q) one has the following generaliza-
tions. By a theorem of Mordell–Weil (1922/28) if E is an elliptic curve (or
even an abelian variety) defined over a number field, then E(M) (the set of
solutions with all coordinates in M ) is a finitely generated abelian group.
For example, if M = Q(i)

(

i =
√
−1

)

, and E is the closure of y2 = x3 − x
as above, then

E
(

Q(i)
)

=
{

O; (0, 0, 1); (1, 0, 1); (−1, 0, 1);

(i,−1 + i, 1); (i, 1− i, 1); (−i, 1 + i, 1), (−i,−1− i, 1)
}

≈ Z/2Z× Z/4Z.

The torsion part E(M)tors is again obstructed: in 1990 Kamienny listed 26
groups and proved that if M is a quadratic number field then E(M)tors is
isomorphic with one of them. The Torsion Conjecture states that if M is a
number field then there is a finite list of possibilities for E(M)tors, and its
‘strong’ version claims that this list depends only on [M : Q]. The Strong
Uniform Boundedness Conjecture was proved by Merel in 1994 showing that
the order of E(M)tors can be bounded by a function of [M : Q]. The proof
relies on three fundamental ingredients: results of Mazur and Kamienny, the
innovative winding quotient of Merel, and the use of Manin’s presentation
of the homology group of modular curves.

One the other hand, Mordell conjectured that any smooth curve defined
over a number field and of genus g > 1 has only finitely many rational points.
This was proved by G. Faltings in 1983, and now is known as Faltings’ the-
orem. Faltings’ proof relied on the known reduction to the Tate Conjecture,
and several deep tools of algebraic geometry.

In fact, Faltings proved the more general Shafarevich Conjecture. This
predicted that there are only finitely many isomorphism classes of curves of
genus greater than zero over a number field with specified good reduction.
This fact will stay valid for abelian varieties too. The abelian varieties are
those projective algebraic varieties which have an algebraic groups structure
too. The reduction of the Mordell Conjecture to the Shafarevich Conjecture
was due to Parshin in 1971. An immediate application of Faltings’ theorem
is to Fermat’s Last Theorem, showing that for any n > 4 there are at most
finitely many primitive solutions to xn + yn = zn.

Manin in 1963 [1] considered and proved Mordell Conjecture in a more
general situation, that is for curves defined over fields of functions. This
means that the curve depends on parameters, one has to consider families
of curves. Manin in his proof introduced a new technical tool, which now in
modern algebraic geometry is called the Gauss–Manin connection.

The Gauss–Manin connection is a connection on a vector bundle asso-
ciated with a topologically locally trivial family of algebraic varieties. The
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base space of the vector bundle is the set of parameters defining the family
of varieties, and the fibers usually are the de Rham cohomology groups of
the fibers. Flat sections of the bundle are described by certain differential
equations. The connection, or the flat sections, allow one to move a coho-
mology class from a fiber of the family to any nearby fiber. These differential
equations have their generalization in the theory of D-modules.

A different proof of the Mordell Conjecture for function fields was given
by Grauert in 1965, two proofs by Parshin (1968 and 1990) and in 1990
Coleman found and corrected a gap in Manin’s proof.

The Mordell Conjecture led Manin to the following question (asked inde-
pendently by Manin and Mumford, called the Manin–Mumford Conjecture):
Consider a curve defined over a number field, and fix an embedding of the
curve in its Jacobian. Recall that for any curve C of genus g ≧ 1, its Ja-
cobian J is an abelian variety of dimension g; J is covered by Cg and any
point in J comes from a g-tuple of points of C.

The Manin–Mumford Conjecture says that C, embedded in its Jacobian
variety J can only contain a finite number of points that are of finite order
in J , provided that g > 1. This conjecture was verified by M. Raynaud in
1983. Various other proofs and generalizations appeared by Raynaud, Serre,
Coleman; recently in 2001 it was reproved by Hrushovski using model theory,
and by Pink–Roessler and Roessler using algebraic geometry.

Long before either of the Mordell Conjectures or Manin–Mumford Con-
jecture was settled, it was Serge Lang 1965 who realized that these two
statements are special cases of a more general conjecture, which is usually
called the Mordell–Lang conjecture; it was proved by McQuillan in 1995.

Manifolds with many rational points [4,5]. Mordell Conjecture is
a particular case of the general principle which is expected to be valid in
Diophantine geometry: if the canonical line bundle is ample (a fact which is
guaranteed by varieties of general type, or in the presence of hyperbolicity
or negative curvature), the manifold must have few rational points. Recall
that the canonical line bundle is automatically associated with any smooth
manifold, it is provided by the top-dimensional forms.

On the contrary, when the dual of the canonical line bundle is ample
(a fact which is true for Fano manifolds, or in the presence of ellipticity or
positive curvature), one expects that generally it has many rational points.

In the end of the 80’s, Manin launched a research program, grouped
around the Manin’s Linear Growth Conjecture, which targeted the quantita-
tive study of manifolds with many rational points. The main notions, avail-
able tools and conjectures were expounded in his joint article with V. Batyrev
in 1990. Two general new phenomena were discovered: (a) the existence of
the ‘accumulating subvarieties’ concentrating anomalously many points, and
(b) linear growth of the number of points of bounded anticanonical height
on the complement to all accumulation subvarieties.
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The ‘conjecture of linear growth’ was proved by Manin together with
Franke and Tschinkel for homogeneous Fano varieties, and for certain Del–
Pezzo surfaces with Batyrev and Tschinkel.

2. Disproof of Lüroth Conjecture

Rational varieties play a distinguished role in the classification and study
of different properties of algebraic varieties. An irreducible variety X defined
over an algebraically closed base field k is called rational if there exists a bi-
rational map between X and the n-dimensional projective space Pn

k , that is,
if some Zariski open sets of X and Pn

k are isomorphic. In algebraic language
this means that the field of rational functions of X is a pure transcenden-
tal extension k(t1, . . . , tn) of k; or, if some Zariski open set of X can be
parametrized by n affine coordinates t1, . . . , tn.

For example, smooth rational curves over k = C are Riemann surfaces
with g = 0, and they are isomorphic to CP1. This external position of these
curves becomes even more emphasized if we consider finite algebraic cover-
ings C1 → C2 of curves with arbitrary genera (or topological ramified cover-
ings of Riemann surfaces). Then one has g(C1) ≧ g(C2), and the difference
can be expressed in terms of the covering degree and the ramification in-
dices. This means that if g(C1) = 0 then necessarily g(C2) = 0 too. In other
words, the existence of a finite morphism P1 → C guarantees the rational-
ity of C. In the algebraic language of rational functions this is formulated
as follows: if L is a subfield of a pure transcendental extension k(t) of k,
containing k, then L is also pure transcendental.

This is Lüroth theorem valid for curves.
The analogue of Lüroth theorem for surfaces is also true: let L be a sub-

field of a pure transcendental extension k(t1, t2) of k, containing k, such that
k(t1, t2) is a finite separable extension of L, then L is also pure transcen-
dental extension of k. This is Castelnuovo’s theorem ‘on the rationality of
plane involutions’. Its proof runs over the same scenario as in the case of
curves. First, Castelnuovo’s Criterion provides a numerical characterization
of rationality: The smooth 2-dimensional variety is rational if and only if
its arithmetical genus pa and second plurigenus P2 vanish. Recall that pa
is the difference of the geometric genus pg and the irreqularity q. Since pg,
q and P2 vanish for P2 and behave monotonously with respect to coverings
X1 → X2, one gets that all these invariants vanish for X2 whenever X1 = P2;
hence X2 is rational as well.

The Lüroth Conjecture/Problem predicted that this is true for higher
dimensional varieties too. In 1971 [2] Iskovskih and Manin provided a coun-
terexample to this conjecture: that is, one can cover a ‘complicated’ variety
by a rational one, hence the expected monoteneity property is broken. The
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method developed in their article was based on a deep and technically sophis-
ticated study of birational transformations. It created a whole new chapter
of algebraic geometry studying birational rigidity of Fano manifolds.

Independently, in 1972 Clemens and Griffiths found other examples too:
any smooth cubic hypersurface X3 ⊂ P4 has a 2-sheeted ramified cover which
is rational, but X3 itself is not rational. Other examples were found later by
Artin–Mumford, Saltman and Bogomolov.

The examples put in evidence, besides the family of rational varieties,
a new family, the so-called ‘unirational varieties’: X is called unirational if
there exists a dominant rational map from Pn to X .

The examples also show that in the study of higher dimensional varieties,
starting from dimension three, the methods and strategy used for curves or
surfaces will not work, one has to invent totally new structural models for
the classification. As an answer to this, later in 1992 Kollár, Miyaoka and
Mori introduced the class of rationally connected varieties, which is now one
of the key notions in the Minimal Model Program of the classification of
higher dimensional varieties. By this approach, the intrinsic geometry of
varieties is captivated in the geometry of the rational curves on the variety
and by their deformations.

3. The Brauer–Manin obstruction

For Diophantine equations the most fundamental question is the decid-
ability whether they have any integral solution. A classical test (already
used by Gauss) is to try to solve the equations modulo some integer m:
if for some m one gets no solution then definitely the system has no inte-
gral solution either. In general this is not an ‘if and only if’ statement: for
example the equation

(

x2 − 13
)(

x2 − 17
)(

x2 − 221
)

≡ 0 (mod m)

has solutions for any m, but obviously has no rational solution. Neverthe-
less, for low-degree forms, the above test ‘almost’ works. For example, the
equation a1x1 + · · ·+ anxn = b with integral coefficients has an integral so-
lution if and only if it has a solution modulo m for every m. The case of
homogeneous polynomial f(x1, . . . , xn) with integral coefficients of degree
two is also very special. But, note that in this case one has another natural
obstruction to get non-zero solutions of f(x) = 0. Namely, if f is definite,
e.g. f =

∑

x2i , then we cannot get any non-zero solution even over the real
numbers. For degree two forms these two obstructions provide an ‘if and
only if’ criterion: this is formulated by the Minkowski–Hasse theorem which
says that a quadratic equation has an integral solution if and only if it has
a solution over the real numbers and also over all the p-adic fields for ev-
ery prime p. Or, f should not be a definite form, and for every prime p
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and positive integer k the congruence f(x1, . . . , xn) ≡ 0 (mod pk) has a so-
lution such that at least one of the coordinates is not divisible by p. This
is the ‘Hasse’s local-to-global principle’. (Invariants of the form over the p-
adic field, and the signature over the reals, called ‘local’ invariants of the
quadratic form, constitute a complete set of obstructions for its solvability.
The Hasse principle, in general, says that if a variety defined over a field k
has a point over every completion of k, then it has over k as well.)

The first example of this subsection shows that the Minkowski–Hasse
theorem cannot be extended for forms of degree six. In fact

(

x2 + 3y2 − 17z2
)(

x2 + 5y2 − 7z2
)

is also a counterexample of degree four. One can argue that this form is not
irreducible, but even degree three irreducible equations can be found which
contradict the Minkowski–Hasse theorem (e.g. 3x3 +4y3 +5z3 = 0 found by
Selmer in 1951).

In his talk at the International Congress of Mathematicians in 1971,
Manin proposed a different obstruction [3]. It can be non-trivial even if
the first (Minkowski–Hasse) obstruction vanishes, that is, even if the equa-
tion has points over all local fields, the Manin obstruction might rule out
the possibility of the existence points over the global field. This was for a
long time the only known general new obstruction in the theory of Diophan-
tine equations. Considerable amount of work were dedicated to the proof of
the solvability of various classes of equations in the case of vanishing of this
obstruction.

The obstruction relies on the construction of the Brauer group. Once
a field K is fixed, its Brauer group Br (K) is the abelian group of Morita
equivalence classes of central simple algebras of finite rank over K, where
the group law is induced by the the tensor product of algebras. The Brauer
group is one of the principal invariants available for measuring the degree of
complexity of the field K. If K is a finite field or a field of transcendence de-
gree 1 over an algebraically closed field, then Br (K) = 0. Hence Br (C) = 0.
On the other hand, Br (R) = Z/2Z, and ‘usually’ it has infinite order; e.g.
Br (K) = Q/Z for any non-archimedean local field K.

More generally, one defines for algebraic schemes the Grothendieck–
Brauer group in terms of Grothendieck–Azumaya algebras. The rather tech-
nical Manin obstruction was defined in their language. Recently it was ver-
ified that all these groups can be determined as cohomology groups as well,
entering in cohomology exact sequences.

For torsors of abelian varieties, under the assumption that the Tate–
Shafarevich group is finite, the Manin obstruction is an absolute invari-
ant (that is measures completely the failure of the local-to-global princi-
ple). There are however examples, due to Skorobogatov (2001) of varieties
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with trivial Manin obstruction which have points everywhere locally without
global points.

4. Modular forms and zeta functions [6–8]

Modular forms are central objects of number theory. Their Fourier coef-
ficients are interesting number-theoretical functions like numbers of solutions
of Diophantine equations and congruences. Their Mellin transforms are the
L-series encoding the arithmetics of the representations of the Galois group
in the commutative class field theory. From geometric point of view, they
are differential forms on various moduli spaces.

Historically, the theory of modular forms was developed in several peri-
ods. The first period, in the first part of the nineteenth century is related
with the theory of elliptic functions. Then, in the second part of the nine-
teenth century, by Felix Klein and others, it was used in connection with
one variable automorphic forms. The next period is related with the work
of Hecke about 1925, then in the 60’s by the formulation of the Taniyama–
Shimura–Weil conjecture their deep significance in number theory became
even more clear. This conjecture establishes a connection between elliptic
curves defined over Q and modular forms. It attracted considerable interest
in the 1980’s when G. Frey suggested (and Ribet proved) that it implies Fer-
mat’s Last Theorem. It was proved in 1995 by A. Wiles for all semistable
elliptic curves over the rationals, with help of R. Taylor; now it is known as
‘Modularity Theorem’.

In a series of articles published in the 70s, Manin combined p-adic anal-
ysis, modular forms and number theory. He established the fundamentals
of the theory of modular symbols and p-adic L-series related to the modu-
lar forms. His plenary talk at the ICM in 1978 was also dedicated to this
theory.

5. Mathematical physics

A considerably large part of Manin’s research is devoted to mathemat-
ical physics and to the application of algebraic geometry to mathematical
physics. Here we will give a short overview.

In Manin’s approach and work in mathematical physics, the strongest
mathematical tools are provided by algebraic geometric methods. They play
far more prominent role than representation theory or functional analysis
that constituted the mathematical tools in the earlier phase.

Quantum cohomology. The theory of quantum strings propagating in a
space-time with non-trivial topology led in the 90’s to the development of a
new mathematical theory, the ‘quantum cohomology’. The first notions of
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this geometric theory are due to the physicists E. Witten and C. Vafa. Its
mathematical foundations in the framework of algebraic geometry (as op-
posed to symplectic geometry) were laid down in the articles by M. Kontse-
vich and Manin in 1994, and extended in the articles of Manin and Behrend.
Manin’s monograph [12] summarizes the first decade of the development of
this rich theory.

In quantum cohomology one considers a deformation of the classical co-
homology ring: instead of counting only the intersection points of the cy-
cles, one counts with weights points connected by algebraic curves passing
through them. In this description the intersection theory of algebraic geom-
etry provides the basic tool.

Quantum groups [11]. The main facts of the theory of quantum groups
were discovered by Manin’s student V. Drinfeld, a fact which (together with
his work on Langlands Conjecture for GL2) earned him the Fields Medal.
Manin developed a different approach, he considers these groups as symme-
try objects. The simplest quantum group GLq(2) is the symmetry group of
the ‘Manin plane’ with coordinates x, y satisfying xy = qyx, exactly in the
same way as the usual linear group GL(2) is the automorphism group of the
usual plane.

Instantons. Manin with Drinfeld classified the self-dual solutions of
Yang–Mills equations (these are called ‘instantons’). This solution, found
simultaneously and independently by M. Atiyah and N. Hitchin, was pub-
lished in a famous article signed by all four authors and became known as
the AHDM construction [?]. The theory of instantons, developed further by ¡ref:11?¿

S. Donaldson, plays a central role in the low-dimensional differential geom-
etry.

Computation of the Polyakov measure in the theory of bosonic strings [9].
After the theory of instantons, the article [9] of Manin was the first break-
through of algebraic geometry in string theory: moduli spaces of algebraic
curves entered in mathematical physics.

III.

We end this presentation with a sentence borrowed from an issue of
Moscow Math. Journal dedicated to Manin’s 65th birthday:

The example he set for those around him was not that of a mono-

maniac mathematician, but of a deep scholar with wide interest, for

whom penetration into the mystery of knowledge is much more im-

portant than professional success.
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