(5905)

J. reine angew. Math. | (2009), 1—20 Journal fiir die reine und
DOI 10.1515/CRELLE.2009. 111 angewandte Mathematik
© Walter de Gruyter
Berlin - New York 2009

Surgery formula for Seiberg—Witten invariants
of negative definite plumbed 3-manifolds

By Gabor Braun and Andras Némethi at Budapest

Abstract. We derive a cut-and-paste surgery formula of Seiberg—Witten invariants
for negative definite plumbed rational homology 3-spheres. It is similar to (and motivated
by) Okuma’s recursion formula [27], 4.5, targeting analytic invariants of splice-quotient sin-
gularities. Combining the two formulas automatically provides a proof of the equivariant
version [11], 5.2(b), of the Seiberg—Witten invariant conjecture [18] for these singularities.

1. Introduction

Problem 5 of the review article [30] of Ozsvath and Szab¢ is to develop cut-and-paste
techniques for calculating the Heegaard Floer homology of 3-manifolds. In this article we
obtain a possible answer at the level of the Seiberg—Witten invariant (i.e. at the level of the
normalized Euler characteristic of the Heegaard Floer homology): we provide the cut-and-
paste surgery formula (1.0.3) for the Seiberg—Witten invariants of plumbed rational homol-
ogy 3-spheres associated with negative definite plumbing graphs. In order to state it, we fix
some notations (for more details, see §3).

For any graph G, let 7(G) denote its set of vertices. Let |S| denote the size of the
finite set S. Thus, |77(G)| is the number of vertices of G.

Let I" be a connected plumbing graph. Each vertex w € #"(I') is decorated by an in-
teger b,. Let X(T") be the 4-manifold with boundary obtained by plumbing from I', which
we briefly recall. The manifold X (T) is a tubular neighbourhood of oriented 2-spheres E,,
associated with the vertices w of the graph. For every two adjacent vertices, their 2-spheres
intersect transversally at one point; beside these, the 2-spheres do not intersect each other.
The number b,, is the Euler number of the normal bundle of the 2-sphere of the vertex w.

The manifold X (T") admits a canonical Spin® structure ey, see (3.3.1) for its charac-
terization.

The first author is partially supported by Hungarian National Research Fund, grants No. K 61007 and
T 042769.
The second author is partially supported by OTKA grants.

(AutoPDF V7 14/7/09 11:36) WDG Tmath J-2086 CRELLE, PMU: L(D) 4/7/2009 (IDP) PMU: (WSL) 14/7/2009 pp. 1-20 2086_5905 (p. 1)




2 Braun and Némethi, Surgery formula for Seiberg—Witten invariants
Set X := 0X(T). We assume that H;(Z; Q) = 0, or equivalently that T"is a tree.

Set L := H,(X(I');Z) and L' := H*(X(I'); Z). These groups are free with bases the
classes E,, of the 2-spheres and their duals E;;, respectively.

The graph I is negative definite if the intersection form on L is negative definite. If
this is the case then the canonical map L — L’ is an embedding, which is an isomorphism
over @, thus the intersection form extends to L’. We shall write (-, -) for the intersection
form and x? := (x, x) for any x € L.

For any Spin® structure g, let ¢;(g) € L’ denote its first Chern class.

Finally, for any o € Spin®(X) and v € 7" ('), let #, , be the rational function defined
in 3.5, which is a Weil-type twisted zeta function. We write %ﬁf;’.l for its polynomial part
which is the unique polynomial for which 7 , — J/’Jf‘;l has negative degree (i.e. it is either
0 or the degree of the numerator is less than the degree of the denominator).

Theorem 1.0.1. Let I be a connected negative definite plumbing graph of a rational
homology 3-sphere X. Let v be a vertex of ', and let T'; be the components of T'\v. Let G be
a Spin® structure of X (T') satisfying

10 SMULERL= A

Let 6, 6; and o; denote the restriction of & to X, X(T;) and ¥; := 0X (I;), respectively. Then

c1(6)” + |7 (D)

(103)  sw,(3) + .

~\2
S HORDY <swm<z,-> yaia) ;'"”Ff)').

Remark 1.0.4. The Spin® structure ¢ does not uniquely determine 6 and its restric-
tion 6; via (1.0.2). Nevertheless, the Spin®© structure o; is independent of the choice of 4; it
depends only on a.

Remark 1.0.5. Notice that this formula differs from those obtained from surgery
exact triangles (of different versions) of Floer homologies (see e.g. [29]): the surgery exact
triangles involve three different 3-manifolds, while our formula only connects the plumbed
3-manifolds associated with I' and I'\v (and another type of invariant, namely ).
Moreover, in general, the surgery exact triangles mix several Spin® structures (involving
all the extensions &), while our formula involves only one extension ¢ and one induced
pair (6;, ;) for any fixed o.

The proof uses the fact (see [26], Theorem 2.4, recalled here in (3.4.1)) that the
Seiberg—Witten invariant of ¥ is a linear combination of the Reidemeister—Turaev tor-
sion 7 ([35]) and the Casson—Walker invariant 4, together with explicit formulas for these
invariants.
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In particular, the formula above is the consequence of additivity formulas for the in-
variants ¢,(6)* + |7°(T)|, T and A, stated in (5.0.2), (5.0.4) and (5.0.5), which are interest-
ing for their own sake as well.

In §8 we exemplify 1.0.1 for Seifert manifolds and surgery manifolds S* ;(K). There
we emphasize the arithmetical nature of J, ,, too.

Any negative definite plumbed 3-manifold appears as the link of a complex surface
singularity. For some singularity links, the Taylor expansion of J#; , at the origin appears
as the Hilbert (Poincaré) series of a certain graded C-algebra. In this way, %;331(1) can be
related with analytic invariants of the singularity. For applications of 1.0.1 in singularity
theory, see §2 and 8.2.

2. Application in singularity theory

2.1. Seiberg—Witten invariant conjecture. Let (X, 0) be an isolated complex analytic
normal surface singularity whose link X is a rational homology sphere. Let 7: X — X be a
good resolution with exceptional set E (with irreducible components {E,, }, ), and T its dual
resolution graph (for details see e.g. [14], §2.2). Then (the underlying C* manifold of) X is
the plumbed 4-manifold X (I") (for which in the sequel we will use all the above notations).
The intersection form on L is automatically negative definite.

The group L can also be regarded as the group of integral cycles (divisors) of
type I =Y myE, in X with m, € Z. As customary, we denote by (3(/) the line bundle

associated with /. This map /+~ COy(/) extends uniquely to a group homomorphism

L' — Pic(X), denoted similarly by /' — @3 (!"), such that the Chern class (multidegree) sat-
isfies ¢1 (Og (")) =1 (see [11], 3.4-3.6).

As usual, 7'(#) denotes dime¢ H'(X,%). In this way, the geometric genus is
pg = h'(0g). More generally, for the special set of representatives

R := {ZrE el :—-1<r, =< 0} el

w

of the classes L'/L, we get the equivariant geometric genera {h*(0Oy(I'))},,_, of (X, 0) (the
L'/L = H|(Z; Z) eigen-decomposition of the geometric genus of the universal abelian cover
of (X,0), see [11], 3.7, and [27], 2.2(3)). They are subtle analytic invariants of (X, o), which
guide crucial analytic aspects (e.g. equisingular deformations). In general, they are not to-
pological; nevertheless, in [11], 5.2(b), the second author formulated essentially the follow-
ing conjecture, which predicts that in special cases, these invariants can be recovered from
the link X:

Conjecture 2.1.1 (Seiberg—Witten invariant conjecture [11]).  Set L, for the effective

integral cycles, i.e. L, := { > myE, : my, =0 for all w}. SetR+L,:= |J(I'+L,) <=L
w I"'eR
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4 Braun and Némethi, Surgery formula for Seiberg—Witten invariants
If the analytic structure of (X, 0) is ‘nice’, then for all I’ € R+ L, one has

(c1(Gean) +21')° + |7(T)]
8 .

(2.1.2)  —h(Og(I") = SW g (Z) +

(For the definition of the Spin® structure [I'] * Gean of Z, see §3.3.)

Remark 2.1.3. (1) It is part of the conjecture to clarify the meaning of ‘nice’. In the
original version [11], [18] the conjecture was formulated for all Q-Gorenstein singularities,
but counterexamples are given in [10], §4. On the other hand, the conjecture holds for all
rational singularities ([11], [17], see also [16]), and, in fact, here we shall prove it for all
splice-quotient singularities, see 2.2.4. Restricted to the case of the canonical Spin® struc-
ture, it was verified for elliptic Gorenstein singularities (by combining [13] and [16]), singu-
larities with good C* action ([19]), and suspension hypersurface singularities defined by
f(x,y)+z" =0 with f irreducible ([20]). For a review of related problems, see [14], [17].
For related results, see [1], [2], [3], [7], [6], [23], [25].

(2) As a byproduct of the main theorem 1.0.1, in Theorem 2.2.1 we provide a crite-
rion which characterizes the singularities satisfying (2.1.2).

(3) The special case of the canonical Spin® structure was conjectured in [18]. It gen-
eralizes the Casson invariant conjecture of Neumann and Wahl formulated for any isolated
complete intersection with integral homology sphere link [23].

(4) Infact, (2.1.2) essentially consists of (only) |H;(Z; Z)| different identities. The rea-
son is that the expression

. N2
(g + T +20) "7 (D)

depends only on [/'] € H|(X;Z) for I’ e R+ L, by [11], 5.3(c). Therefore, it is enough to
verify the identity (2.1.2), say, for all /' € R.

2.2. Application. Using the main theorem 1.0.1, the above Seiberg—Witten invari-
ant conjecture 2.1.1 may be transformed into an additivity property of analytic invariants
h'(%). In order to state it, we need the following notation.

For a fixed vertex v of the graph T, let I'; be the components of I'\v, and let X; be a

small tubular neighbourhood of E;:= |J E, in X. Let (X;,0) be the normal surface

we? (L) N
singularity (with dual resolution graph I';) obtained by collapsing the curve E; c X; to a
point.

Theorem 2.2.1. Consider a family of singularities which satisfy the next property: for
any non-rational (X ,0) in the family, there exists at least one vertex v (called splitting vertex)
in its (minimal) resolution graph U such that all the singularities (X;,0) are in the family.

Then, for such a family, the validity of 2.1.1 for all the members of the family is equi-
valent to the next additivity property: every non-rational singularity (X ,0) in the family has a

(AutoPDF V7 14/7/09 11:36) WDG Tmath J-2086 CRELLE, PMU: L(D) 4/7/2009 (IDP) PMU: (WSL) 14/7/2009 pp. 1-20 2086_5905 (p. 4)




Braun and Némethi, Surgery formula for Seiberg—Witten invariants 5
splitting vertex v satisfying
(2.2.2) R (Og(I) = A1) + 30 (Og, (R(I"))  forl'eR,
i
where R; is the natural cohomological restriction defined in 3.6.1(2).

Note that the above additivity property (2.2.2) does not involve any part of Seiberg—
Witten theory.

Remark 2.2.3. For fixed (X, 0) and v, the validity of (2.2.2) for all /' € R implies its

validity for all /' €e R+ ) Z>(E,.
wv

The reason is that [/'] = [l’ + > mew] and [R;(I")] = [R,- <l’ + > mew>] for any
wv wEv
integers m,,, hence Remark 2.1.3(4) and equation (5.0.2) applies to show the desired impli-

cation.

For splice-quotient singularities, the additivity formula (2.2.2) was proved by T.
Okuma in [27]. In fact, Okuma’s formula gave the idea of the existence of the set of purely
topological identities (1.0.3), and was the starting point of our investigation.

As an application, we verify Conjecture 2.1.1 for splice-quotients. These singularities
were introduced recently by Neumann and Wabhl [24], [25]. Since their definition is rather
involved, we omit it. The interested reader may consult [24], [25], [27].

Splice-quotients include rational and minimal elliptic singularities (see [28]), and also
the singularities which admit a good C* action. For splice-quotient singularities and for the
canonical Spin® structure, the conjecture was verified in [21], [22] (for some sporadic cases,
see also [34]). Here, as a byproduct, we get the general case:

Corollary 2.2.4. Conjecture 2.1.1 is true for any splice-quotient singularity.

Theorem 2.2.1 and Corollary 2.2.4 are proved in §7.

3. Preliminaries and notations

3.1. Notations regarding the plumbing representation. In the sequel we fix a negative
definite tree I" as in §1. Notice that L’ can be identified with the dual lattice of L. It is gen-
erated by the elements E;, where (E;, E,) = dy is the Kronecker delta function. The ma-
trix / of the inclusion L — L’ in the basis {E,,},, of L and the basis {E]}},, of L' is exactly
the matrix of the intersection form in the basis {E,},, namely, I, = b,, for all w, and for
u = w, we have I,,, = 1 if u and w are adjacent, and 7,,, = 0 otherwise.

By duality, L' =~ H,(X(T'),%;Z), and L'/L = H,(X;Z). We denote the latter group
by H. Let |H| and H denote its order and Pontrjagin dual Hom(H,C"), respectively.
Sometimes we write d = det(I") for det(—7) = |H|. We define

(3.1.1) = —|H| - (E], E}) = —|H| - (I7")

uw*

Notice that every a,, is a positive integer.
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For any u € 7"(I") we write ¢, for the degree of u in I" and we set:

(312) oy = Z (5w - 2)au1v7
we? (T)

(313) ﬂu = Z <5W - 2)“3{1«/'
we? (T)

Next we consider some topological/combinatorial invariants of £ and T".

3.2. The Casson—Walker invariant. Let A(X) denote the Casson—Walker invariant
of Z, normalized as in [9], (4.7). Then from [33] one has:

)3 1
321 24X s O Y (G = 2
|H| we? (T) |H| we (T)

3.3. Spin® structures. As it is well-known, see e.g. [8], (2.4.16), the set of Spin® struc-
tures is an A torsor for any manifold admitting a Spin® structure. Let * denote the action
of H? on the set of Spin® structures. Recall that for any 4 € H? and Spin® structure o, the
action and the Chern class interact as ¢ (h * g) = ¢;(a) + 2h.

For our plumbed manifold X (T"), there is a canonical Spin® structure Gea,, whose
Chern class is characterized by (see [18], 2.7-2.9)

(3.3.1) (61 (Ec\a;),Ew) =b,+2 forallwe 7 (T).

Hence, there is a bijection between L’ and the set of Spin® structures of X (I') which assigns
I"e L' to !’ * 6gan.

Similarly, the set of Spin® structures of the boundary X is an H torsor. The restriction
of Spin® structures commute with the action via the canonical map L' — H. Since this
homomorphism is surjective, every Spin® structure of X extends to X (I').

By definition, the ganonical Spin® structure g.,, on X is the restriction of the canonical
Spin® structure G, of X (I).

3.4. The Reidemeister—Turaev torsion and the Seiberg—Witten invariant. For any

o € Spin®(X), we consider the Reidemeister—Turaev torsion T, = > T,(h)h € Q[H| from
heH
[35]. We will write 7,(X) for 7,(0). Then, by [26], Theorem 2.4, the Seiberg—Witten invari-

ant sw,(X) of X associated with ¢ € Spin®(X) equals (note our sign convention):

(3.4.1) sW(E) = % — T (2).

By [18], 3.8, 5.7, T4(X) can be determined from the graph I' via Fourier transform as fol-
lows.

First, for any p € H and fixed vertex u € 7(I'), we define a rational function in z:

(3:42) Bpalt) = T1 (1= pUED™)"
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where [E}] is the class of Ej in H = L'/L. Take also h, € H such that /, * ocan = 0.
Next, for any non-trivial character p € H\{1}, find a vertex u, € ¥ (I') such that either
p([Eu*p}) + 1, or u, has an adjacent vertex u with p([E;]) & 1. Then the Fourier transform

of T is
(3.4.3) To(p) = plhe) ™" -lim P, (1) (p+ 1),

In the sequel, this limit will be denoted simply by P, ,, (1). Recall that ﬁ(l) = 0. There-
fore:

(3.4.4) Ta(2)=u1{—|- > Top)

peH\{1}

If |[H| = 1 then 7,(X) = 0 for the unique Spin® structure g, hence sw,(X) = A(X).

3.5. The rational function #; ,(f). For any ¢ € Spin®(X) and u € 7"(I") one defines

Hoyu(t) = - > plh ) P, (1), where hy * 0can = 0.
7 ‘H‘ [)GH

3.6. Invariants associated with the distinguished vertex ». Recall that for a fixed ver-
tex v of I, the components of I'\v are the graphs I';. Let v; denote the unique vertex of T';
which is adjacent to vin I'.

We indicate by a subscript i when we use invariants of I'; instead of I'. For example,
we write d; = detI';, H; = H,(%;; Z), Li, ay,,; and so on.

We regard L; as a sublattice of L via the natural inclusion
H>(X(T:);Z) — Hy(X(T); Z).
Hence, for any w e 7'(I';), we have E,, ; = E,.

Definition 3.6.1. (1) Consider the setup of §1. For a Spin® structure ¢ of X, its restric-
tion o; to X; is defined to be the restriction of any extension & € Spin® (X’ (F)) of ¢ sat-
isfying (1.0.2) to the submanifold ;. In other words, & = /" % Ggn for some /' € L’ with
[I'] % Ocan = 0 and

(3.6.2) —1<(I''E’) 0.

_ (2) The restriction R;:L"— L] is the homomorphism induced by the inclusion
X(I';) — X(I') on second cohomology groups. In other words, R;(E})=E; if

Ml

we v (I;), and R;(E}) = 0 otherwise. Therefore, for /' = r,E, = > s,E, one has
w w

w?

(3.6.3) R(I"Y= > swEy i =nEy i+ Y k.

we v (L) we v (I;)

r
Since R;(!’) is characterized by (Ri(!'),E,) = (I',E,) for all we 7" (T;), the last
equality in (3.6.3) follows. One can verify that ¢; € Spin®(X;) is independent of the choice
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of & thanks to (3.6.2). Since the canonical Spin® structure of X (T) restricts to the canonical
Spin® structure of X (I;), the restriction of the canonical Spin® structure of X to X; is the
canonical one. Moreover, the restriction of ¢ = [I'] * Gcan 1S [Ri(!")] * Ocan,; provided that
ry = (I, E) € (—1,0]. The number r, depends only on ¢ and not on the choice of /’.

3.7. Pseudo-characters. We will need to extend the expression (3.4.2) for an arbi-
trary map ¢ : 7 (I') — C* by
)\ 2
(3.7.1) Pyo(t):= TI (1—y(w)rs)™ "
we? (T)

For such a map y and vertex w € ¥"(I"), we define

def,, () := ¥ ()" ]y (w()),

where {w(j)}; are the vertices of I' adjacent to w. The map y is called a pseudo-character
(associated with the vertex v) if def,,(y) = 1 for all w = v. Their collection will be denoted
by H. We set def(y) := def, (/). Notice that pseudo-characters y with def(y) = 1 are
exactly the characters of H via the correspondence y/(w) = y/([E]). In fact, y can be re-
garded as a character on L’ (which does not necessarily descend to H): any y € H gives a
morphism L’ — C* defined by

v <Z I’}’ll,vE;) = H lﬁ(w) my

3.8. Notations regarding rational functions. (1) We write any rational function R as
RP°' + R<0 where R is a polynomial and R<" is a rational function with negative degree.
For R without pole at 0 we shall refine it further: one writes R<° in a unique way as a finite
sum

R(0) = 3 (L, R)(0),

o0
where (L, R)(f) = > &k (xe C* ayx € C).
>0 (1 — at)

(2) For any rational function R(z) with Laurent expansion ¥ ax(r—1)" at ¢ =1,
k=ko
we write coef! R(r) for the coefficient ay. Notice that if 1 is not a pole of R then

coef! R(¢) = R(1).
The next identities are elementary and their proofs are left to the reader.

Lemma 3.8.1. For any 0 < g < d one has

1 o4 1
8.2 = =
(38.2) dg::gl—ocl 1 —etd’
1 o ? d—1-2¢q
0 — =
(3.8.3) coef (d}; T a[) YR
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1 o dt1 (d—q—1)t?
3.8.4 - - - :
384) dém —at)? (1 —14)? 1— ¢4
of 1 o9 __(d—l)(d—S)_q2+2q—qd
(3.8.5)  coef; (d(}:l 7(1 el 12d ¥ .

4. Identities about determinants and restrictions

Our calculation will extensively use the following general properties of graph-
determinants.

Lemma 4.0.1. (a) Consider two vertices u,w € ¥ (I') of T. Let T'\uw be the subgraph
of T obtained by deleting the path connecting u and w (including u and w). Then

(4.0.2) Uy = det(T\@).

(b) For every component T'; of T'\v and vertex w of T;
(4.0.3) Ay = Ay, - det(T\0\I;).
(c) For any ue v (I') one has

(4.0.4) o ] i =1

we (T)

(d) Consider a decomposition of T as follows:

r: ¢ | ¢ [ ¢

v . - u [~

Above, the subgraphs G’', G and G" can be empty. If G is empty then v and u is connected by
a single edge. The vertices v and u are not allowed to be the same.

Then (with the convention det(() = 1), one has:
(4.0.5) det(T) - det(G) = det(G U G' U ) - det(G U G" L u)
— det(G") - det(G") - det(G\iw)>.

(Here GG " vv and GuU G" Vu also contain the edges adjacent to v and u, respec-
tively.)

Proof. Equation (4.0.2) is proved in [5], (20.2). Equation (4.0.3) follows from (4.0.2)
and by noting that the determinant of graphs is multiplicative over disjoint union of
graphs.

Statement (c) immediately follows from (4.0.2) and (4.0.4) by an easy induction on
the number of vertices of the graph.

(AutoPDF V7 14/7/09 11:36) WDG Tmath J-2086 CRELLE, PMU: L(D) 4/7/2009 (IDP) PMU: (WSL) 14/7/2009 pp. 1-20 2086_5905 (p. 9)




10 Braun and Némethi, Surgery formula for Seiberg—Witten invariants

The claim (d) is an exercise on graph determinants. For example, let us consider the
components of G, which are connected only to v and not to . By moving these components
from G to G’, we reduce to the case that v and G are connected by a single edge. Similarly,
we reduce to the case when u and G are also connected by a single edge. Then (4.0.5) fol-
lows from [24], Lemma 12.7. [

Corollary 4.0.6.  Using the decomposition of 4.0.1(d), for any S < 7" (G"), one has

wuv

-1
(4.0.7) < I1 a(s“‘2> = det G’ - det(G U G" U u)
w¢S

Oyp—2 N
&2 [T det(G"\aw)* 2.

wesS

- (det G’ - det(G\iw))

The subgraph G is allowed to be empty. Furthermore, v and u are allowed to be the same, and
in this case G is empty and one should write G instead of G U G” U u in the formula. In par-
ticular,

; 1
(4.0.8) 1 a?=-.
we " (D)\7 (I}) di

Proof. The left-hand side of the first equation, by (4.0.4), is a,, [[ @2, which

wesS
equals the right-hand side by (4.0.2). The second equation follows from the first one by the
choices u:=v, G" :=T;, S:=7(G") and G' = |JI. Note that > (J,, —2) = —1 and
. JFI weS
[T det(G"\iw)* % = 1 (the latter is (4.0.4) applied to G” Uu). []

weS

Lemma 4.0.9. For any x € L' and its restrictions x; := R;(x) (see 3.6.1(2)),

(4.0.10) x—zx,:—@E;,
%\ 2
(4.0.11) xz—zx,?:—d(xé’liE”).

Proof. The main idea of the proof of (4.0.10) is that since the scalar product is def-
inite, it is enough to verify that the scalar product with either side of the equation agrees, at
least on a basis of L’ over Q. We choose the basis consisting of the E,, for w 4 v and E;'. It
is easy to verify that the scalar product of either side of (4.0.10) with E,, is 0 for w # v, and
the scalar product of either side with E* is (x, E)).

Equation (4.0.11) is the scalar product of (4.0.10) with x. Here we use the identity
(x,x;) = x2, which is true, since x; is the restriction of x. []
5. Additivity formulas. Proof of Theorem 1.0.1

We break the main identity (1.0.2) into the additivity formulas (5.0.2) and (5.0.3), and
we also break the latter one into (5.0.4) and (5.0.5).
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Proposition 5.0.1.  With the notations of §3 (especially of 3.6.1), one has:

(o + d + 2dr,)*
day, 7

(5.0.2) a1 (6)* + |7 (T >y—z(c1 @)+ (@) =1~

(o + d + 2dr,)?
8day, ’

(503)  swo() = X swa, (%) = —#(1) —%

p A 4> — B,
5.0.4 VP b Vi B i
(5:04) w2 m T T

2 2
B o — B, (o +d+2dr)
(505 To®) = 3 Ta(®) = A1) + 77 8y,

Equation (5.0.3) is a combination of (5.0.4), (5.0.5) and (3.4.1). The proof of (5.0.5) is
given in §6. Here we prove (5.0.2) and (5.0.4) as applications of (4.0.11).

Proof of (5.0.2). We apply (4.0.11) to x := ¢1(6). Then x; = ¢;(6;), and

d(cl(&),Elj‘)z.

(5.0.6) a(6)’ =Y a1(6i)’ = - -
By the definition of r,:
(5.0.7) 2r, = (¢1(6) — ¢1(Gean), Ey ).

Next, we compute (¢1(0can), E;). Expressing the Chern class from (3.3.1) as

¢1(0can) = Z E, = (0w — 2)E,,

w

and then using (3.1.2) we get

(5.0.8) (c1(0ean), E)) =1 +g

Finally, combining (5.0.6), (5.0.7) and (5.0.8) gives the desired formula. []

Proof of (5.0.4). This time, we apply (4.0.11) first to x := E} for some w = v. Then

x;=E; ;if we ¥ (I;), and x; = 0 otherwise. Hence, (4.0.11) reads as
(5 0 9) _ Ay n Ay, i _ _% we V(F)
A d d; day,’ .

Next, we apply (4.0.11) to x := E,. Then x; = E ; and we get

(5.0.10) by + S Lot _d

i d; Ay
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The claimed equality is a linear combination of (3.1.3), (5.0.9), (5.0.10) and (3.2.1), where
the latter is applied to X and all the ;. [

6. Proof of (5.0.5)

6.1. Breaking up the torsion. We start with some preparations. For an arbitrary
map ¢ : /(') — C* we define

V() ={we s ([):(w) =1},
supp(y) := 7 (D)\7"(I'),,
Y=Yl V(L) — C.

Lemma 6.1.1. Let ' be a negative definite tree and vy : V" (I') — C* a function on it.
Then the least degree term of the Laurent series of Py, (see (3.7.1)) at 1 is

(612)  Pyu(= T (1—y)™ 7+ I a2 (1-0"+0(1-0""),

we¢ (D), we v (),

where

(6.13)  ni= 6 —2)

we? (),

= —2|{components of V(') }| + [{edges going out of ¥"(I),}|.

In particular, if every component of V" (F)l/j has a vertex with at least two outgoing edges
(e.g. Y is a non-trivial character) then n = 0 with equality if and only if all components have
exactly two outgoing edges.

Proof. This is mainly a repetition of [18], A.7. The first formula obviously follows
from (3.7.1) by taking the least degree term in 7 — 1 of every factor of the product. This

gives > (0, —2) for the degree n of the least degree term. The second equality of
we(I),
(6.1.3)is a well-known identity for circuit-free graphs. [J

Proposition 6.1.4. For all non-trivial characters pe H and Spin® structures
0=hx%0cn of Zwithhe H,

1 ~
GENEYAPELV RN ORE FAC R R
0 otherwise,
where a; is the restriction of o defined in Definition 3.6.1(1).
Proof.  Obviously, if p(v) = 1 then p; := p[,r, is a character of H;.

The proof of the proposition is a case-by-case verification.
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First, let us consider the case when p is non-trivial at v or one of its neighbours. Then
we can choose u, := v in (3.4.3), so (6.1.5) immediately follows.

In the remaining cases, p is trivial on v and its neighbours v;. By the second part of
Lemma 6.1.1, all three terms of (6.1.5) are 0 (because n > 0) unless every component of
7°(I) , has exactly two outgoing edges. Hence the only remaining case is when every com-

ponent of 7(I'), has exactly two outgoing edges. Therefore > (dy —2) = -2, and
we¢ ()

there exists an index i with supp(y) = ¥ (I';). Hence, the upper case¢ of equation (6.1.5)

should hold.

Let u, be the vertex of the component 7"(I') ,(v) of ¥"(I') , containing v where its two
outgoing edges start.

We decompose I' into subgraphs as shown in the next picture.

I
] ] P
r G’ s G ; | G"
1 v />u§:\
| |
7(I),(v)

We express the terms of (6.1.5) in terms of determinants of subgraphs using (3.4.2),
(3.4.3) and (4.0.7):

5”’_2

(1) = et(@) - (det(G\in)) ((1 - p([E,tD))
POV det(GU G U uy) we (), \ det(G"\T,7)

. 0y—2
To(p) = P/),up(l) =

)

det(G' U G U ) ((1 —P([E:D)>
det(G") we /(D) det(G"\u,m)

To:(pi) = Ppu, (1) = det(G") e 7°(r)

det(G) ((1 —p([E;1>))"‘"'2
) det(G"\u,w) '

Note that p(h) = p;(h;) where 6; = h; % 0can,; by Definition 3.6.1, and hence these fac-
tor out of (6.1.5). We can also factor out the ][] product. Finally, recall that

wg v (T),
d; = det(Gu G" vuy,) and d = detT". Hence (6.1.5) reduces to 4.0.1(d). O

6.2. Principal part of the Hilbert function. Next, we concentrate on J#; ,. We invite
the reader to recall the notations from 3.7-3.8.

Lemma 6.2.1. For every non-trivial pseudo-character \ associated with v,

1 P (1= (o)
(6.2.2) L; Pl//,v(t) =4 d; 1—1¢
0

if suppy < 77(Iy) and Y(v;) * 1,
for all other y + 1.
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14 Braun and Némethi, Surgery formula for Seiberg—Witten invariants

Proof. We apply Lemma 6.1.1. By the pseudo-character relations, all components
of v~ (F)l/, have at least two outgoing edges except possibly the component containing v,
which can have only one outgoing edge, which must start at v. Hence the lower degree of
the Laurent expansion of Py , at 1 is at least —1 with equality if and only if all the compo-
nents have the minimum number of outgoing edges declared above. In particular, if
Ly Py, % 0 then y(v;) # 1 for some i and supp(y) < #"(I';). This proves the lower case of
(6.2.2).

To prove the upper case, note that by (4.0.3) for any w € #"(I';)

Py o(0) = Py o (18T (Lo - T (1= )2
we s ()

Obviously, y; is a non-trivial character of H;, hence Py , is regular at 1. Moreover,

> (0w —2)=—1.Thus
w7 (L)

1 B
Li Pyo(t) = 1= Py.u(1) - (1=y;(v) - I &>
- we s (T)

For the last product one can use (4.0.8), and this finishes the proof. []

We fix an /' € L' with 0 = [I']| ¥ 6can and —1 <r, = (I',E}) <0 and o; = [l/] * 0can,;
for the restriction /] of /' to I';. Note that all the poles a of P, , are roots of unity.

d- ]f(f,g(z) => Z P([”)il Ly Py (1) =3 Z~ lp(l/)iladrv(Ll Py o) (),
% peH %  YyeH
def (y)=a
where the last equality is obtained via the substitutions y(w) := p(w)a " implying
Y (x) = p([x])a?™E) for all xe L'. To compute def,(y), we have used the identity
I-1I7!' =1 in the form

—d ifw=u,

by, wy; — .
“ +Zj:al {O if w=o.

To compute further, we apply Lemma 6.2.1 to index the pseudo-characters iy for
which the summand maybe non-zero by characters y; of H; with ;(v;) * 1:

d- A1) = 3 a®(Ly Py ) ()

ad=1
1 S 1
XS S ) Py (D (1= ()
o i l///-EIfI\,‘
¥ilvi)=ad +1

Using (3.4.3) in the form 7’;(%) = z//i([li’])’lP%,)i(l), and summing in the variable « by
(3.8.2) (recall that —d < dr, < 0):

!

1 _
(6.2.3)  coef} A )(1) = coef?(d 12 a (L, Plﬂ;)(“ﬁ) + ZE > Ta()
vi=l L l//:'EI/'Z

i) 1
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6.3. Additivity formula for torsion. Now, we are ready to establish an additivity for-
mula for the torsion. By 6.1.4 and (3.4.4)

1 1
To(2) = coef? #, (1) — p coef? Py (1) + ZE ZA To, (V).
! ¥y € H\1
Yi(vi)=1
Then, using #, , = %ﬁ}f‘;l + ]f:g and (6.2.3) we get the next identity. We highlight it, since
it shows the more conceptual source of the correction constant in (5.0.5):

6.3.1)  T,(T) - 2 To(Z0) = A2 (1) +$ coef?( ;lad"’(Ll Py ) (at) — PM(Z))

The last two terms depend only on the coefficients of terms with non-positive degree
of the Laurent expansion of P; , at 1. These terms can be computed elementarily:

P () = [I(1 — t%)>2

w

1 1 l+o/2 (w+1)?* B,—1
-
((t_l)ﬁ 1t g T tou-1

Hence 3.8.1 and a simple computation provides (5.0.5).

Ay

7. Proof of Theorem 2.2.1 and Corollary 2.2.4

In this section we combine our surgery formula with the main result of Okuma from
[27] to derive the results of §2.

Okuma’s article [27] uses a constant invariant of the Taylor expansion at the origin of
R in place of our RP!(1). This constant invariant was later called the periodic constant,
which terminology we adopt.

In the first paragraphs we prove that they are equal. After the proof appeared in a
public preprint of this article, the result (Lemma 7.0.2) was also incorporated into Okuma’s
article as Proposition 4.8.

Definition 7.0.1 (Periodic constant [21], 3.9, [27], just before Proposition 4.8). Let
F(f) = > a;t" be a formal power series. Suppose that for some positive integer p, the
i=0
=Y pn—1
expression ) a; is a polynomial P,(n) in the variable n. Then the constant term of P,(n) is
i=0
independent of p. We call this constant term the periodic constant of F and denote it by
pcF.

For rational functions, one has the following equivalent description of the peri-
odic constant. Here, we identify the rational function R with its Taylor expansion at the
origin.
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Lemma 7.0.2. Let R be a rational function having poles only at infinity and roots of
unity. Then R has a periodic constant and pc R = R (1), where R is the polynomial part
of R as in 3.8(1).

Proof. Write

t

R(1) =R () + ¥ ay———7
k=0 (11—t
0<j<p

)k+1 (akj e C),

where the sum is finite. Note that if two formal power series F; and F, have periodic con-
stants then pc(F; + F>) = pc F1 + pc F>. Also, every polynomial 4 has a periodic constant,

. , _ k+1 .
namely, pc A = A(1). Hence it is enough to prove that /(1 — 7)~ %D = > ( ]_: )z’p+]
admits a periodic constant, which is 0. Indeed, the constant term of 120

nl ik +1 k+n
=00 =G0

is 0 as a polynomial in n. []

Proof of Theorem 2.2.1. We prove the statement by induction on the number of ver-
tices in the dual resolution graph of the singularity (X, o).

First, let us suppose that the class satisfies the Seiberg—Witten invariant conjecture
2.1.1. Then expressing the Seiberg—Witten invariants from (2.1.2) and substituting the
result into (1.0.3), we obtain (2.2.2) (for all singularity (X, o) in the class and all splitting
vertex v).

To prove the converse, let us assume that the class satisfies (2.2.2). We prove the
Seiberg—Witten invariant conjecture 2.1.1 for every member of the family by induction on
the number of vertices of the dual resolution graph. For rational singularities, 2.1.1 is true
by [11], Theorem 6.2. This starts the induction.

For a non-rational (X, o) in the class, let us choose a vertex v of the dual resolution
graph satisfying (2.2.2). Let /" € R. Then R;(!") € R(I';) + L(I';), by (3.6.3), since the first
term r,E; ; of its right-hand side is a non-negative rational cycle, and its second term is
contained i 1n R(T;). So, by the induction hypothesis and Remark 2.2.3, equation (2.1.2)
applies to (X;,0) and R;(!"). Combining these with (1.0.3) and (2.2.2) for (X, 0) and v, we
obtain (2.1.2) for (X,0). [

Proof of Corollary 2.2.4. The corollary follows from Theorem 2.2.1 by Okuma’s
results from [27], which show that the class of splice-quotient singularities satisfy all the
necessary conditions.

Specifically, for every splice-quotient singularity (X, o) and vertex v of the dual reso-
lution graph, the singularities (X}, 0) are also splice-quotient by [27], 2.16.

Moreover, the additivity formula (2.2.2) for all /’ € R and v with degree at least 3 is a
combination of [27], Theorem 4.5 and Lemma 4.2(3), and Lemma 7.0.2. [
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8. Examples

8.1. T =53,(K). Let K = S be an algebraic knot, i.e. the link of an analytic irre-
ducible plane curve singularity f : (C%,0) — (C,0). Let x and A(7) be its Milnor number
and Alexander polynomial, respectively. Let X := 53 ,(K) be obtained by (—d)-surgery
(d e NT) along K = S°. The Heegaard Floer homology of ¥ was computed in [15] in terms
of A (see also [31], Theorem 4.1). Here we recover the formula [15], 4.3, for sw.(X) from
our results.

Let the (minimal) good resolution of (C?, £~1(0)) be given by the schematic diagram

I'y =——> K
[

Write my for the vanishing order of the lifting of /" along the exceptional divisor E,, .
Then (see [15]), a possible plumbing graph of X is

—d—m
I r, et a7

U1 v

Let v be the ‘new’ vertex. Then I'\v has only one component, namely I'j, which can
be blown down completely, hence X; = S3. One can verify that H = Z, and it is generated
by [E;]. Hence H consists of the maps p given by p([kE]) = &* for all dth roots of unity ¢&.
Moreover, the Spin® structures of X are [¢E;] * 6can for 0 < ¢ < d. Then, using e.g. the for-
mula [5], 11.3, for A, one has

L A&
H 45, prowan,o(1) = 3521 - qm‘

One can write A(7) = 1+ (£ — Du/2 + (1 — 1)* Y a;¢’. Hence
7

1 _
%[I;(z*]*acan.v(l) = 225 DY aé't = Zaqﬂdfﬁld.
v z ] ]

Note that a,, = 1, hence (¢E;, E}) = —q/d € (—1,0] and so r, = —¢/d. Recall e.g. from
[5], 11.1, that 4 — 2 = o,. Thus, using (5.0.3), we recover [15], 4.3, as promised:

p—24d-29)7° 1
SWIgE; Jx0can (Sid(K)) = —; Ag+ld + ( ¥ ) -3

Similarly (with slightly more computations) one can recover the Seiberg—Witten invariant
of Sip/q(K), too (here p/q € Q, p/q > 0); for a possible formula see [12], 4.5.

8.2. Seifert manifolds. Let X be a Seifert manifold. Recall that either £ or —X can be
realized as a negative definite plumbing (and sw(—X) = —sw(Z)), hence we may assume
without loss of generality that ¥ = X(I") for a (minimal) negative definite graph I'. We
will assume that I" is not a string (i.e. X is not a lens space). Then I is star-shaped; let v be
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its central vertex. There exists an affine complex surface singularity X whose link at the
origin is ¥, and which admits a good C* action. In particular, its affine coordinate ring 4
is graded.

First we show how J#, ,(¢) and its periodic constant can be expressed from the Seifert
invariants of X.

Let (o4, w;);_, denote the normalized Seifert invariants of X (for more details, see

[19]). Set o =lem(o;:i=1,...,r) and o=o-|H|/[]ow. We denote the end-vertices
i

(i.e. vertices of degree 1) by {w;},. Then [E;] and {[E]; ]} generate H, hence /' € L' can be

written as /' = aE + ) a;E;; modulo L. Seta := a (a +> ai/ocl-). Then, by [19], Theorem

wi

(3.1), for o = [I'] * can one has

(8.2.1) H, ()= > max (07 1 4a—Ib,+ ZV: {—lwi +CliJ>lol+d'

Iz—ad/o i=1 &

In the case 0 = o¢an, One has a = a; = a = 0. Moreover, we claim that

(8.2.2) pe Heano = 3 max (0, IS le"J >

120 =1L %

The idea of the proof is the following: let us define the polynomial

P(1) = 3" max (0, BN o {ﬂJ ) !,

120 =1L %

By the identity max(0, x) — max(0, —x) = x we get that

Honalt) = P(1) = 3 (1 Y {ﬂDz’

120 =1L %

Then a computation shows that the periodic constant of the last expression is zero. Hence
pC Hean,v = P(1), which is exactly (8.2.2).

Note that by [27], [32] the right hand side of (8.2.1) is the Hilbert (Poincaré) series of a
graded A-module. If ¢ = gy, then this module is exactly A. On the other hand, by [32], [4],
the expression from the right-hand side of (8.2.2) is exactly the geometric genus p, of (X, o).
In particular, we have also proved that the periodic constant of the Poincaré series of the
graded algebra A4 is exactly the geometric genus of the singularity.

Now, let us apply 1.0.1 for ¢ = g¢,n. Since all the components of I'\v are strings, they
support rational singularities. Therefore, by [11], 4.1.1,

¢1(Gean,i)” + 77 (T)|
8

chan(z,’) + =0.

Hence 1.0.1 reads as sWean(Z) + (¢1(Gean)” + [#(T)]) /8 = —py.
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Notice that this is exactly the claim of the Seiberg—Witten invariant conjecture 2.1.1
for weighted homogeneous singularities and for the canonical Spin® structure. Its original
proof from [19] is based on completely different combinatorial identities.

We would like to emphasize that, in general, pc # can be a rather complicated arith-
metical expression. E.g., when X is the Seifert 3-manifold X(a, b, ¢) (the link of x* + y® + z¢
with a, b, ¢ pairwise relative prime numbers), then pc #¢,y , is the number of interior lattice
points in the tetrahedron with vertices (0,0, 0), (a,0,0), (0,5,0), (0,0, c). (This can be ex-
pressed by Dedekind sums by a result of Mordell.)
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