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ABSTRACT. The main purpose of this paper is to show that for many forbidden
graphs L, “selected at random”, some old, almost forgotten asymptotic or
quasi-asymptotic results provide easy, almost immediate (and often “exact”)
solutions of the corresponding Turdn type extremal problems. In some sense,
the Petersen graph will be the “pretext” to formulate our theorems.

We shall get the Turdn extremal number of the Petersen graph as an easy
consequence of our results:

e for n > ng the following graph Hy 33 is the (only) extremal graph for
the Petersen graph IP1o: one fixes a Turdn graph T(, )2 on n — 2 vertices
and joins two further vertices  and y to each other and to all the vertices of
Tin—2),2

e We shall prove good general asymptotics for wide classes of excluded
graphs (Theorem 2.2). Our results also provide algorithmic solutions of the
corresponding extremal graph problems.

e We shall also prove an analog of the Andrésfai-Erdds-Sés theorem for
some generalized Petersen graphs (Theorem 4.2).

The “motivating” theorems will lead to some further, more general theo-
rems as well.

1. INTRODUCTION

1.1. Turan type extremal problems. In a Turdn type extremal problem a
family £ of — so called — sample graphs is fixed and we consider only graphs G,
on n vertices not containing subgraphs L € £, where a “subgraph” means a not
necessarily “induced” one.

PROBLEM 1.1 (Turédn type). Given a family £ of forbidden graphs, what is the
maximum number of edges a graph G, of order n can have without containing any
Lel?
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The maximum number of edges such a graph can have will be denoted by
ext(n, £). Let T, , be the Turdn graph on n vertices and p classes, i.e. n vertices
be partitioned into p classes Ay, ..., A, as uniformly as possible, and two vertices
be joined iff they belong to different classes. In 1940 Turédn [28], (see also [29, 30])
proved his famous theorem on the extremal number of K, 1, according to which
T, is the (only) extremal graph:

THEOREM 1.2 (Turdn Theorem). (a) Ty, contains no K,y1 and
(b) if e(Gr) > e(Thrp) and Gy, # Ty p then G, O Kpyq.

It is known from the Erd6s—Stone-Simonovits theorem [16, 12] that ext(n, £)
is asymptotically determined by

p(£) = minx(L) — 1.

Namely,

ext(n, L) = ext(n, Kpi1) + o(n?).
Clearly, ext(n, £) = o(n?) iff p(£) = 1, which case will be called degenerate. (For
corresponding stronger structural results see [8, 22].) The remainder terms in the
above theorem depend primarily on the Decomposition Class M of £. To define
the decomposition class we introduce some notation.

Given two graphs Z and W, their product Z ® W (often called by others
their join) is the graph obtained by taking their vertex disjoint copies and joining
each vertex of Z to each vertex of W. Given the graphs Uy, ..., Up, with pairwise
disjoint vertex-sets, their product [] U; is the graph obtained by joining each vertex
of U; to each vertex of U; for each ¢ # j.

DEFINITION 1.3. Given a family £ of forbidden graphs with p = p(£) =
mingez x(L) — 1, we shall call its Decomposition Class the family M of graphs
M for which there exists an Lo = Lo(M) € £ and a t such that

LoC M &K, i(t,...,1).

In other words, a graph M is in the decomposition class if putting® it into
a class A; of a large T, p, the resulting graph will contain a forbidden L € L.
Clearly, p(M) = 1, the extremal graph problem of the decomposition class is always
degenerate.

Whether we can solve a Turdn type extremal problem or not depends primarily
on the corresponding decomposition class M. In some sense all the Turdn type
extremal problems reduce to the solution of the extremal graph problem of M:

(a) If there is a tree or a forest in M, then we can solve the problem in all
known cases where we can solve the extremal graph problem of M. This is what
can be called linear decomposition: this is equivalent with saying that

ext(n, £) — ext(n, Kp11) = O(n).
(b) I conjecture that
CONJECTURE 1.4. If M contains no trees, (neither forests) then some (or all?)
extremal graphs for L for n > ng(L) are obtained by taking p graphs Ui, ..., U, of

order n/p+o(n) and joining each vertex of each U; to each vertex of each U; (i # j).
Then we say that the extremal graphs are of product forms.

L<“putting” means selecting v(M) vertices in this class and joining them so that the resulting
subgraph be isomorphic to M.
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FIGURE 1: FIGURE 2:
Gro6tzsch Graph Icosahedron graph

(We know that generally only o(n?) edges are missing between the classes and
here the extra requirement is that all the edges between different classes must
belong to the graph.)

One can easily see that — if Conjecture 1.4 holds for £, then — U; are also some
extremal graphs for some degenerate families M; D M. The details can be found
in [25]. (See also our work with J. Griggs and G. Rubin Thomas, [18].)

Watch out! The main statement in (a) is not a theorem: it is an observa-
tion. Further, I think that Conjecture 1.4 is one of the most important, and most
intriguing questions in this theory.

1.2. Some examples. Having proved his theorem, Turdn also asked for the
determination of ext(n, L) for various other sample graphs L, among others, for
the determination of ext(n, Pt), or of ext(n,L), if L is the graph of a platonic
polyhedron: cube @Qg, octahedron Og, icosahedron I;5, dodecahedron Dsg. (The
tetrahedron, K4 was covered by his theorem.)

His aim was not so much to determine the extremal numbers for these
particular sample graphs but to discover some new phenomena by solving the
above special cases.

(i) The question for P;, was answered by Erdés and Gallai [11].

(i) Surprisingly enough, the cube Qg seems to be the most intractable. Erdds
and I gave an upper bound ext(n, Qg) = O(n8/5), [13], which we conjectured to be
sharp but we cannot prove this. As a matter of fact, there are no reasonable lower
bounds known for this case. We cannot even prove that

ext(n, Q8)

— 00.
n3/2

(iii) Erdés and I reduced the problem of the octahedron to the problem of Cy,
[14]. We have proved that if S, is extremal for the octahedron graph Og, and n is
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sufficiently large, then S,, = G1 ® G where G is extremal for C4, G5 is extremal
for P; and v(G1) — v(G2) = o(n).

(iv) The problems of the icosahedron and dodecahedron were solved by the
author in [23] and [24]. To solve these problems, the author developed a spe-
cial theory in [24] for the extremal graph problems where the decomposition class
contains a path:

(1.1) LCP,®K, 1(v,...,v) for some L € L, for v =v(L).

The solution of the dodecahedron and icosahedron problems helped to under-
stand a lot about some kind of “non-degenerate” extremal graph problems. One
could ask whether attacking some other special graphs, say the Grotzsch graph, or
the Petersen graph, would that have lead to a completely different theory?

The surprising answer is that — as far as it can be judged — the theorem solving
the problem of the Petersen graph would have led to exactly the same theory as
the problem of the Dodecahedron graph. The problem of the Gritzsch graph was
solved and is a subcase of some other results. Let us call an edge e of G color-critical
if x(G —e) < x(G). An old result of mine (for a special case proved first by Erdds)
[22, 23]) asserts that

THEOREM 1.5 (Critical edge). If x(L) = p+ 1 and L contains a color-critical
edge, then T, , is the (only) extremal for L, for n > ny.

This immediately implies Turdn’s theorem for large values of n and also solves
the problem of the Grotzsch graph, since it is 4-chromatic and all its edges are
critical. The icosahedron problem turned out to be much deeper and led to a more
general theory. (The reason seems to be that there are almost extremal graphs for
I15 which are fairly different from the extremal graph. In other words, the extremal
graphs for ;5 are less stable than for Day.)

In this paper — among others — we shall determine the Turan and Zarankie-
wicz extremal numbers of the Petersen graph.? Further, we shall also prove an
analog of the Andrasfai-Erd6s-Sés theorem for Petersen graphs. These “motivating”
theorems will lead to some more general theorems as well.

One aim of this paper is to illustrate on some new examples, how some
old theorems or some old methods can be used to answer many new cases.
New extremal problems can often immediately be solved by some old, almost
forgotten gemeral theorems.

For the general theory of Extremal graph problems see e.g. [3, 26].

1.3. NOTATION. Here we also include some of the notations used above.
We shall restrict our considerations to simple graphs, that is, to graphs without
loops and multiple edges. Given a graph G, e(G), v(G) and x(G) will denote
the number of edges, vertices, and the chromatic number of G. We shall also use
subscripts to indicate the number of vertices: G, Hy,...,Sn ... will always denote
graphs of order n. Given a subset X of vertices in the vertex set V(G) of the graph
G, e(X) will denote the number of edges both endvertices of which belong to X,
and if Y is another set of vertices in V(G), and X NY = 0, then e(X,Y) will be
the number of edges one endvertex of which is in X the other in Y. A graph of
chromatic number < p will be called p—colorable.

2The Zarankiewicz problem will be treated rather superficially.
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FIGURE 3: FIGURE 4:
Petersen graph Petersen Truncated

Special graphs. P; denotes the path on k vertices. We denote the Petersen
graph by IP1o (while Pyg is a path of 10 vertices!). Kp(n1,...,np) is the complete
p-partite graph with n; vertices in its ith class. T}, , is the Turdn graph on n
vertices and p classes, i.e. n vertices are partitioned into p classes A;,..., A4, as
uniformly as possible, (the sizes of the classes differ by at most 1) and two vertices
are joined iff they belong to different classes. Ty, p is obtained from a T3, by
putting k£ new independent edges into one of its maximum size classes. (Of course,
k < n/(2p) is assumed.) One of the most important special graphs of this paper is
Hy,pt = Ki 1 Ty t41,p: the graph where n —t + 1 vertices are partitioned into p
classes Ai,..., A, as uniformly as possible and any two of these vertices are joined
iff they belong to different classes. The remaining ¢ — 1 vertices have full degree
n—1, i.e. they are joined to each other and to all the vertices in UA,;. Finally, C,[n]
will denote the following “cyclical” graph: pn vertices are partitioned into p classes
Aq,..., Ap, of size n each, and all the vertices of A; are joined to all the vertices
of A;_1 and A;y1, where the indices are counted mod p. (In some places we shall
misuse the notation, writing Cp[%m] even if m is not divisible by p and meaning
that m vertices are distributed in p classes as uniformly as possible. Which are the
smaller or larger classes we do not care.)

— %k X % —

Since the publication of [23, 24], many results have been proved which would
follow (at least for n > ng(L)) almost immediately from the theorems of [23, 24].
Here I shall prove — among others — four theorems in connection with the Petersen
graph, (Theorems 1.6, 1.11, Lemma 3.2, Theorem 4.2) the first two of which are
immediate corollaries of the theory built up in [23, 24].

THEOREM 1.6 (Petersen Extremal). For n > ng Hy 23 is the (only) extremal
graph for the Petersen graph P1g.

This theorem immediately follows from Theorem 2.2 of [23]:
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THEOREM 1.7 (H, p-theorem). (i) Let L.,...,Ly be given graphs with
min x(L;) = p+ 1. Assume that omitting any t — 1 vertices of any L; we ob-
tain a graph of chromatic number > p+ 1, but Ly can be colored in p+ 1 colors so
that the subgraph of Ly spanned by the first two colors is the union of t independent
edges and (perhaps) of some isolated vertices. Then, for n > no(L1,..., L), Hppy
is the (only) extremal graph.

(i) Further, there exists a constant C > 0 such that if G, contains no L; € L
and n

e(Gn) > G(Hn’p,t) - 5 + C,

then one can delete t —1 vertices of G,, so that the remaining G,,_¢y1 is p—colorable.

This theorem is strongly connected with Theorem 1.5. It is natural to ask if
the uniqueness holds here as well or not:

OPEN PROBLEM 1.8. Is there a family L of forbidden graphs for which for
n > no H(n,p,t) is extremal but it is not the unique extremal graph?

REMARK 1.9. The condition on L; is equivalent to that Ly C T}, p; for some
m. One could also formulate this by saying that the decomposition class contains
the graph consisting of ¢ independent edges.

The meaning of (ii) is that the extremal structure is stable in some sense. To
understand this stability better, we introduce the notion of chromatic properties,
first only in its simplest form.

DEFINITION 1.10 (Bp:—property). We shall say that a graph has property B,
if one cannot delete ¢ — 1 vertices from it to get a p—colorable graph.

We shall not distinguish a property of graphs from the set of graphs having
this property. If a graph G € B, and H C G, then H ¢ B, either. To have such
a property means that the graph is “big” in some sense, to not have means, that it
is “small”.

The assumptions of Theorem 1.7 include that each forbidden L; € B,; but
Hypt & Bpt So trivially H, ,; contains no forbidden L;’s. The meaning of
Theorem 1.7 is that this property dominates the above extremal problem in the
sense that the extremal graph is that very G,, which

(x) does not have the property B, , and

(¥x) has the maximum number of edges in By .

Theorem 1.7 immediately implies many known results, e.g. a result of Erdés
and Gallai, [11] on independent edges, generalized by Erdés to independent trian-
gles, [5] and by J. W. Moon [21] to independent Kpy1’s. Moon’s theorem asserts
that if L is the disjoint union of ¢ vertex-disjoint K1, then H,, ,; is the extremal
graph for n > ng(p,t). Theorem 1.7 can also be applied to the dodecahedron graph:
for Dag, Hy 2,6 is the extremal graph for n > ng. (The reader can see 6 edges on
Figure 6 the deletion of which yields a bipartite graph. On the other hand, it is
not too difficult to check that the deletion of any 5 points leaves at least one odd
cycle unchanged.) Applying Theorem 1.7 to IP1o we get

THEOREM 1.11 (Petersen, Stability). There exists a constant C > 0 such that
if

1
e(Gn) > C(Hn’2,3) — 5 n + C,
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FIGURE 5: FIGURE 6:
Dodecahedron Dodecahedron, 6 edges deleted,
2-colored

and P19 € G,,, then one can delete 2 vertices of G,, so that the resulting graph
G2 be bipartite.

Proof of Theorems 1.6 and 1.11 from Theorem 1.7. We show that IPo sat-
isfies the conditions of Theorem 1.7 with p = 2 colors and ¢ = 3 independent edges.
Observe that

(a) the Petersen graph IP1o is 3—chromatic (see Figure 1),

(b) one can color it in RED and BLUE so that the BLUE vertices are indepen-
dent and the RED vertices span 3 independent edges: IP1o C T, 2,3. (This can be
seen on Figure 1 if we call colors 1 and 3 BLUE and 2 RED.

Further,

(c) deleting any 2 vertices of IP1o we still have a 3-chromatic graph.

To prove property (c), observe that if we delete 2 vertices of P1g, then (by sym-
metry) we may always assume that one of them is the A not seen on Figure 2. The
remaining pentagons, [BCDJI|, [CDEHG)] and [FGHIJ] cannot be represented
by one vertex. [

Theorem 1.7/(ii) is sharp for T), p:, but this does not prove e.g. that it is
also sharp for the Petersen graph. In principle it could happen that, applying
Theorem 1.7/(ii) the —%n could be replaced by something much more negative.
Construction 1.12 below shows that Theorem 1.11 is also sharp: Theorem 1.7 is
always sharp when we apply it to a graph L not containing Kj.

CONSTRUCTION 1.12. Let Z,, , ; be the graph obtained as follows. Take a Turdn
graph T, , and fix t + 1 vertices x1,...,%t—2, Y1,Y2,Ys in its first class. Add the
edges y1y2, y2ys3, and ysyi to the graph and also join each x;, i =1,...,t—1 to all
the remaining vertices but to y1,y2,ys3-

To prove the sharpness of Theorem 1.11 observe that

e(Znpi) = e(Hpps) — % +0(1).
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FIGURE T: FIGURE 8&:
Petersen embedded Generalized Petersen Graph

Further, Z, ,: has the following properties:

(a) if K3 Z Le Bp,t, then L Z Zn,p,t-

(b) Zﬂ”p,t S Bp,t.

Below we shall prove both (a) and (b) and they will obviously imply that
Theorem 1.11 is sharp. To prove (a) observe that if Z, ,, contained an L, then
deleting e.g., y1y2 we would obtain a Z} ¢ B, also containing L, but L € By, a
contradiction. To prove (b) observe that to make Z, ; into a p-colorable graph
by the deletion of some vertices one has to ruin all the K41 C Z, ;. To achieve
this, one has to delete at least 2 vertices of the triangle y;y.y3 and all the vertices
Z1,...,T¢—2, or at least cn other vertices. Indeed, each edge y;y; is contained in
c1nP~! K,11’s and a vertex z forms at most (pfz) Kp41 with e.g. y1y2. Therefore
one has to delete either at least one of y;,y2, or at least con other vertices. So we
really have to delete at least two of {y1,y2,ys}. Similarly, since each z; is contained
in cgn? copies of K11, we have to delete all the x;’s as well, unless we are willing
to delete c4n further vertices. This completes the proof of the sharpness.

Properties of type B, ; play fundamental role in some extremal graph problems
(see e.g. [23]), above all, in cases where H, ,, is the extremal graph. We can
generalize the extremal graph problems, asking

PROBLEM 1.13. What is the maximum of e(G,,) if G, contains no L € £ and
has property By +?

Assuming property B, mostly decreases the extremal number: the extra con-
dition mostly rules out H, p: and mostly in these cases there are no other extremal
graphs for £. However, this never changes the extremal number much, since we can
always change the edges of a H, p: by rearranging and deleting O(n) edges and
increasing the chromatic number arbitrary high. The situation completely changes
if we ask

PROBLEM 1.14. What is the maximum of the minimum degree a graph G,,
can have if it contains no L € £ and has property By ;?

We shall describe this situation in Section 4.
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FIGURE 9: FIGURE 10:
Generalized Petersen, Icosahedron and Pg in it
k=15¢0=5

Above property Bs 3 played an important role in our arguments, below we will
go one step further to define the so called Chromatic properties or Chromatic
conditions.

DEFINITION 1.15 (Symmetrical subgraphs). Let T} and T» be connected sub-
graphs of G. They are called symmetrical in G if either T} = T» or

(i) V(T1) NV (T>) = 0, and

(ii) there are no edges joining Ty to T, and

(iii) there exists an isomorphism w : Ty — T3 such that for every z € T,
u € G—T; —T», z is joined to u if and only if w(x) is joined to w.
Ti,...,Ty are symmetric if for every 1 <4 < j <k, T; and T} are symmetric.

The connectedness is assumed to rule out some trivial cases. We shall use this
definition to state that under some conditions there are sequences of symmetrical
extremal graphs: assuming the connectedness in this definition we get stronger
statements.

DEFINITION 1.16 (Chromatic condition). A property A of graphs will be called
chromatic condition if

(i) G € Aand H D G implies H € A.

(ii) If p = p(A) is a sufficiently large integer, then the following holds: if
Ti,...T, are symmetric subgraphs of an A-graph G, then G — T}, is also an A-
graph.

(iii) there are graphs of property A and of arbitrary high girth.

Here (iii) is assumed only to rule out the uninteresting cases. Condition (ii)
may seem to be artificial, however, this is the main point in the definition. It means
that certain p-colorings of a part of a graph can automatically be extended to the
whole graph, using the symmetry. E.g. if A is the family of at least g-chromatic
graphs, then p = 2 can be taken.
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EXAMPLE 1.17.
o The property B, ; that one cannot delete ¢ vertices of G' to get a p—colorable
graph is one of the typical chromatic conditions. (Here p =t + 2 will do.)
o The property Bp¢,n,A that one cannot delete ¢ > h vertices of G, at least h of
which are of degree at most A, to get a p—colorable graph, is a more complicated
one, but still a chromatic property.

Given a chromatic condition .4, we may generalize our previous problem:

PRrROBLEM 1.18. What is the maximum number of edges a graph G,, € A can
have if it contains no L € L.?

Here mostly Definition 1.15(iii) ensures the existence of such graphs.

DEFINITION 1.19. Given a family £ of graphs and a chromatic property A, we
call G,, (£, A)—extremal if G, € A, it contains no L € £ and has maximum number
of edges under these conditions.

2. EXTREMAL GRAPH PROBLEMS
WITH LINEAR DECOMPOSITION

In [23] I have given a fairly general theorem from which one can “almost al-
gorithmically” solve many involved extremal graph problems. (The expression “al-
most algorithmically” will be explained in Remarks 2.3-2.4. )

As it is mentioned above, there I formulated a theorem (Theorem 2.7) which
covered the case of the Dodecahedron graph and would have covered the case of
the Petersen graph as well, assumed I would have considered it. To illustrate the
applicability of Theorem 2.7, below we shall consider two different generalizations
of the Petersen graph. The first one is the Kneser graph, the second one the cyclic
generalization.

2.1. The Kneser graph. The Petersen graph is a special case of the Kneser
graph.

DEFINITION 2.1. Given a set A of a elements and an integer b < a/2, define the
Kneser graph Z(a,b) as a graph on (‘;) vertices, where the vertices are the b—tuples
of A and two of these b-tuples are joined iff they are disjoint.

It is known and easy to see that P19 = Z(5,2).

Obviously, the Kneser graphs Z(a,b) can be colored in p = a — 2b + 2 colors
as follows. For a — 2b fixed elements z1,...,2,_25 of A we fix a — 2b colors, say
1, .., Pa—20. Whenever a b-tuple B contains z; (a fixed element), color the cor-
responding vertex B of Z(a,b) by ;. If there are more than one such z;’s, use
any of these colors. Now the vertices of Z(a,b) not colored as yet correspond to
the b-tuples of the 2b—element set M = A — {z1,..., 2, 2p}. Therefore they span a
1-factor of Z(a,b) which can be colored with two further colors. This shows that

« x(Z(a,h) <a—2b+2;
e One can color Z(a,b) in a — b+ 1 colors so that the first color-class spans a
1-factor, the others form independent sets of vertices.

It was a longstanding conjecture of Kneser, a deep theorem of Lovész [20)
(proved slightly later in a simpler way by Bérdny [2]) that the above upper bound
is sharp:

x(Z(a,b)) =a—2b+ 2.
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The next theorem is “kind of a generalization” of Theorem 1.7 and makes the
solution of the extremal graph problem of any Kneser graph “almost” algorithmic.

THEOREM 2.2. Let L be finite, p(L) = p but for some L € L
(2.1) L C Topyp,p for v:=v(L),

then there exists an ng(L) such that, for n > ng, there is an extremal graph U, for
L, for which

(i) one can delete v vertices of U, to get a Tp_y p.

(ii) Furthermore, if v := maxpc v(L), then one can also delete m < v? - 2V
vertices of Uy, to get a Ty, p where all the vertices of x € Up — Ty_p p are either
Jjoined to all the vertices of Ty, , or to p—1 classes of T,,_y, , completely but not
at all to the remaining one. (This exceptional class may depend on x.)

REMARK 2.3. This is indeed an algorithmic solution of the extremal graph
problem where Z(a,b) is the excluded graph, or more generally, of any extremal
problem of any finite £ satisfying the conditions of Theorem 2.2. Indeed, in Theo-
rem 2.2 the sequences (U,,) are completely given by the graphs Sy, := Up — Ty p
and by the patterns according to which the vertices of Sy, are joined to T—p, p.
So we have to check only finitely many graph sequences (U,), for finitely many
Sm and finitely many ways of joining Sy, to Tp,—y, p and decide if a graph L; € £
is contained in U, for large n, (i.e., the sequence is “good”) or not (it is “bad”),
Then we have to choose a “good” graph sequence (U,,) with the maximum number
of edges: given two graph sequences, one can easily decide, which has more edges,
though in principle this may depend on divisibility properties of n as well. Here
we should be careful with the infinite families £. If £ is infinite, then we have to
assume that there exists an oracle which tells us, if a sequence of graphs above is
good or not ...

REMARK 2.4. The earlier results were weaker in the sense that they have not
provided explicit (or implicit) upper bounds on the number of vertices to be deleted
in Theorem 2.2(ii) and therefore having found the extremal graph one could not be
sure if that is the extremal graph. (Those years we did not care so much about the
algorithmic aspects.)

One could hope that the Kneser graphs satisfy the conditions of Theorem 1.7
and then one would get a much nicer looking result: H,, , s would be the extremal
graphs for p=a —2b+ 1 and s := (%’) . However, generally this is not the case.
As Z. Fiiredi pointed me out, sometimes one can delete much fewer vertices. The
colorings of the Kneser graph can be much more complicated than the above one.
A paper of P. Frankl and Z. Fiiredi [17] (disproving a conjecture of Erdds) gives a
lot of information on this. Among others it contains the following construction. Let
us consider e.g Z(2b + 1,b). This is 3-chromatic. The above calculated s = % (%').
If we split the base set into

X1 U X5 with |X1| =b+1 and |X2| = b,

and color by RED those b-tuples which intersect X; in more than 1|X;| elements,
and color by BLUE those b-tuples which intersect X, in more than 1|X5| elements,

e (2by _
then the number of badly colored b-tuples is ~ (%) = o(s).

OPEN PROBLEM 2.5 (Kneser Coloring). Which is the minimum p(a,b) such
that one can delete p vertices of the Kneser graph to get an a — 2b + 1-chromatic
graph? And for edges?
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FIGURE 11:
Sequences of symmetrical graphs

Now we turn to the formulation of the general (old) theorem from which all
known (?) Turdn type extremal graph theorems with linear decomposition follow.

DEFINITION 2.6. (Family of symmetrical graphs) ID(n, p, r) is the class of graphs
G, satisfying the following symmetry condition:
(i) It is possible to omit < r vertices of Gy, so that the remaining graph G* is
a product (of graphs of almost equal order):
G* = H g™ where ‘mg _n
<p p

<.

(ii) For every £ < p, there exist connected graphs H,, ; C G™* and isomorphisms
We,j Hg,l — Hg’j
such that H,; (j =1,...,k) are symmetric subgraphs of G,,, v(H ;) < r and
G™ =" Hyj,
J<ke
where the sum ) Hy ; is the vertex-disjoint union.

The graphs H, ; will be called the “blocks”, the vertices in G,, — G* will be
called “exceptional”.

THEOREM 2.7 (Symmetrical extremal graphs, [23]). Assume that a finite fam-
ily L of forbidden graphs with p = p(L), and a chromatic condition A are given. If
for some L € L and v :=v(L),

(2.2) LCP'®Kp_1(v,v,...,0),

then there exists a constant r = r(L) such that, for every n, ID(n,p,r) contains an
extremal graph for (L, A). Furthermore, if for every R > r there exists an ngr such
that for n > ng ID(n,p, R) contains only one extremal graph, then for sufficiently
large n this is the only extremal graph. (Of course, the families ID(n,p, R) form
nested sequences, so this common graph sequence is the same.)
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Now we turn to the proof of Theorem 2.2. The proof will be cut into two parts,
the first being formulated in the following theorem.

THEOREM 2.8. Assume that a finite family L of forbidden graphs with p =
p(L), and a chromatic condition A are given. If some L € L is contained in a
Topy,p,v, then — applying Theorem 2.7 —

(i) all the blocks of ID(n,p,r) will consist of isolated vertices: the product graph
G* will be a Turdn graph Ty- p.

(i) If there is no chromatic condition involved and s is the mazimum integer

for which Kpi1(s,m,m,...,m) contains no forbidden L € L (even if m is very
large), then
(2.3) ext(n, £) = ext(n, Kpp1) + ; n+0(1).

(iii) Further, — still assuming the absence of the chromatic condition ® — each
verter x of the “exceptional set” U, — G* is joined either to all the vertices of this
Turdan graph or to all the vertices of p — 1 classes and to none of the remaining
class (but the remaining class may depend on z).

Proof. (a) Let I® denote the set of s independent vertices and H}; , .. =I°®
Tn—s,p- By the definition of s, H; , .| contains no forbidden subgraphs:

e( :L,p,s—l-l) < ext(n, £).

This proves the lower bound in (2.3).

(b) We apply Theorem 2.7. Let U, be extremal for £ as described in Theo-
rem 1.7. If a block contained an edge, then v blocks of that class would provide
v independent edges, so U, would contain a Tbp,,p,», which was excluded. So the
blocks are isolated vertices, the graph U, — Sy, is a Turdn graph. The second part
of (i) follows from the definition of the Symmetrical Graph Sequences. Observe
now that if there are ( exceptional vertices joined to all the classes of this Turan
graph and 7 vertices joined to fewer than p — 1 classes, then

¢—n
P

(2.4) e(Un) <e(Th,p) + n+ O(1).

The number of “exceptional vertices” joined to all the classes of T}« , is at most
s, by the definition of s. This proves the upper bound in (2.3) and also that the
number of these vertices is exactly s. The only thing to be checked is that the
“exceptional vertices” cannot be joined to fewer than p — 1 classes. If we had an
exceptional vertex y joined to at most p — 2 classes, then

-1
e(Un) < ext(n, Kpia) + = n+0(1) < e(H010)

would follow, a contradiction. ]

The argument of (b) is not necessarily true if we extend the statement to
extremal problems with chromatic conditions!

Proof of Theorem 2.2. Let U, be an extremal graph for £ described in The-
orem 2.8. The classes of the Turdn graph Tj- , will be denoted by Ai,...,A4,.
We classify the vertices of U, — Ty, as follows. W is formed by those s vertices
which are joined to Ty« , completely. D; C U,, — Ty, — W is the class of vertices
joined to Ty« , — A; completely, but not to A;, i = 1,...,p. By the assumption

30r we could say that the chromatic condition contains all graphs.



14 MIKLOS SIMONOVITS

FIGURE 12:
The vertex-partition

on L, Topypt ¢ Un and so there cannot be ¢ independent edges between A; and
W U D;. This and t < [v/(2p)] imply (i): the edges in 4; U D; can be represented
by 2(t — |W|) vertices. So it is enough to delete 2p(t — |W|) + |W| < v vertices to
get a Turan graph.

To prove (ii) first we define the “horizontal”* and the “missing” edges. The
edge zy is “horizontal” if x,y belong to the same A4; UD;. A non-edge is a “missing
edge” if z and y belong to different A; U D;’s. Let us fix in each D; a maximal
set of independent edges. The endvertices of these edges form the sets S;. Put
F; = D; — S;. The vertices in F; can be classified according to their connection to
(US;)UW. There are at most 2V classes. We show that each = € F; is connected to
all but at most v vertices of V(U,) — A; — D;. (In other words, the “missing”-degree
of z is at most v.) Indeed, if there were at least v + 1 “missing edges” incident to
x, then adding these edges to U, and deleting all the edges joining z to (US;) UW
we would get a U;: not containing forbidden subgraphs but having more than e(Uy,)
edges, a contradiction.

Now, if there is a class Q C F; with |Q| > v? (in the above classification), then
all the vertices x € ) are joined to all the vertices of U;»; F;. Otherwise there is a
“missing edge” zy and we add zy to the graph U, getting a forbidden subgraph
L C U, + zy and then we could replace x by an =’ € ) joined to all the vertices in
N(z) and to y too: otherwise the “missing edge”-degree of y would be too large.
Thus L C U, — z, a contradiction again. This means that the vertices of ) are
symmetric to each other.

Now, if we “increase” the size of @ by h (where h can be negative and positive
as well), at the cost of changing the size of A; in the other direction, then we get
a family of graphs Uy, and e(Up,,) will be a linear function of h. Since Up, is
extremal, and neither Uy 1, nor U, _; contains forbidden subgraphs, e(Up, ) must
be constant. So we can replace Uy, by Uy, _|g- This means that we can eliminate
Q getting an other extremal graph. We can eliminate all the classes of size at least
v2. This completes our proof. ]

4The “horizontal” edges will be used only later.
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2.2. Cyclic generalization of the Petersen graphs.

DEFINITION 2.9. A generalized Petersen graph IPy, 4 is a 3-regular graph defined
as follows: x1,.. .,z are the “outer” vertices, y1,...,y¢ are the “inner” vertices, x;
is joined to y; and x;41, y; is joined to x; and z;14, (where the indices are counted
mod k).

Observe that generally the “inner” and “outer” vertices behave differently, they
play the same role only if (k,£) = 1: otherwise inside we have many disjoint cycles.

THEOREM 2.10. A generalized cyclic Petersen graph Py, can be colored in
RED and BLUEF so that the RED vertices are independent and the BLUE vertices
can be covered by a path.

This implies that our theorems can be applied to IPy ¢ as well.

Proof of Theorem 2.10. There are many explicit colorings but here we shall be
concise. We shall return to the detailed discussion of this topic in [27]. The cases
£ =1,2 can be treated separately and we skip them. (£ =1 is trivial.)

(a) Let us start with an observation. If we color the vertices of a 3-regular
graph in RED and BLUE so that the RED vertices are independent and the BLUE
ones form a forest, then we are home: any BLUE vertex having 3 BLUE neighbors
can (one by one) be changed into RED. So we get the desired coloring: the RED
vertices remain independent and the BLUE ones will have only BLUE degrees at
most 2. Further, no BLUE cycle can arise. So the graph spanned by the BLUE
vertices will be the union of paths.

(b) This gives an easy solution for £ even: color y1,...,y; by RED, z1,...,z,
by BLUE, and then color the remaining y;’s by BLUE, the arc x¢41,Z¢+2,--.,Zk
in RED-BLUE-RED- ... -RED. (This arc has now odd length.) We do not verify
this simpler case, rather the next, slightly more involved one.

(c) If £ is odd, we may slightly change the above coloring: the outside path
To41,Tey2,---,Tk can be colored by a

RED-BLUE-BLUE-RED-BLUE-RED-BLUE ... -RED-BLUE-RED.

One can easily see that this works. (a) the RED points are independent. (b)
One has to show that there is no cycle with all blue vertices. yi, ...,y are RED and
the BLUE path z1, ...,z is separated by RED vertices from the remaining parts:
so we may forget it. The only thing to be checked is that no BLUE cycle occurs
(where a BLUE cycle means that all its vertices are BLUE). Indeed, if we delete
the inside RED vertices, then the cycles inside are ruined. Call an edge BLUE if
it joins BLUE vertices. There are no BLUE edges outside,except (z¢42,Z¢+3, see
Figure 5(a). and iw there were a BLUE cycle in the graph and we would walk
around it, then arriving at any outside vertex but these two we are stuck. On the
other hand, if we use the edge (z¢42, Z¢+3, then we otherwise must stay completely
inside. Distinguishing the two cases (k,£) = 1 or not, we may easily cope with this
case. ]

CONJECTURE 2.11. If L is a 3-regular graph of girth at least 5, then it can be
two-colored in RED and BLUEFE so that all the RED vertices are independent and
the BLUFE vertices form a subgraph which can be covered by a path.

(Maybe, this conjecture is not too difficult.)
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FIGURE 13: FIGURE 14:
The Luczak graph Nesetfil Graph

2.3. The case of the Luczak graph. To show the power of a method one
can select certain cases “at random” and show that the method works in those
cases. Below I shall discuss the case of two such graphs. The first one, L1y was
used (as a counterexample for some graph entropy question) by Tomasz Luczak,
and is given in Figure 13. So I shall call it the Luczak graph. The other graph,
Nio, was used in a lecture by Jarik Nesetfil and below will be called Nesettil graph.
(These two graphs and the corresponding results can be generalized and we shall
return to this in another paper [27]

PROBLEM 2.12. Determine ext(n, L1g). What are the extremal graphs?

This is really easy: One can see that Ljg is 5-chromatic and that removing
any vertex of Lo it remains 5-chromatic, but one can color it in 5 colors so that
the first two colors span 2 independent edges (see Figure 13). Hence we can apply
Theorem 1.7:

THEOREM 2.13. For Lig, Hy 42 is the (only) extremal graph, for n > ng(L1o).

2.4. The Nesettil graph. The Nesetfil graph consists of 3 pentagons
Cs(ai, b;, c;, d;, e;) where the pentagons are glued together at the b;’s and e;’s cycli-
cally: by = es, by = e3, b3 = e1. Denote this graph by Nj». Relabel them as seen
in Figure 14.

THEOREM 2.14. There exists an ng(N12) such that for n > ng, Hp o is the
(only) extremal graph.

REMARK 2.15. Theorem 2.14 does not follow from Theorem 1.7. Below we
shall use the labeling of Figure 14.

(a) One can delete 3 independent edges, e.g. BC, EF, and I H to get a bipartite
graph from Njo and the omission of 2 edges is obviously not enough.

(b) We could apply Theorem 1.7 if we could show that the omission of any 2
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vertices leaves us with a 3-chromatic graph. The extremal graph would be H, 3 ».
However, this is not the case: the omission of A and L results a tree.

Proof of Theorem 2.14.

(a) Nio ¢ Hn’z,g, since N2 € 62’1 but Hn’g’z ¢ 8271.

(b) Apply Theorems 2.7 and 2.8 to an extremal graph Upy: thereis a Ty« 2 C U,
with n* =n—0(1). All the blocks are 1-vertex blocks and there can be at most one
“exceptional” vertex u € S, — T+ 2 joined to p = 2 classes, otherwise, by Remark
2.15(b), N12 C U,. (As a matter of fact, a H, 23 C U, for some v =~ n/2. So all
the fixed graphs L ¢ Bs» can be built up in U, for n > ng(L).) If there is no
exceptional vertex joined to both classes of Ty, 2, then

e(Un) <e(Thp2)+0(1) < e(Hpp,2).

So there is exactly one vertex u joined to both classes. All the other “exceptional”
vertices are joined to a class of T+ 2 completely, and to the other not at all. If
there is a vertex v € S,, — T),+ 2 joined to (say) the second class of T}, 2 completely
and to at least one vertex of the first class, then we can again find an Ny» C U,
(because Ni2 can be turned into a tree by deleting a vertex of degree 4 and an edge
from the “opposite” pentagon. Now we may partition V(U,,) — u into two classes
according to whether they are joined to the first class of Tj,« » or the second one
and the above observation yields that the vertices in these classes are independent.
So Uy, € By,1 and therefore either e(U,) < e(Hp2,2) or Uy, = Hy 95. [

3. ZARANKIEWICZ TYPE PROBLEMS

Now we would like to answer the following question.
How large minimum degree ensures for a graph G,, a Petersen graph P19 C G,,?7
These type of questions are called Zarankiewicz type extremal problems.

PROBLEM 3.1 (Zarankiewicz type). Given a family £ of forbidden graphs, what
is the maximum of the minimum degree 6(G,,) a graph G, of order n can have with-
out containing any L € L?

Let us denote the maximum in such a problem by dex(n, £), assumed that £
is a family of excluded subgraphs. It is obvious that

(3.1) dex(n, £) < % ext(n, £),
since any graph having
0(Gr) > % -ext(n, L)

has more than ext(n, £) edges and therefore must contain some of L € L.

On the other hand, in many cases some extremal graphs for the Turan type
problem are almost regular. Then the difference between the Turdn and Zarankie-
wicz type problems is negligible. If e.g. there exists an extremal graph sequence
(Zy,) for the Turdn problem in which the maximum degree and the minimum degree
differ only by (at most) one, then

(3.2) dex(n, £) = E -ext(n,ﬁ)-‘

In cases discussed by us the graph sequence (Hp p¢) provided the extremal
sequence, which (for ¢ > 1) is far from being almost regular. Yet its minimum
degree and average degree are near to each other. So
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LEMMA 3.2. If for L the extremal graph sequence is (Hy p), then the solution
of the Zarankiewicz problem is between

1 1 -1
(1——>nand (1——>n+t—.
b p b

This clarifies the situation in a weak asymptotic sense but the detailed discus-
sion is more involved and postponed.

4. ANDRASFAI-ERDOS-SOS TYPE PROBLEMS

A completely new phenomenon occurs when we combine the Zarankiewicz type
problems with chromatic condition type problems. Perhaps Andrésfai was the first
to ask such questions:

PROBLEM 4.1 (Andrasfai). Determine the maximum of the minimum degree
in a graph G, under the condition

Kp11 € G and x(G,) > k.

For k = p + 1 this was solved by B. Andrasfai, P. Erdés and Vera T. Sés, [1].
In the simplest case, when we assume that G, is triangle-free and non-bipartite,
the pentagon like graph H, := Cs[n/5] shows that the minimum degree can be
2n — O(1). For the general case of Kp1 and k = p + 1 the extremal graph is
Cs5[m/5]®Ty—m,p—2, where m is chosen so that the resulting graph be approximately
regular. (This is obtained when m = 3;@1 + 0(1).) P. Erdds and the author, [15]
extended this result for the case where an arbitrary p + 1-chromatic graph L with
some color-critical edges is excluded. Of course, this does not cover the case of IP1g.
To describe the case for the Petersen graph, we shall prove

THEOREM 4.2. For every v (and t < v/2) there exists a K = K (v) such that if
2
and Ty 21 ¢ Gy, then one can delete K vertices of G, to get a bipartite graph.

REMARK 4.3.

(a) Theorem 4.2 is sharp, as shown by Cs[n]. Clearly, 6(Cs[tn]) > 2n—2 and
Tvot € C’;,[%n]. Further, replacing T 2+ by any graph L C T, 5 ; we get the same
sharpness if K3 C L, since C5[%n] contains no Ks.

(b) Similarly, the theorem is sharp e.g. for IP1q: if one tries to embed IP1q into
05[%71/], then all the pentagons of IP;g must “run around” in 05[%71]. Therefore
we may assume that (using the notations of Figure 2) A € Ay, B € Ay, C € Ag,
D € Ay, E € A5. By symmetry we may assume that F' € A;. Now we cannot put
G anywhere: it must be in an A; neighboring both A3 and A,, which is impossible.

(c) The theorem is not sharp if x(L) = 3 and L C Cs[u] for some p.

There are many deep, unsolved problems in this field but now we skip them.
To prove Theorem 4.2 we shall use two results from extremal graph theory.

THEOREM 4.4 (Theorem 9 of [4]). Let ¢t be a natural number and let ¢ > 0.
Put £(c) = |'c_12_1'|. Then there exists an ng = no(t,c) such that if n > ng and
G, 2 Cuplt] for m = 3,5,...,2¢(c) + 1, then G, can be made bipartite by the

omission of at most cn? edges.




HOW TO SOLVE AN EXTREMAL PROBLEM? 19

REMARK 4.5. For improved versions of the above theorem see a very recent
result of Komlés, [19]. His theorem provides a much smaller £(c), approximately
the best one.

The other result we need is the following lemma.

LEMMA 4.6 (Lemma 4 of [22], p315). Let M be a given positive integer and
c > 0 be an arbitrary constant. Then there exist an M' and a ¢’ > 0 such that if a
set A of n elements contains M' subsets A; each of which has at least cn elements,
then there are M subsets
Aiy oo Aiy

among them whose intersection has more than ¢'n elements.

(Here M’ is typically much bigger than M, ¢’ much smaller than ¢. The lemma
is contained in a lemma of Erdds, [7].)

Proof of Theorem 4.2. First we fix three constants:
1 o 4 10002
100 n="7, =7, n= P
We shall consider a G, not containing T, 2 +. Our proof will have two main parts:

(A) when one can delete < en? edges from G,, to turn it into a bipartite graph
and

(B) when one cannot do this.

In the first case we shall show that we can delete O(1) vertices to make G,
bipartite. In the second one we shall apply Theorem 4.4 to get a Cagq1[M] for some
not too large ¢ and very large M and then we shall deduce in (C) that G, O Cs[u].
From this we shall deduce that the minimum degree is < %n + K.

v =

(A) So first we assume that G,, can be turned into a bipartite graph by deleting
< en? edges. Let us choose the vertex-partitioning A U B = V(G,,) for which
e(A)+ e(B) is the minimum possible. We shall prove that A contains O(1) vertices
so that deleting them we ruin all the edges in A. The same will hold for B. This
will prove that we can omit O(1) vertices to get a bipartite graph, as stated in the
theorem.

(A1) By Lemma 4.6, there exists a constant h such that if x1y1,..., Ty, are
h independent edges in A and U; = N(z;) N N(y;) N B, |U;| >enfori=1,...,h,
then we may choose v of these edges so that | N U;| > v. Therefore T5, 2, C G, &
contradiction.

(A2) Below we shall call horizontal degree the number of edges to the same
class: For a given z € A we shall call a(z) := |[N(z) N A| the horizontal degree and
B(z) := |N(z) N B|. To show that

2 3
(4.1) =N 2en < |A|,|B| < snt 2en,

first we assume that |A| > |B|. By the assumption that A and B contain only
< en? edges, we get that the average of a(x) in A is at most 2en. Therefore A
contains an z for which 3(z) = d(z) — a(z) > 2n — 2en:
2
|A| > [B| > B(z) > 5" 2en,

proving (4.1).
(A3) From now on |A| > |B| will not be assumed. If A’ C A is the set of vertices
z having horizontal degree a(z) < nn, then A’ contains at most h independent
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edges: each edge xy has endvertices joined to at least %n — nn vertices from B.
Therefore 2 and y have at least
4 3 1
B(z) + B(y) — |B| > Fh e 2en — 2nn > 0"

common neighbors in B. So we may apply Lemma 4.6, as described in (A1) to see
that the number of independent edges in A’ is at most h, therefore they can be
represented by at most 2h vertices.

(A4) Similarly, |4 — A'| < h. Indeed, if A" := A— A’ contains T points, ® then
we can select T' independent edges z;y; with

z; € A", y; € A, a(y;) < 3nn.

Now, by the minimality condition on the partition,

B(a) > a(z) and f(a) > 3d(@) > zn.

| =

(A4/(i)) If B(z;) > £n + 10mn, then
1 2
|N(z;) N N(y;) N B| > N + 10nn + =1 a(y;) — |B| > (10 — 2¢)n.

This is enough to apply (Al).
(A4/(ii)) If B(zi) < tn + 10nn, then both

‘a(wi) - %‘ < 10mn, and ‘ﬁ(xl) - g| < 10nn.
If |B| < %n — 67n, then the number of triangles on z;y; is at least
1 2
[N (z;) N N(y:) N Bl > B(z:) + By:) — |B| > gn ot gn = 3m - |B| > 3nn,

and we may apply (A1). If, on the other hand, |B| > %n—ﬁnn, then |A4| < §n+6nn.
We estimate from below the number of K3’s of form z;yz, where z € BN N(z;)
and y € N(z;) N A. Observe that each z € BN N(z;) sends at least

1 2
B(z) + a(z;) — |A| > %n —a(z) + e 10nn — il 6nn > g — 16mn — a(z)

edges to N(z;) N A. Further, Y a(z) < e(B). So the number of triangles z;yz is at
least

Z IN(z)NN(z;) NAl > a(z;) - (2 —16mm) — e(B)
z2€BNN(z;)
> (2 —10nn) (& — 169n) > g—;.
This means that (for fixed z;) z;y is contained in at least % [a(zi) > 55 triangles
on the average (taken over y € AN N(x;).) Therefore we may recursively choose

the edges z;y; contained in at least 31_0" triangles ¢ :=1,...,T, T = o(n). Lemma
4.6 now provides us with a T5, 2,y C Gy, unless T' < h. So in this case we can again
represent the above edges by at most h vertices x1,...,z7.

(B) Next we assume that we cannot delete en? edges of G, to get a bipartite
graph. By Theorem 4.4, for some £ < 1 and for M = p-10'/%, G,, contains an
C2¢41[M], assumed that n is sufficiently large.

5Here we assume e.g. that T < logn to deduce that T' < h. If |A — A’| is larger, then choose
a subset of [logn] vertices.
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Let us count the number of edges between G,, — Capq1[M] and Capq1[M]. By
the minimum degree condition,

e(G — Cas1[M], Corsa [M]) > %n (20 +1)M — O(M?),

Each vertex z € G, — Car+1[M] can be classified according to N (z) NCs[M]. There
are O(22HDMY = 0,,(1) classes.

Let us say that an ¢ € G, — Ca41[M] is typically connected to a class A;
of Copp1[M] if it is joined to at least % vertices in this class and there are v
other vertices of G,, — Cap41[M] joined to the same vertices of Copt1[M]. A short
calculation shows that if 24 + 1 > 7, then most vertices z are typically joined to
at least 3 classes and these 3 classes must be pairwise non-neighbors. This implies
that we have a k < £ for which Copy1[M*] C Gy, with M* = [M/10]. Iterating
this step at most [1] times we get that a Cs[u] C Gy, for p = 10002 /e.

(C) So we assume that G,, O Cs[u]. Fix one such Cs[u] and calculate the
number of edges between Cs[u] and G,, — Cs[p]:

(4.2) e(Cs[ul, Gpn — Cslu]) > 5u6(Gy) — 5p* > 2un — 5p°.

(C1) We change now the meaning of “typical connection”: = & Cs[u] is typically
joined to a class A; of Cs[u] if |V (z) N A;| > v and there are v other vertices outside
Cs[u] also joined to each y € N(z) N Cs[u).

(*) If = is joined typically to A; and A;iq1, then Toy 0, C Ks(v,v,v) C Gy
which is excluded.

We partition V(G,, — Cs[u]) into 7 classes:

(a) W is the set of those vertices which are joined typically to A; and A;41 (for
some i =1,...,5). By (*), [W| <wv-32¢ =0(1).

(b) Z is the set of vertices “poorly” joined to Cs[u]: those vertices which are
joined to at most 2u — 10v/e vertices of Cs[u]. We will show that |Z| < len.

(¢)U; (i=1,...,5) is the set of vertices not in Z, typically joined to 4;_1 and
Ait1.

A vertex in U; is joined to Cs[u] by less then 2y + 3v edges. This, the bound

on |W|, the definition of Z and (4.2) imply that |Z| < 103v”/5n < 3en. So deleting

all the edges represented by Z we deleted fewer than %an edges.

Using the method of (Al) we see that U; contains at most O(1) independent
edges, otherwise T, 2, C G, and therefore L C G,,. So e(U;) = O(n), moreover,
all the edges of U; can be represented by O(1) vertices.

Let us call a graph pentagon-like if it is contained in some C5[N]. We have just
proved that we can delete T; := O(1) vertices of G, to get a pentagon-like graph.
But it is trivial that the minimum degree of a pentagon-like graph Gy is at most
2k. So 6(Gp) < 2n+Th. [
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