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Abstract

Ramsey and Turdn type problems were always strongly related to each other.
Motivated by an observation of Paul Erdés, it was Turdn who started the system-
atic investigation of the applications of extremal graph theory in geometry and
analysis. This led the second author to some results and problems which, in turn,
led to the birth of Ramsey-Turdn type theorems. Today this is a wide field of re-
search with many interesting results and many unsolved problems. Below we give
a short survey of the most important parts of this field: starting with a historical
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e Applications
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Notation. For a set @, |@Q| will denote its cardinality. We shall primarily consider
graphs without loops and multiple edges. However, (as tools) we shall also use colored
graphs with weighted edges and vertices. Given a graph G, e(G) will denote the number
of its edges, v(G) the number of its vertices, x(G) its chromatic number, a(G) the
maximum size of an independent set in it. Given a graph, the (first) subscript will
denote the number of vertices: G, Sy,...will always denote graphs on n vertices.!
R(k1,...,k,) will denote the usual lower Ramsey number, that is the maximum ¢
such that there exists an edge-coloring of K; in r colors where K; contains no Ky, in
the " color (sometimes denoted by x;) for 1 < i < r. For given graphs Li,..., L,,
R(Ly,...,L,) will denote the corresponding Ramsey number, that is, the maximum ¢
for which K; has an edge-coloring in 7 colors where K; contains no (not necessarily
induced) L; in the ith color for 1 < i < r. If we use two colors x; and s, we shall call
the first color RED, the second one BLUE. Occasionally, when we need to indicate the
number of colors used, like in R(a,...,a), — to avoid ambiguity — we shall use the more
precise notation Ry(a,...,a).

Given a graph G and a set U of vertices of G, G[U] will denote the subgraph of G
induced (spanned) by U. The number of edges in a subgraph spanned by a set U of
vertices of G will be denoted by e(U). We shall say that X is completely joined to Y
if every vertex of X is joined to every vertex of Y.

Given two points z, y in the Euclidean space E", (or in any given metric space)
p(x,y) will denote their distance.

1. Introduction

1.1. Ramsey theorem, Turan theorem and generalizations

Ramsey Theorem [114] and Turdn extremal graph theorem [146],[147],[153], are both
among the basic theorems of graph theory. Both served as starting points of whole
branches in graph theory and both are applied in many fields of mathematics.? In the
late 1960’s a whole new theory emerged, connecting these fields.

In 1930 Ramsey proved the famous

Theorem 1 (Ramsey theorem for 2 colors, complete graphs [114]). Given a pos-
itive integer k there exists a threshold integer R = R(k) such that if n > R(k) and the
edges of K,, are colored in two colors arbitrarily, then it contains a monochromatic K.

Motivated by this theorem, Turdn posed the following question in 1940 [146]:

What is the maximum number of edges a graph G, can have without con-
taining a complete K7

!The only case when the (first) subscript in the notation of a graph is not the number of vertices is
when we speak of the excluded graphs Ly, ..., L.. Of course, in case of sets, etc, e.g. in case of sets A;,
Vi, the subscript is not necessarily the cardinality.

20n Ramsey theory see the book of R.L. Graham, B. L. Rothschild and J. Spencer, [85], and on
extremal graph theory see the book of B. Bollobés [12] or the survey of M. Simonovits, [134].



Obviously, if we partition n vertices into £ — 1 classes as equally as possible and join
two vertices iff they belong to different classes, then we obtain a k — 1-chromatic graph,
not containing Kj. This graph will be denoted by T;, ;1, and called the Turdn graph
on n vertices and k£ — 1 classes.

P. Turan proved:

Theorem 2 (Turdn theorem for complete graph [146, 147]). Givenn andk, (1 <
k < n), every graph G, on n vertices not containing a Ky has at most t(n,k — 1) :=
e(T, k1) edges, and this mazimum is attained only by Tp, 1.

Note that this completely solves the extremal problem:
Ifn=4¢k—-1)+d, 0<d<k—1, then

tnk—1) = 3 (1 - ﬁ) (n? — &) + (g) - (1 - ﬁ) (Z) +0(1).

Below we formulate another version of Ramsey theorem which may seem to be more
general but is equivalent to the previous one. Then we formulate two generalizations of
Turan’s theorem. Here, writing that “G' contains an L” we do not necessarily assume
that L is an induced subgraph of G.

Theorem 3 (Ramsey theorem for many colors and arbitrary graphs). Let
Li,..., L, be fized graphs. There exists a threshold integer R = R(Ly,...,L,) such
that if n > R(Ly,...,L,) and the edges of K, are colored in r colors arbitrarily, then
for some i < r it contains an L; in the i*® color.

Theorem 4 (Erdés—Stone—Simonovits [64]). Let £ be a family of graphs and let
ext(n, L) denote the mazimum number of edges a graph G, can have without containing
any subgraph L € L. Put

p:=p(L) = minx(L) - L.

ext(n, £) = (1 - %) (’;) +o(n?).

As we see, in case of Turan type extremal problems the chromatic number determines
the answer asymptotically. (For p = 2 this gives only ext(n, £) = o(n?) and to find finer
estimates is mostly a very difficult, open problem). As Erdés [40] and Simonovits [131]
proved, not only ext(n, L) but the extremal or almost extremal graphs are also near (in
structure) to the Turdn graph.

As to the Ramsey functions, even in the simplest case, for R(k) (two colors, sym-
metric case) no asymptotics is known.

Then

1.1. The Ramsey-Turan problem. Observe, that the extremal graph in Turdn’s
theorem has a very strict structure. It is very regular, and the chromatic number is
“small”, the vertex set is the disjoint union of a few “large” independent sets. Its
structure is as far as possible from what we would call randomlike. The Ramsey problems
are also extremal problems but there everybody thinks that the good Ramsey structures

3



are randomlike. One question of this field could be: how does the maximum number of
edges of a graph G, not containing some fixed subgraph L changes if we add some extra
conditions which move the structure of GG, away from the regular, simple structures
towards the randomlike ones. In other words, how “stable” the extremal graph is.

Problem A. For a given sequence m, — oo, let G,, be a graph not con-
taining K} and having independence number «(G,) < m,. What is the
maximum number of edges such a graph can have?

This simple question is motivated by Ramsey and Turdn theorems and also by some
applications discussed later, in Section 8. Most probably it was Andrasfai who — an-
swering some questions of Erdés — first started the investigation of this problem system-
atically, see Remark 63. Considering the general formulation of Ramsey’s theorem, it is
also natural to ask the analogous Turan type question.

Problem B. (Turdn-type extremal problem for colored graphs). Let L, ..., L,
be fixed graphs. What is the maximum number of edges an r-colored GG, can
have under the condition that it does not contain an L; in the i*" color, for
any 1 <1< r.

The maximum will be denoted by T'(n, L1, ..., L,).

The more general problem — a common generalization of the above problems is:

Problem C. Let Lq,..., L, be fixed graphs. Let G, be a graph such that
(a) o(G,) < m and
(b) the edges of G, are colored by r colors so that the subgraph Gy
defined by the edges of the i*" color contains no L;, for any i = 1,...,7.
What is the maximum number of edges such a graph can have?
The maximum will be denoted by

RT (n;Ly,..., Ly, m)

or, when L; = Ky, by
RT (n;ky, ..., k,,m) .

Of course, for fixed m and large n — by Ramsey theorem — there are no graphs with the
above properties: the maximum is taken over the empty set. However, we are interested
mainly in the case m — oo, m = o(n), but m/n — 0 very slowly. We will always assume
that the set of graphs is nonempty, which is equivalent with n < R(Ly,..., L., K).
Later we shall generalize Problem C into two directions:

e to hypergraphs and

e by generalizing the notion of independence number to a,(G), see Section 7.



1.2. Applications of Ramsey’s and Turan’s theorem

It is an interesting piece of history that Erdés and Szekeres rediscovered the Ramsey
Theorem to apply it in the solution of a problem of Eszter Klein (Mrs Szekeres) in
geometry. A detailed description of the “story” of the Erdds-Szekeres theorem can be
found in the “Preface”-paper of Szekeres included in the Art of Counting, [140].

Theorem 5 (ErdGs—Szekeres [72]). For every k there is a threshold F (k) such that
if at least F (k) points are given in the plane, no three on a line, then there are always
k of them forming a convex k—gon.

Proof (sketch). The basic idea of one of the standard proofs is the following:

Take n points in the plane and consider the corresponding complete 4-uniform hy-
pergraph K,(:L). Color its hyperedges by RED and BLUE as follows: if P;P; P, P}’s convex
hull is a 4-gon then the 4-tuple be RED, otherwise it is BLUE.

Claim 6. This coloring has no RED complete 4-uniform 5-graph K§4). 1

By Claim 6 the RED-BLUE-colored K contains a BLUE complete k-graph K, ,(64),
assumed that n is sufficiently large. The corresponding & points form a convex k-gon. g

Remark 7. Erdds and Szekeres have shown that
2k — 4
F(k) <
(k) < < k—2 )

F(k)=2F241.

One can easily show that F(4) = 5. F(5) = 9 is a difficult result of Makai and Turan
[106]. The general case is still unsolved. 3

and they conjectured that

Remark 8.

(a) The Erdés-Szekeres paper contains another proof as well.

(b) There are alternative proofs of the corresponding fact using similar Ramsey
arguments but for triplets instead of 4-tuples.

The first application of Turan’s theorem to geometry was given by Erdos.

Theorem 9 (Erdds [34]). If {Py,..., P,} is a set of n points in the plane of diameter

(of mazimum distance) 1, then at least 3(["43}) ~ ’E—Q pairs P;, P; have distance < %

The proof is based on the following simple geometrical fact:

If @Q;, 1 <1 <4 are points in the plane, of maximum distance 1, then the smallest
distance among them is at most .

Therefore, if G, is the graph the vertices of which are 1,...,n and the edges of which
are the pairs (7, j) for which the distance o(P;, P;) > \%2, then Ky € G,,. Hence Turédn’s
theorem implies the result.

3Recently G. Szekeres has obtained some new results in connection with this problem: he reformu-
lated a more general problem so that it became much more algebraic and therefor the small cases of
the original problem can be handled even by a computer.
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Remark 10. This result is sharp in two different ways.

(a) The proportion % cannot be increased: taking the vertices A, B, C' of an equi-

lateral triangle in R? and replacing each vertex by ~ 3 different vertices near to the
corresponding point we have a situation where ~ %(g) distances are near 1 and all the
others are very small.

(b) The distance % cannot be decreased without decreasing the proportion: taking
the vertices of a unit square and replacing each by roughly % different points from their
e-neighborhood, inside the unit square, we get a set of n points where the diameter is 1
and only 4("44) ~ ”8—2 of the distances are smaller than % —9.

It is somewhat annoying that these two constructions are completely different.

In the late 60’s Turdn started applying the main idea of the above proof of Theorem
9 in several different situations. As Turdn observed, both Ramsey theorem and his
theorem are in some sense generalizations of the Pigeon Hole Principle and therefore it
is not so surprising that they are applicable in so many areas of graph theory and other
branches of mathematics.* We shall not consider here any applications to combinatorics
(which are perhaps not so surprising), but only applications to geometry, potential
theory and probability theory. Work in the first two areas was initiated by Turdn [148],
continued first by him in [149, 150, 151], ... and then continued by Erdés, Meir, Sés and
Turdn [54, 55, 56] and others. The application to probability theory is due to Katona
(88, 89, 90, 91, 94], Katona—Stechkin, [95], and Sidorenko [123, 124, 125, 126, 127, 128,
129].

e One of the new ideas in Turdn’s papers was that the constant 1/4/2 is a so called
“packing” constant of the plane and the above method works for the other packing
constants as well. Moreover, one can apply the method with many different packing
constants simultaneously.

e Another important new feature was that this method works for arbitrary (let us
say, “reasonable”) metric spaces. Therefore there is a wide spectrum of cases where
extremal graph theory can be applied.

e The same approach can be observed in the works of Katona and then of Sidorenko:
Take a problem in probability theory, where the distribution of sums of (scalar
or vector valued) random variables should be estimated. Find the appropriate
geometric graph, find out, which subgraphs are excluded and apply the appropriate
extremal graph theoretical result to this geometric graph. In many cases there are
no such results at hand, and this way we encounter new problems in graph theory.

e There are many applications of Turdn and Ramsey theorems in number theory and
in computer science. We shall skip discussing the computer science applications
and return very briefly to number theory in Section 8.9. Yet we should emphasize
here that the connection to number theory is among the most important ones.
(This was the topic of V. T. Sés’ lecture at the STAM meeting, Toronto, 1998.[139].)

4This meta-mathematical remark is due to Turén.



Erdés has written several papers on applications of Ramsey theory and of extremal
graph theory in number theory but their descriptions is beyond the scope of this
paper. As a “random selection” we mention [45, 27, 5, 46, 59, 17]

These applications provided the motivation for the Ramsey-Turdn type problems,
(Problem C) [137], however, Ramsey-Turdn problems are interesting on their own and —
we feel — they should have been posed and investigated even without these applications.

In Sections 2-7 we shall primarily discuss the results related to Problems A-C, and
in Section 8 we return to the applications in geometry, analysis and probability theory.

(1) Problem B is much simpler than Problems A,C and it shows the clear relation
between Ramsey and Turan Theorems. In Problems A,C asymptotic results are known
only in some special cases. The general results indicate that probably the chromatic
number — playing an important role in extremal graph problems — should be replaced by
some version of the arboricity number arb(L), where the usual arb(L) is the minimum
number of classes into which V(L) can be partitioned so that each class spans a tree or
forest in L. Some version ARB(L) of arb(L) will be defined in Section 2.6.

Yet, no sharp asymptotics on RT (n, L, m), are known for m = o(n). It is easy to
see that

Theorem 11 (V. T. Sés, 1969, [137]). Let R := R(ky,...,k,) be the Ramsey num-
ber. Then

T(n k... k) = ext(n, K1) = (1 . %) (Z) +0(1).

Here e(G),) < ext(n,Kgy1) is obvious: assuming the contrary we would have an
r-colored Kpy1 C G, and for some i we would have a Kj, in it of the 5 color. The
lower bound follows from the following

Construction 12 (Sé6s, 1969, [137]). Let V(Kg) = {x1...,zr}. Fiz an r—edge-
coloring: ¢ : E(Kgr) — [1,7], where the i color contains no Ky, (i = 1,...,7).
Consider T, r and color all the edges between the classes Cy, and Cy by color ¢(zp, xk),
(1<h<k<R).

Clearly, T,, r colored this way contains no Ky, of colori (1 =1,...,7). 1

The problem of T(n, L,. .., L,) is still “easy”. Burr, Erdés and Lovész, [28] intro-
duced the following Ramsey function: Let ¢ = ¢(L4,..., L,) be the smallest integer for
which, if v > 0 is sufficiently large, then for any r-coloring of K;(v,...,v) there exists
an 4 for which there is a monochromatic L; in the i*" color. (Here K;(v, ..., v;) denotes
the complete t-partite graph with v; vertices in its i class.)

Theorem 13. 5 Given r sample graphs, Ly, ..., L,, then (for some constant ¢ > 0)

T(n,Li,...,L,) = (1 - t—%) (;‘) +0(n2 o).

5This theorem is explicitly formulated in [50] where we refer to it as if it were from [28], but there
it is (at least) difficult to find this otherwise easy statement.
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Proof. Indeed, if G,, can be colored in 7 colors so that the i*" color contains no L; for
i =1,...,r, then (by the definition above) G, 2 K;(v,...,v). Applying the Erds—
Stone Theorem [71] we immediately obtain the slightly weaker

e(Gy) < (1 _ t_il) (’;j) + o(n?).

To get the stronger error term (i.e. Theorem 13) one should use the (stronger) Erdds—
Simonovits Theorem [40, 131]. 1

2. Ramsey-Turan theorems for complete graphs

We distinguish 3 ranges: the “no-restriction” case settled by Theorems 11 and 13, the
intermediate, i.e. where a(G,) < cn for some fixed ¢ € (0,1) and the a(G,) = o(n)
ranges. The most interesting case is the last one, emphasized here the most.

2.1. The definition of RT (n, Ly, ..., L., 0(n)).

RT (n, Ly,..., L., f(n)) is well defined for any function f(n). Yet, the notation
RT (n, Ly,...,L,;,0(n)), needs some clarification. Put

RT (n,Ly,...,L,,
/19(.[/1, . ‘)LT') = lim lim (’n/) 1, ) ETL)

e—0n—o0 n2

Then RT (n, Ly, ..., L,,o0(n)) is the family of functions ¢ ¥(L,,...,L,)n? + o(n?). An
easy application of Cantor diagonalization shows that there exist best f(n):

Claim 14. For every L, ..., L, there ezists a function f(n) = o(n) for which
RT (n,Ly,..., Ly, f(n)) =9(Ly,..., L)n* + o(n?).

See also Definition 52 and Problem 9 on threshold functions.

2.2. The o(n) range, complete graphs, odd case

First we consider the case r = 1, L = Koy 1, and m — oo, m = f(n) = o(n).
Trivially,
RT (’I’L, K37 0(’]’2,)) = O(’I’LZ),

since the condition implies

Theorem 15 (Erd6s—Sés [66]).

RT (n, Kops1,0(n)) = (1 - %) (2) + o(n?).

6more loosely, any of these functions



Construction 17 below provides the lower bound of this result:

Claim 16 (Erdé&s graph, F,,). For any fized integer £ > 2 there ezists a constant
¢ > 0 such that there exist graphs F,, with girth g(F,;) > £, and o(F,,) < m'~¢, for any
m > my(f).

Claim 16 has several different proofs. The first one is a “random construction” from
[37]. (Now this is enough for our purposes and later we shall return to a more detailed
analysis of this question.)

Construction 17 (U, ). Take a Turdn graph T, ) with classes Cy,...,Cy and put a
graph F,, (m = |n/k|) into each of its classes.

Clearly, the resulting graph U, ; contains no K1, since that would imply that one
of its classes (i.e. the graph F,,) contained a Kj. Further, a(U,x) = O(n'~¢). This
provides the lower bound in Theorem 15.

Intuitively, the theorem asserts that for large n, if we add (in Turdn’s theorem on
K1) the extra condition that «(G),) = o(n), that will have roughly the same effect on
the maximum number of edges as excluding a complete graph K.

Construction 17 (used for one color) can be generalized:

Construction 18 (Erd6s—Sés). Put R = R(ki,...,k;). Consider T, r and add to
each class Cy,...,Cgr an “Erdds” graph F,,. Color the edges between different classes
according to the appropriate Ramsey coloring of Kg, and color the edges in C; (i =
1,..., R) arbitrarily.

This coloring gives

1
RT (n,2k +1,...,2k, +1,n'¢) > <1 — E) (Z) + o(n?).

The lower bound obtained this way can be improved. We shall return to the case of
RT (3,...,3,0(n)), in Section 3.1.

2.3. The Bollobas—Erdo6s graph

The even case ¢ = 2k is much more difficult. Even the simplest case ¢ = 4 is a deep
theorem. We start with the corresponding construction: with the Bollobdas—Erdos graph,
which is one of the most important constructions in this area. So it deserves some
explanation.

The basic geometric idea is that if we take on the h-dimensional unit sphere S” four
points x, ¥y, x*,y* so that z,z* and y,y" are almost antipodal, then these 4 points are
almost in a plane and they form an almost-rectangle and therefore at least one of the
sides of this 4-gon zyz*y* is longer than /2 — 7, where 7 is a small error-term.

Construction 19 (Bollobds—Erd6s graph, [14]). For a given ¢ > 0 and a large in-
teger h we fir an ny(e, h) and assume that n > ny(e, h) is even. Put u = ¢/v/h. Fiz
a high dimensional sphere S™ and partition it into n/2 domains Dy, ... y Dr2, of equal
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measure and diameter < %,u. (This is possible!) Choose a vertex x; € D; and an y; € D;
(fori=1,...,n/2) and put X = {x1,...,2p0} and Y = {y1, ..., Yps2}. Let X UY be
the vertez-set of our BE,,.

(a) Joinan z€X toa yevY if plz,y) <vV2—p

(b) joinan zxz€X toan '€ X if p(z,z')>2—p;

(c) joina yeY toa yeY if ply,y)>2—p.

Denote the resulting graph by BE,, or BE(n, h,¢).
Claim 20. «(BE,) = o(n).

The idea behind this is that if we choose %cn vertices from among z1,. .., z,/2, then
the union U of the corresponding domains give a subset of relative measure > ¢ and
therefore (by the corresponding isoperimetric theorem) U contains two points A, B with
p(A, B) =~ 1. Since the diameter of the domains is small, there are two vertices of the
graph, z near to A and y near to B with p(z,y) ~ 2, so they are joined. 1
Claim 21. BE,, contains no K,.

The idea behind this claim was explained at the beginning.

Claim 22. Each vertex of BE,, has degree & 4 o(n), as e — 0..

Indeed, each z; is joined to the y;’s on the “opposite approximate halfsphere”. 1

2.4. The o(n) range, complete graphs, even case

Theorem 23 (Szemerédi [141], Bollobas—Erdés, [14]).

2

RT (n, K4, 0(n)) = % + o(n?).

The upper bound was proved by Szemerédi, the lower bound by Bollobas and Erdés,
(by the above construction), and even after having this result it took years to determine
RT (n, Ko, 0(n)).

Theorem 24 (Erdds-Hajnal-Sés-Szemerédi, [52]). For q = 2k,

_13¢-10 2 4 o(n?).

RT (n, K,,0(n)) = 53¢ 4 n

For large ¢ this again means that the effect of condition a(G,) = o(n) is rougly the
same as excluding a Kig/5. Though the formula above may seem mysterious, it becomes
transparent if we rephrase the above theorem as follows. We need the following.

For a given property A of graphs the corresponding extremal problem is to

“maximize e(G,) for G, € A”.

Definition 25. A sequence of graphs, (S,) will be called asymptotically extremal if
S, € A and
e(Sn) > (1 —o(1)) max e(Gy,).

Gn€A
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Theorem 26. Put m := 3]‘221. Take a Bollobds-Erdés graph BE(m, h,ey,) and a
Turdn graph T,,_p 1. Join each vertex of BE(m, h,e,,) to each vertex of T, —1. Put
an Erdds graph F,,- into each class of T, k-1, (to spoil the large independent sets).

The resulting graph H, ts approximately reqular:
dmax(Hn) - dmin(Hn) = 0(”);

and H, is an “asymptotically extremal sequence” for the problem of RT (n, Ko, 0(n)):
(a) Ko £ Hy

(b) a(Hy) = o(n),
(c) e(H,) > RT (n, Ko, 0(n)) — o(n?).

Replacing o(n) in some problems RT (n, L,0(n)) by slightly smaller functions, say
by f(n) = ﬁ perhaps one could get smaller upper bounds.

Problem 1. Is it true that for some ¢ > 0,

1
RT (n, Ky, —— ) < = —¢)n??
logn 8

Similarly, we could ask, what happens if o(n) is replaced by O(n'~¢) for some fixed
but small constant ¢ > 0:

Problem 2. Under which conditions on L can one state that there exist two positive
constants c,c; > 0 for which

RT (n,L,0(n)) —RT (n, L, f(n)) > cin® for every f(n)=0(n'"°) 7?

2.5. Geometric constructions, isoperimetric problems

The interaction between graph theory and other parts of mathematics, e.g., geometry,
number theory, etc, became more and more evident and intensive in the last two decades.

We have already mentioned that there is a connection between some geometric prob-
lems and Ramsey theory, see Section 1.2. As to the connection of extremal graph theory
and geometry, one could say that this connection is perhaps even stronger and more
many sided. Indeed, right at the beginning, Erdos applied Turan’s theorem and other
extremal graph results in geometry. Among others, he applied these methods to give
the first, fairly simple estimates on the number of unit distances in his famous problem:

Problem 3 (Unit distances). Given n points z1, ..., z, in R, what is the maximum
number of pairs (z;, x;) for which p(z;,z;) =1 (or any constant)?

Let us consider the graph whose vertices are the points x; and the edges are the
pairs with p(z;,z;) = 1. Using the observation that in the plane this graph does not
contain K53 — since two circles intersect in at most two points — Erd6s concluded that
in the plane the number of unit distances is O(n3/?). Similarly, in R® the graph does not
contain K33, therefore the number of unit distances is O(n®?). (Unfortunately these
estimates are far from the conjectured O(n°("), see [35].)
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Later, in some sense these observations were (implicitly) used in the opposite di-
rection: Erdés, Rényi and Sé6s [61] and W. G. Brown [16] constructed finite geometric
graphs which showed that

1
ext(n, Kyo) = §n3/2 + 0(n3/2),

and
ext(n, K33) > c33n%® + o(n®?).

All these 7 and many other cases (Reiman [115], Benson [11], Simonovits [133], Fiiredi
[79], etc) show that geometric graphs can often be used to get interesting constructions
in graph problems. For a detailed discussion of such interactions see the survey of T.

S6s [138].

Remark 27. More recently algebraic geometric methods also provided beautiful con-
structions, a breakthrough in the area of bipartite extremal problems, see Kollar, Rényai
and Szab¢ [102], then Alon, Rényai and Szabd, [6].

The reason why geometric observations can be used to get lower bounds in ordinary
extremal graph theory is that if in Euclidean or affine or projective geometry some con-
figuration is excluded, that often can be translated into graph theoretical language. This
provides an infinite graph without that subgraph L. To get a finite graph construction,
first we should describe geometry in terms of analytical geometry, then replace the field
of real numbers by a finite field. Often L will be excluded in the resulting finite graph.®.

It is perhaps much less known, that in Ramsey-Turan problems High Dimensional
Isoperimetric Theorems play important role.
In our simplest case we would need graph sequences (G,) for which

a(Gp) = o(n) and Ks; Z G,. (1)

Clearly, (1) implies that
x(Gy) — oo. (2)

The random graph construction of Erdés [37] has both properties (1) and (2) and there-
fore it can be used in many Ramsey-Turdn problems (see e.g. Construction 18). How-
ever, to solve the problem of RT (n, Ky, 0(n)) we are interested in more explicit graphs,
because, following the construction of Bollobas and Erdds, we want to take two copies
of such graphs and join them by many edges, (i.e., by positive edge density) without
getting K4. However this breaks down in case of random graphs. There are (at least)

"Above we were interested in K»(2,3), not in K5(2,2) but the result for K5(2,2) is the transparent
one which we wanted to emphasize here, to show the interaction between geometry and extremal graph
theory. For our reasons the Eszter Klein construction would be equally good.

8But not always. E.g. if we choose the parameters in the Brown construction carelessly, the 3-
dimensional spheres will contain straight lines and the proof will not work.

12



three famous graphs which could replace the random construction in such cases: the Bor-
suk graph, the Kneser graph, [104] and the Margulis-Lubotzky-Phillips-Sarnak graphs
(107, 108, 109] [105].

Bollobas and Erdos used a discretized version of the Borsuk graph to provide a lower
bound for RT (n, K4,0(n)), in [14]. The fact that for the graph BE,, constructed by
them «(BE,) = o(n) was proved by applying an isoperimetric theorem.

The Borsuk graph is defined as follows:*

Construction 28 (Borsuk graph). The vertices of B(h,e) are the points of an h-
dimension sphere S™ and we join two points z,y by an edge if p(z,y) > 2 —&.

One of its important features is that it contains no short odd cycles, since each edge
is joined only to “almost antipodal” vertices. The other important feature is that its
chromatic number is A + 1. It has also a third important feature, connected to the high
chromatic number: its independent sets are of small measure. If we wish to find a large
independent subset of S” that means that we are looking for a large subset without
distances > 2 — . A corresponding “isoperimetric” theorem asserts that

Theorem 29 (E. Schmidt, [119]). 1 If A C S" is an arbitrary measurable set not
containing two points of distance > 2 — e and B is a spherical cap in S of diameter
2 — ¢, then \(A) < X\(B) (where X is the Lebesgue measure).

Corollary 30. If A C S" is an arbitrary measurable set not containing two points of
distance > 2 — ¢ 1 then 1
AA) < 2e72h,

Construction 31. The Kneser graph KIN(m, /) is defined as follows: An m-element
set, S is fixed and the vertices of the graph are the n := (’Z) {-subsets of this S; two such
“vertices”, i.e. (-tuples are joined if their intersection is empty.

It is interesting to note that, though the Kneser graph is similar in many respects
to the Borsuk graph, it is useless for our purposes since in the cases we need it has
too large independent sets. E.g., put m = 3¢/ — 1. Here KN(3¢ — 1,¢) 2 K3 and
X(KN(3¢ —1,¢)) = £+ 1. However, the independence number is

a(KN(30—1,0)) ~ %U(KN(SZ —1,0)).

To close this short section we remark that in connection with the K,-independence
number Erdés conjectured and Bollobds proved the corresponding generalization of
Schmidt’s result, see Section 7.

9Here S* denotes h — 1-dimensional unit sphere in R".

10Here we could formulate the results also in a more general form, see [13], yet we restrict ourselves
to Lebesgue-measurable sets.

11n the previous statement it did not matter, which way do we measure the distances: in the space
or on the surface, along geodesics, here we rather fix that in the space.
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2.6. Missing asymptotics and the Arboricity number

One of the basic problems of this area is:
Given a graph L, which graph theoretic properties of L influence 9(L)?

As we have mentioned in the Introduction, for ordinary Turan type extremal prob-
lems the Erdés-Stone-Simonovits theorem [64] immediately provides us with the asymp-
totical behavior of the solution and this asymptotics depends only on the chromatic
numbers of the forbidden graphs. No analog results are known for Ramsey-Turdn prob-
lems. Perhaps the chromatic number of Theorem 4 should be replaced by a modification
of arb(L). In this section we shall discuss: when does the “a(G),) = o(n)” condition
changes the extremal number and when does not. Further, we shall discuss also: why is
the arboricity important here?

Claim 32. If for a graph L the arboricity arb(L) = x(L), then
ext(n, L) — RT (n, L, o(n)) = o(n?).

The heuristic explanation of this claim is that if coloring L in x(L) colors we have
many edges between the color classes in the sense that any two classes must span a cycle,
then the extra condition on the independence number does not decrease the maximum
but by o(n?). On the other hand, many examples suggest that if there are color classes
weakly joined to each other, then the extremal number noticeably drops.

To prove Claim 32, put p := x(L) — 1. Take Construction 17 with an F,, having
large girth, say g(F,) > v(L). Clearly, the resulting graph U, , contains no L and
a(Uy,p) = o(n). Hence (by Theorem 4)

ext(n,L) > RT (n, L,o(n)) > e(U,,) > e(T,,) = ext(n, L) — o(n?). 1

K (3,3, 3) is a good example here. Indeed, it is trivial that arb(K (3,3, 3)) = x(K(3,3,3)) =
3. Therefore

Theorem 33.

RT (n, K(3,3,3),0(n)) = ext(n, K(3,3,3)) + o(n?)

Il
/N
—
|
N | —
N——
/N
o3
N—
+
=
3

N
N—

More generally, if p < s < t, then

RT (n, K,11(s,t,...,1),0(n)) = ext(n, K,11(s,t,...,t))+o(n?) = (1 — —) (2) +o(n?).

One can also see that

e arb(L) > 2 except if L is a tree or a forest.

e If L can be colored in A colors so that (the coloring is a “good” vertex-coloring
and) the first color is used only s < h times then arb(L) < x(L).

Below we need a modified version of the arboricity.
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Definition 34 (Modified Arboricity). The “modified” arboricity ARB(L) of a graph
L is the minimum ¢ for which the following holds:

either ¢ is even and arb(L) < ¢/2,

or £ is odd and we can delete a set V* of independent vertices so that arb(L—V"*) <
s(0—1).

To compare the two notions, observe that arb(K,) = [¢/2], ARB(K;) = £. One of
the main results of [52] is than for given ARB(L) the complete graph is “the worst”:

Theorem 35 (Arboricity, one color, [52]). If ARB(L) < { then
RT (n, L,0(n)) < RT (n, Ky, 0(n)) + o(n?).

Right now the case of K3(2,2,2) seems to be the first real difficulty. Since
ARB(Kj3(2,2,2)) = 4, therefore
1
D(K35(2,2,2)) < 9(Ky) = 3
No improvement of this bound is known. One way to settle this question would be to
show that the Bollobds-Erdds graph (or some slight modification of it) contains no
K3(2,2,2). We cannot decide even this (seemingly simple) question.

Problem 4. (a) Decide if
RT (na K3(2: 27 2) ) 0(71)) = O(nQ)

or not.
(b) Decide if
RT (n, K3(2,3,3),0(n)) = o(n?)

or not.

2.7. Ramsey-Turan problems, Multigraphs
and Szemerédi Lemma

There are only a few cases where we can solve satisfactorily the Ramsey-Turdn problems.
In some other cases we do not know the extremal densities or the (asymptotically)
extremal structures, yet we can prove that there exist relatively simple asymptotically
extremal graph sequences. One such case is when we consider many colors and complete
graphs.

For two disjoint sets of vertices, X, Y C V(G), we denote by e(X,Y) the number of
edges joining them and define the density

e(X,Y)

First we formulate one of our results in a rather simplified form.
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Theorem 36 ([50]). Given the integers ky,..., k., > 3, for RT (n, Ky,, ..., Ky, ,0(n))
there ezists a fized t and a sequence of asymptotically extremal graphs (S,) such that the
vertices of Sy, can be partitioned into t classes Vi, ..., V,, where

—e(Vin) =o(n?) fori=1,2,...,t,

and for 1 <1< j <t

— either d(Vin,Vin) = 5 + 0(1) or d(Vin, Vin) =1+ o(1).

As a matter of fact, in [50] we formulate a more general form of Theorem 36, asserting
that in the above cases there are always asymptotically extremal graph sequences which
are generalized Bollobas-Erdds graphs. There the extra information is that in the above
theorem, in case when 2 classes are connected by density %, then the corresponding two
groups span a Bollobds-Erdds graph.

One of the key tools used in this area is the Szemerédi Regularity lemma [142]
generalized to many colors [50]. (For these and other applications of the Regularity
Lemma and for some generalizations see [100].)

Regularity condition. Given a graph G, and two disjoint vertex sets in it, X and Y,
we shall call the pair (X,Y) e-regular if for every subset X* C X and Y* C Y satisfying
| X*| > e|X| and |Y*| > €]V,

d(X*,Y") — d(X,Y)| < e.

The regularity condition means that the edges behave (in some weak sense) as if they
were random. If the graph G is edge-colored in 7 colors, let d,(X,Y") denote the density
in color Y, .

Generalized Regularity Lemma. For every ¢ > 0, and integers r and kg there exists
a Ao(e,r, ko) such that for every r-edge-colored G, V(G),) can be partitioned into sets
Vo, Vi, ..., Vi — for some kg < A < Ag(g, 7, ko) — 50 that |Vp| < en, |V;| = m (the same)
for every 1 > 0, and for all but at most 6(;‘) pairs (1, 7), for every X C V; and Y C V},
satisfying | X |, |Y'| > em, we have

d(X,Y) = do(Vi, V)| < &
for every 1 <v <r.

The above theorem does not explicitly deal with the edges inside the classes V;. This
is why we need to put a lower bound ky; on the number of classes. If we choose kg
large then the number of edges inside the classes will be negligible compared to the total
number of edges, so we may forget about them. On the other hand, Ay is an upper
bound on the number of classes which enables us to treat the whole graph as if it were
the union of just a few randomlike bipartite subgraphs G(V;, V;).

Harary and Brown [26] and then Brown, Erdés and Simonovits [19, 24] considered
multigraph extremal problems where the multiplicities were 1 and 2. Above the multi-
plicities (or weights) are 1/2 and 1 and that is not much difference. So it turned out that
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these Ramsey-Turdn problems are strongly connected with a particular kind of multi-
graph extremal problems, which can algorithmically be solved. In those cases where
we want to solve a Ramsey-Turdn problem, one can define weighted complete graphs
and weighted Ramsey theorems and reduce the solution of Ramsey-Turdn problems (for
many colors and complete graphs) to the solution of weighted Ramsey problems. For
details see [50]. It may happen that all the Ramsey-Turdn problems for ordinary graph
— assuming that we look for a solution up to o(n?) edges — can be reduced to such
multigraph extremal problems. However, that we cannot prove, not even for one color.

2.8. Permissible densities

Turéan or Ramsey-Turdn type problems may be asked, investigated in various settings.
By Theorem 4, for ordinary graphs the densities

. ext(n, L)
lim — - —
n=rc0 (2)

have very special forms: 1 — 1. One can ask in other settings the same: which are

the possible densities? It turned out, that — though in the simplest case of multigraph
extremal problems these densities form a well ordered set, — practically we do not know
too much about the set of densities in the other cases. The following consequence of
Theorem 35 shows that (at least) these densities for Ramsey-Turdn problems cannot be
arbitrary:

Theorem 37 ([52]). Let L be an arbitrary fixed graph. Let

13¢—-9 . . 13/ —-10
—Em if ¢ 1is odd and CL[—§3£_4

Then for some odd ¢

if ¢ 1iseven

Gy

ﬁ(L) = n11—>120 &n) € [aEa a€+1]'
2
The sequence (a3, a4, a5, as,--.) = (0, %, i, %, ...) is strictly increasing. As a result,
e.g., there is no density in (3, 7).

3. Some results on many colors

3.1. Triangles
Theorem 38 (Erdds, Sés [69]).

2

RT (n;3,3,0(n)) = %(1 +o(1))
Erdés, and Sés [69] also conjectured what was proved only later:
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Theorem 39 ([52]).

RT (n;3,3,3,0(n)) = (% + 0(1)) n?.

To explain the general case we need a definition.

Definition 40. Rj(L1,...,L,) is the maximum R for which one can r—color Kg so
that

(a) no monochromatic L; of color x; is in Kg, for 1 <i <,

(b) each vertex is incident only to at most 7 — 1 colors.

Now, Theorem 39 immediately follows from

Theorem 41 (Erdds-Hajnal-S6s-Szemerédi [52]).

RT (n:3,3,...,3,0(n)) = (1— R;(3,31,...,3)> (;”) + o(n?).

The reason why we use here Rp, (3,3,...,3) is that if we color a T), g~ according
to Definition 40, so that some color X (; is missing from the colors used for the edges
between C; and the other classes, then we can put into each class C; of this 7}, g« an
Erdés graph Fj, g+ and color it with x.(;). Thus we get an r-coloring of T, - without
monochromatic triangles.

Remark 42 (Local Ramsey numbers). We have mentioned that one of the beauti-
ful aspects of Ramsey-Turan theory is that this area is intrinsically connected to many
other areas. One of these areas is the “Theory of Local Ramsey Numbers”, where for
given Li,..., L, and ¢ < r we consider r-colorings of K, where each vertex is incident
to at most £ colors and (a) of Definition 40 is satisfied. Here we see the connection to
this field, for £ =r — 1.

Actually, [66] was the first place where the notion of Local Ramsey Coloring arose.
Later (1987) M. Truszczynski, Z. Tuza [145] and A. Gyarfas, J. Lehel, R. H. Schelp and
Zs. Tuza [81] started more systematic investigation of Local Ramsey Coloring, they and
Nesetfil and R6dl extended these investigations to hypergraphs, [82] and somewhat later
A. Galluccio, M. Simonovits and G. Simonyi rediscovered it, again in connection with a
Ramsey theoretical problem [80].

Erdds conjectured that R, (3,...,3) = Rp—1(3,...,3), but this was disproved by
Fan Chung [29], (oral communication).

Remark 43. Denote by mg(r) the largest integer for which one can color K,) by
r colors so that none of the colors contains a monochromatic triangle. mgs(2) = 5,
m3(3) = 16 are well-known, but Folkman proved m3(4) < 64. (A trivial induction gives
ms(r + 1) < (r + 1)ms(r) + 1 and Folkman’s result shows that equality does not hold
for = 4.) The exact determination or even to find good bounds on mj3(r) seems very
difficult. It is not even known if ms(r)r — oo is true.
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3.2. The other end?

Above we excluded one or more sample graphs L and considered the problem: if a graph
G, has e edges, how large must «(G,) be. Mostly we were interested in the case when
e(G,) is relatively large and we wish to find the minimum of «(G,,). In some applications
Ajtai, Komlés and Szemerédi needed the other end: the case when e(G,,) is small.

Theorem 44 (Ajtai, Komlés, Szemerédi, [1] ). There exists a constant ¢ > 0 such
that if e(G,) = tn and K3  G,, then

a(Gp) > c% logt.

The theorem was generalized to arbitrary excluded K, by Ajtai, Erdés, Komlds,
Szemerédi [1], and to hypergraphs by M. Ajtai, J. Komlés, J. Pintz, J. Spencer and E.
Szemerédi [2], see below.

Remark 45. One of the applications was the estimate on the Ramsey number R(3, k).
Both the upper bound, using Theorem 44, [3] and the matching lower bound obtained by
Kim [97] are among the most important results in Ramsey Theory for ordinary graphs.

cin? con?

< R(3,n) <

logn logn’

Another important application was to give an existence proof for an infinite Sidon
sequence aj, for which the number of a;’s below n for any n is greater than c(nlogn)/?
for some ¢ > 0, [4]. (A sequence of integers is called a Sidon sequence if all the pairwise
sums are distinct.)

That time this was a breakthrough, now it is strongly superseded by Ruzsa [118].

We close this part with the following
Problem 5 (Minimum independence number). For given n and e, put
a(n,e) := min{a(G,) : e(G,) =e and K3 Z G,}.

Determine (or estimate?) the minimum of a(n,e) as e varies from 1 to [n?/4].

4. Hypergraph results and problems

For an r-uniform hypergraph G(") we denote by o(G(") the largest subset of V(G,,) not
containing any hyperedge of G.
The basic problems to be solved here are of the following types:

1. Ordinary extremal hypergraph problems: Given a forbidden L"), determine or

estimate the maximum number of hyperedges fo) can have without containing
L.
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2. Ordinary Ramsey problems: As we know, Ramsey theorem holds for hypergraphs
as well. The problems on the corresponding Ramsey functions are even more
difficult.

3. Ramsey- Turdn hypergraph problems: Given a forbidden L"), determine or estimate
the maximum number of triples G can have without containing L™ and having
independence number a(G) = o(n).

4. Under which condition on L) is there an essential difference between the answers
for the first and third problems above.

Here for complete graphs there is a sharp difference between ordinary graphs (r = 2)
and hypergraphs (r > 2). We may define 2 corresponding constants

L)
(L) = fim U LT)

r )
n—00 n

and

RT (n, L")
(LMY = lim lim (n, L7, en) .
e—=0n—oo n’

(3)

The existence of the limit 7 follows from a simple averaging [96], while the existence of

. . RT(n,L" en) , . . e
the limit of lim,, M in (3) follows relatively easily from vertex-multiplication.

In general, there are some results showing that in some cases these constants are equal
and in some others they differ. Below we shall discuss these new phenomena.
An easy consequence of a theorem of Erdds is

Proposition 46 ([38]).
ext(n, L) = o(n")

iff L' has a vertez-coloring in r colors where each hyperedge has r distinct colors.

This characterizes the cases when 7(L{) = 0 and consequently, v(L{) = 0 as well.
Erdés and Sés proved that

Theorem 47 ([69]). If an r-uniform hypergraph L") is such that for each hyperedge e
of L") there exists another hyperedge, f intersecting e in at least 2 vertices, then

(L") = ~(L?).

This implies e.g., that for the famous unsolved Turdn problem, when L(® = K f’) is
the complete 3-uniform hypergraph, the limits coincide. A well known construction of

Turan shows that

t(n: K®
limwzﬂ>0 as n— oo

()

exists, but the value of 3 is not known.!?

12The famous conjecture of Turdn asserts that this 3 = 5/9 and one of the extremal structures is
obtained as follows: n points are divided into 3 classes C1, C5,Cs and the triples are all the ones having
two points in a C; and one in Cij11 (¢ = 1,2,3,, where Cy := C7) and all the transversal triples, i.e.
where the 3 vertices belong to 3 different classes.
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The same way, Theorem 47 implies that if L(3)(4; 3) is the 3-uniform hypergraph of 4
vertices and three triples, then the two limits coincide for this excluded subhypergraph
as well. There is a third important consequence of Theorem 47. Let L") be an arbitrary
r-uniform hypergraph and L()[t] be the hypergraph obtained from L") by “blowing
up”: by replacing each vertex v by a set C, of £ new vertices and joining r new vertices
21, ...,2 belonging to r distinct classes C,,,...,C,, respectively, by a hyperedge if
(v1,...,v,) formed a hyperedge in L{).

Theorem 48 (Erdds [43]). For any fized integer t,
ext(n, L7[t]) — ext(n, L) = o(n").

(This can be regarded as a generalization of the Erdés-Stone theorem.) Now, if we
take any ext(n, L(")[t]) for t > 2, that will satisfy the conditions of Theorem 47. As a
matter of fact, if we fix a representing set S of the hyperedges in L) and double only the
vertices in S, the resulting Lg) will also satisfy the condition. So for every hypergraph
L there is a slightly larger L', obtained by blowing up some vertices of L, for which
(L") = (L")

These results seem to show that in these cases the extra condition: “the largest
independent set has size o(n)” has no effect here. This might be surprising, at least for
complete graphs, knowing that for ordinary complete graphs the opposite is true (see
Section 2.2) and that the conjectured extremal hypergraphs have independent sets of
size n/3. 13

On the other hand, there are cases when the two constants differ.

Denote by L(®)(5;4) the hypergraph having the vertices z,, 21, 2, 23 and the edges
(x,y,2), i =1,2,3 and (21, 22, 23). Clearly

ext(n; L) (5;4)) > en?
and Erdés and Sés proved [69] that
RT (n: L®(5,4), o(n)) = o(n®).
A more general case where the two constants differ is

Theorem 49 ([69]). Assume that L is an r-uniform hypergraph with the following
property: the vertices of L can be r-colored by 1,....r and the edges 2-colored* in
RED and BLUE so that

(a) All RED edges contain one vertex from each vertex-color-class;

(b) All BLUE edges are contained in the ' vertez-color-class,

(c) The BLUE edges can be enumerated so that each BLUE edge intersects the
union of the previous BLUFE edges in at most one vertex. Then

RT (n,L,o(n)) = o(n").

13Q0riginally there was one conjectured extremal graph, described in the previous footnote, but then
Brown gave a 1-parameter family of extremal graph structures, [18], Kostochka extended it to a many-
parameter family and van der Flaass simplified Kostochka’s construction [74]. Yet all these conjectured
extremal graphs have large independent sets.

Here coloring is not a proper coloring, just a partition.
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If L satisfies the conditions of this theorem but cannot be colored in r colors so that
each hyperedge has r distinct colors then the two constants differ: v =0, 7 > 0.
Condition (c¢) may seem to be somewhat artificial but it comes from the fact that in
the (indirect) proof the L is built up recursively: the edges are found in this order.
The following problem refers to the simplest case not covered by Theorem 49.

Problem 6 ([69]). Let L®(7;11) be the hypergraph having the vertices ;y1,%Y2, Y3,
21, 22, 23 and the 11 triples (z,yi, 24, ), (Y1, Y2, Ys), (21, 22, 23). Is it true that

RT (n; L®(7;11), o(n)) = o(n®)?

Until now we have seen cases where the two limits were positive and equal, and where
7 was positive and v was 0. The following problem was posed in [69];

Problem 7. Does there ezist a graph L") for which
0 < y(LM) < r(LM)?

Answering this question, Frankl and R6dl, [76] used random graph methods, to prove
the existence of graphs for r = 3. Sidorenko — using many ideas of Frankl and Rodl —
replaced their existence proof by a simple construction.

Construction 50 (Sidorenko, [130]). Let Lg?;zl 41 be the 3-uniform hypergraph whose
vertices are ag, - . ., Gy, and by, ..., b, with the triplets

{aibia;} and {a;bib;} for j <i.
Theorem 51 (Sidorenko [130]).
0 < (L) < 7(L{).

If one lists the hypergraph extremal results, one must realize that it is very seldom
that 7(L() > 0 and its value is known as well. So one question is whether we know
at all results on hypergraph Ramsey-Turan problems where we know both constants
7(L™) > 0 and (L) and 7(L("M) > «(L™M). The field is full with difficult questions
and we do not know such cases. We close this part with the following

Problem 8. Find a function f(n) — oo, “not too small”, for which
RT (n, K, f(n)) = o(n?).

M(or)’e generally, the same question may be asked for any graph or hypergraph instead of
K.
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Definition 52 (Threshold). Call f(n) a “threshold function” for L") if g(n) = o(f(n))
implies
RT (n, L), g(n)) = o(n’),
but if g(n)/f(n) — oo then
RT (n, L), g(n)) > yn?,
for some positive constant .

Problem 9. Does there exist such a threshold function for every L) ? If not, give
conditions when it does?

Remark 53. Obviously, if RT (n, L™, o(n)) = o(n") but ext(n, L") > cn", then n is
a threshold function.

4.1. The Heilbronn conjecture

One important application of Hypergraph Ramsey-Turan problem was where Komlés,
Pintz, and Szemerédi [99] improved the lower bound in Heilbronn’s problem (for a more
detailed account see also Beck [10]), thus disproving Heilbronn’s conjecture:

For n points in a unit disk in the plane, no three on a line, take the minimum
of the areas of the corresponding (}) triangles. Let A(n) be the maximum
of this minimum, taken over all the positions of the n points. What is the
order of magnitude of this A(n)?

Conjecture 10 (Heilbronn). A(n) < 5, for some constant ¢ > 0.

If we have n points in the unit disk, P,..., P,, then the half-lines P, — P; cut the
disk into n — 1 parts. So the area of the smallest part is at most 5. Erdds constructed
n points so that the minimum area is larger than ¢/n?, by taking an n x n square grid
and n points from it, no three on a line.!'® It took roughly 30 years to show that there
are cases where the minimum area is much larger than 1/n?%

Theorem 54 (Komlés, Pintz and Szemerédi, [99]).
logn

A(n) > ¢ 2
Remark 55. As to improving the upper bound, Roth proved, [116] that A(n) < 1/n!*#
if p < pp = 1.117... and n is large enough. Komlés, Pintz and Szemerédi improved Roth
result, showing that u < 8/7 = 1.142857 would also do above [98].

The basic tool to prove the lower bound was an extension of Theorem 44 to hyper-
graphs, due by M. Ajtai, J. Komlés, J. Pintz, J. Spencer and E. Szemerédi [2].

Theorem 56. Let G, be a (k+1)-uniform hypergraph with n vertices and average degree
t. It is proved that if k < t K n and if G,, contains no cycle of length 2, 3 or 4, then
the stability number a(G,) > cx(n/t)(logt) /.

15The existence of n such points is nontrivial but not too difficult.
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5. Positive edge densities
in graphs and hypergraphs

Here we shall discuss edge-density conditions and their connection to quasi-random
graphs. Quasi-random graphs and hypergraphs form a more and more important area
in random graph theory.

A. Thomason, [143, 144] and F. R. K. Chung, R. L. Graham, and R. M. Wilson,
[32], gave some characterization of randomlike graph sequences, Chung and Graham [31]
extended this to hypergraph sequences, P. Frankl, V. Rodl and R. Wilson [77] gave some
characterizations of “randomlike” matrix sequences, etc. Some results of Erdés and Sés
on hypergraphs [69] is also one of the roots of the theory of quasi-random combinatorial
structures. For some results related to this topic see [77] [32, 31, 30], [135, 136]. There
are — among others — two main “themes” in this field: that the edges (hyperedges) are
uniformly distributed and that all small graphs occur in these graphs.

One of the weakest “edge-density” conditions may be that a(GY)) = o(n). Let
(Gg)) be a sequence of r-uniform hypergraphs. Below we shall define several different
uniformity conditions, which form kind of a hierarchy.

Condition A. For every ¢ > 0 there exist an n = n(¢) > 0 and ng(e) so that if

n > ng(e), then for every induced subgraph HT(,Z) C Gg), with m > en, we have

e(HD)) > n(’f)

Condition B(c). For a fixed ¢ > 0, for every € > 0 and ny(¢), if n > ng(e), and
m > en then for every induced subgraph HT(,;) C Gg), we have

e(HO)) > c(m>.

r

Condition C(c, d,¢). For fixed ¢ > 0, §,¢ > 0 (where 6 < min(c,1—¢)), there exists

an ng such that if n > ny and m > en, then for every induced subgraph HT(,I) of Gg),

(c - 6) (’:’) < e(HD) < (c+4) <m)

r

Condition D(c). For fixed ¢ > 0, for every  where 6 < min(c,1 — ¢), there exist
an e = ¢(8) € (0, 3), with £(§) — 0 as  — 0, and there is an ng such that if n > ng and

m > en then for every induced subgraph HY) C Gg), we have

(c— 6) (T) < e(HD) < (c+6) (T)

Erdos and Sés showed that
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Theorem 57 ([69]). For ordinary graphs (r = 2), and for every fized k > 2, if (G,) is
any graph sequence satisfying Condition A, then K C G, for n large enough.

Rédl proved that Condition C for » = 2 has an even stronger consequence:

Theorem 58 ([117]). For ordinary graphs, for every positive integer k and every ¢ > 0
and 6 > 0 such that § < min(c,1 — ¢) there exists an € > 0 and a positive integer ng
such that if n > ng and G, is a graph for which every induced subgraph H,, with m > en

vertices satisfies
(c— ) (’2”) < e(Hp) < (c+6) (’;)

then G, contains all graphs with k vertices as induced subgraphs.

Remark 59. This is (again) strongly connected to the theory of quasi-random graphs.
Condition D is already a “quasi-random graph” property. Restricting ourselves to or-
dinary graphs (r = 2) condition D(c) implies that G,, contains each H as an induced
subgraph asymptotically as many times as in the random graph of edge-probability c.

However, this is not true for hypergraphs. In [69] Erdés and Sés constructed a 3-

uniform hypergraph G® satisfying Condition A but not containing Kf’)

LB)(4,3).
A surprisingly simple construction of Fiiredi (see [75]) gives the even stronger result:
even the stronger Condition D does not imply the existence of a L(® (4, 3). Fiiredi took

, not even a

a random tournament 7;, and defined G on its vertex set as the family of triples which
spanned a directed 3-cycle in 7;,. One can easily see that this hypergraph does not
contain L(® (4, 3): on any 4 points it has 0 or 2 triangles.

This shows that for hypergraphs even Condition D is not enough to imply the exis-
tence of H®)(4,3). It is somewhat surprising that — as Frankl and Rodl proved in [76]
— there is an infinite (recursively given) sequence (HZ-(T)) of r—uniform hypergraphs such
that if a sequence (G) satisfies Condition A, then H\" C G if n is sufficiently large.
As a special case, L(®(7,11) of Problem 6 is such a graph.

The case of L (4; 3) is fairly important to make a short detour. First we formulate
an old conjecture on its extremal number, which was disproved by Frankl and Fiiredi.
Then explain the motivation of the original construction and the basic idea of its disproof.
Finally we clarify, how these assertions are connected to our hypergraph Ramsey-Turan
problems.

Below we mostly (but not entirely) restrict ourselves to 3-uniform hypergraphs and
to the case of one excluded 3-uniform hypergraph L),

Construction 60. Take n vertices and partition them into 8 (roughly) equal classes.
Take all the ~ Q%n?’ triplets joining each of the 3 classes. Then subdivide each of the 3

classes into 3 classes of size = § vertices and take all the



triplets which are completely in an original class but intersect all the 3 subclasses. Iterate
this k times, for some k — oo, getting 5;n® + o(n®) triplets.

Remark 61. This construction can also be described in a less transparent but more
compact way: if the vertices are the integers 1,...,n, then we take those triplets (i, j, k)
which — written in ternary form — for some ¢ = t(i, j, k) € [0, logs n] have the same digits
in the positions 1,...,¢ — 1 and 3 different digits in the ¢'* position.

Erdés conjectured that this is the extremal configuration for L®)(4;3) but this was
disproved by Frankl and Fiiredi [75]. They noticed that the above iteration method (i.e.,
taking a hypergraph, replacing each of its vertices by groups of vertices and putting
into the new groups smaller hypergraphs not containing L(*)(4;3)) works in general as
well. They also noticed that this method provides a better construction if one takes
the L®)(4;3)-extremal hypergraph Qg‘” on 6 vertices and applies the iteration to the
blown up version: S&) := Q?) [n/6]. Here “blown up” means that each vertex of Qg?’)
is replaced by [n/6] independent vertices. The Qg?’) can more explicitly be described by
fixing that its vertices are 1,...,6 and the triplets are

(1,2,3), (1,2,4), (3,4,5), (3,4,6) (5,6,1), (5,6,2), (1,2,5), (1,4,6),(2,3,6), (2,4,5).

Frankl and Fiiredi obtained that
hm eXt3(na L3 (47 3))

S0

2
>_7
-7

or, in another form,
1
extg(n, L3(4, 3)) > ﬁn?’ + 0(77,3).

As a matter of fact, we could say that it is not that surprising that for L®)(4; 3), v and
7 are equal (by Theorem 47) since it is easy to check that the Construction 60 contains
only o(n) independent vertices. (As a matter of fact, only O(n'~¢).) The same holds for
the improved construction. So, if the extremal graph is such an “iterated” construction,
then the two constants are trivially equal. (Watch out: we know that v = 7 in this case
but we do not know the extremal graphs, neither that they are “iterated” graphs.)

Problem 11. Is there a hypergraph L®) for which there exists an (asymptotically) ex-
tremal graph sequence which satisfies Condition A?

Problem 12. Is there a hypergraph L®) for which there exists an (asymptotically) ex-
tremal graph sequence which satisfies Condition B?

Problem 13. Is there a hypergraph L® for which there ezists an (asymptotically) ex-
tremal graph sequence which satisfies Condition C? (or Condition D?)

Erdés and S6s conjecture in [69] that such extremal graphs do not exist. Strength-
ening the uniformity condition we would get a weaker version:
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Problem 14. Assume that k is fized and that a sequence of 3-uniform hypergraphs
graphs {GS’) : n € N} is such that there ezists a constant ¢ > 0 so that for every
sufficiently large n € N every induced subgraph H,, C G, with m > % vertices has at

least (c+0(1)) () edges. Is it true that

KO caPe

The problem is unsolved even for k = 4. Moreover, even for L% (4,3) C GY is
unknown, see [69].

6. Ordinary graphs, the intermediate range

The intermediate range is when we assume that a(G,) < cn and ¢ > 0 is small but
fixed. Ramsey Theorem and Construction 12 give

Corollary 62. For
m>—— (4)
R(ky,... k)

RT (n, ks, ..., ko m) = ext(n, Knsy) = (1 - %) (g) +0(1).

Hence we will assume that m is large but not too large: n < R(ki,...,k,,m) but
(4) does not hold. Mostly we are interested in the case when a(G,) = o(n). One could
think that the case a(G,,) < cn for small but fixed ¢ > 0 is perhaps also tractable.

Below we ask only the simplest questions.

If G,, contains no K3 and a(G,) < cn, then replacing each vertex of G,, by t inde-
pendent vertices and joining them as the original vertices were joined we get a graph
Gt without triangles and with a(G,;) < cnt. This implies the existence of H(c) in the
next problem.

Problem 15. Determine H(c) where
RT (n;3,cn) = (H(c) + o(1))n?.

Remark 63. Clearly, H(c) < ¢, since the regarded graphs have maximum degree < cn.
The solution of this problem, at least for some range of ¢, is “hidden” in some papers
of Andréasfai, [7, 8], and treated in more details in the Habitation Thesis of Stephan
Brandt, [15].

Of course, it is enough to regard here graphs G,, which are triangle-free, with a(G,,) <
cn and which are maximal with respect to being triangle free: adding any edge to it
produces a triangle. For some structural information on such graphs see also Pach, [112].

Problem 16. Determine h(c) where

RT (n;3,3,cn) = (h(c) + o(1))n>.
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At first Problem 16 may seem to be easy, but it is not. Using the coloring of the edges
of K4 by three colors, say, RED, BLUE and YELLOW, none of which contains a triangle,
one may consider the graph T, ;s colored according to the above Ramsey coloring and
then delete the YELLOW edges. In the resulting graph G,, we have o(G,,) < [n/8] and
the degrees are around

So Erdds and Sos conjectured that

RT (n; 3,3, %) = (15_6 + 0(1)> n?,

suggesting that to determine h(c) may not be so easy [67].

7. K,-independence results

Let the K,-independence number a,(G) of a graph G be the maximum order of an
induced subgraph in G' which contains no K,. (So Ks—independence number is just the
maximum size of an independent set.)

Definition 64. For given integers r, p, m > 0 and graphs L, ..., L., we define the cor-
responding Ramsey-Turdn function RTy(n, L1, ..., L,,m) to be the maximum number
of edges in a graph G, of order n such that o,(G,) < m and there is an edge-coloring
of G with r colors such that the 5™ color class contains no copy of L;, for j =1,...,7.

The concept of a,(G) was introduced long ago by A. Hajnal, and also investigated
by Erdés and Rogers, see [62]. (A similar “independence notion” is investigated for
random graphs in a paper of Eli Shamir [122], where he generalizes some results on the
chromatic number of random graphs.)

We start with a result and an open problem, stated in “elementary” terms, related
to the Szemerédi-Bollobés-Erdés theorem.

Theorem 65 ([51]). Assume that (G,) is a graph sequence, as(Gr) = o(n).
(a) If Ks € Gy, then

1
< —n’+ o(n?).

e(Gn) < 33

(b) If K¢ Gy, then
e(Gy) < énQ + o(n?).

On the other hand, for every p > 2,
(¢c) There is a sequence of graphs (G,) not containing Koy, with a,,(G,) = o(n), for
which

e(Gyn) > =n?+ o(n?). (5)
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Problem 17. Is it true that a3(G,) and K5 € G, imply e(G,) = o(n?)?

Conjecture 18. The asymptotically extremal graphs for RT,(n, Ky, 0(n)) have the fol-
lowing structure:

Let k=pg+ ¢, (¢ =1,2,...,p). Then n vertices are partitioned into q¢ + 1 classes
Vons - Van. For each pair i # j, {i,5} # {0,1} Vi, is almost completely joined to
Vjn tn the sense that every x € Vi, is joined to every y € V;, with a possible exception
of o(n?) pairs xy. Further, d(Vy, V1) = % +0o(1) (as n — o0), and Vy, V1 are joined
o(1)-regularly. Finally, e(V;) = o(n?), i=1,...,q.

Remark 66. For graphs of this kind the optimal sizes of the classes V; can easily be
computed. The optimal class-sizes are:

1
Vil = n+o(n) for 1=0,1
R ErEn R
and
Vi -5 for 2
| = <3 <gq.
Vil 2+(q—1)(2—£*—1)n+0(n) or 2<i<gq

p

From this e(S,) can easily be calculated: e[V;] = o(n?) can be neglected. If S, is the
graph described in the conjecture, it is almost regular, the degrees in V; are n — |V3|.

T b (- ) ()

2 2p—C+1)—£+1) \2

Problem 19. We see from Theorem 65 that 93(Ke) € 15, 5]. Determine its exact value.

Until now we were mostly interested in the o(n)-range. However, for an arbitrary
fixed f, like f(n) = n¢or f(n) = n/(logn)’, etc we may ask analogous questions: give es-
timates on RT,(n, L1, ..., L, o(f(n))). We shall define (similarly to RT (n, L1, ..., L., o(n))
and 9(L4, ..., L,) the much more general) RT,(n, L, ..., L, o( f(n))) and ¥p (L1, . .., Ly):

Definition 67.

Yp.t(L1, ..., L) = limlim sup RT,(n, L, .. .,Lr,gf(n)).

=0 no500 (;L)

The case of general f is investigated in [50] but here we shall restrict ourselves to
the simplest case f(n) = n. The meaning of the next theorem is that (a) ¢ is an upper
bound for any €, — 0 (b) but it can be achieved by an appropriate ¢ — 0 and (c) one
can choose this €] to be “maximal” in some sense.

*#% Vera: Nem kell-e a K-independence cikkbol meg mas tetel?
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Theorem 68 ([51]). For any ki, ...,k, and for f(n) =n, for any e, — 0,
(a) let (S,) be an extremal graph sequence for RTy,(n, Ky, ..., Ky, ,eq.n). Then

limsup SO0 < 9 (Koo KL, (6)

nooo (3)

(b) There exists an €, — 0 for which on the left hand side of (6) the limit exists
and

lim ¢(Sh)

)

:ﬁp,f(Kkla---aKkr)- (7)

(c) For every e, — 0 with £, > £} the same — namely, (7) — holds.

Here f(n) = n means that we consider the case a,(G,,) = o(n). We restrict ourselves
to complete graphs, and assert the existence of the limit which we do not know in the
general case!

Some further results of [51] assert that in the general case there are asymptotically
extremal graph sequences of fairly simple structure, where “simple” means that the
structure depends on n weakly. This is a weak generalization of the Erdds—Stone-
Simonovits theorem (from ordinary extremal graph theory) [64, 71]. Formally our results
asserts that in many cases “there exists a matrix A for which the optimal matrix
graph sequence (A(n)) is asymptotically extremal” for the Ramsey-Turdn problem
considered by us. Here the optimal matrix graph sequences — in some sense — generalize
the Turan graphs, while the so called matrix graphs generalize the complete ¢—partite
graphs. (See also [40], and [131]). We refer the reader to [51], since the explanation of
the notion of optimal matrix graph sequences would require some further important but
technical definitions.

The isoperimetric inequality behind Theorem 65(c)

As we explained, proving the lower bound on RT (n, K4, 0(n)) Bollobds and Erdés
used an “isoperimetric” theorem. The lower bound (5) is a generalization of the Bol-
lobas—Erdds result. So it is natural to use a generalization of the original isoperimetric
inequality. This generalization was conjectured by Erdds and proved by Bollobés.

We need the following definition.

Definition 69 ([13]). For k£ > 2 define the k' packing constant '® of a set A in a
metric space by
dp(A) = sup minp(z;, ;).
T1yeey @i €A 1<

A spherical cap is the intersection of an h-dimensional unit sphere S” and a halfspace
II.

16k _diameter in [13].

30



Theorem 70 (Bollobas, [13]). Let A be a nonempty subset of the h—dimensional unit
sphere S" of outer measure p*(A) 7 and let C be a spherical cap of the same measure.
Then di(A) > di(C) for every k > 2.

Below, whenever we speak of “measure”, we shall always consider relative measure
which is the measure of the set on the sphere S” divided by the measure of the whole
sphere.

Denote by § = 6, the diameter of a p-simplex. (6, = 2, 63 = /3,...)

Corollary 71 ([51]). Let the integer p and two small constants € and n > 0 be fized.
Then for h > ho(p,€,n), if A is a measurable subset of S* of relative measure > ¢, then
there exist p points x1,...,z, € A so that all d(x;,z;) > 6, — 1.

This is what we needed to get the lower bound (5).

8. Applications of Turan’s theorem

8.1. Application to geometry
and to metric spaces

We have already described in the Introduction, how Turdn [148], setting out from a
“small” observation of Erdés [34] initiated the systematic application of Turdn type
extremal results in geometry, analysis, general metric spaces, [149, 150, 151], etc.

Turén’s basic observation was as follows:

Given n points in the space (or in any bounded metric space), for every ¢ > 0 we can
define a graph G(c) by joining the points P and @ iff p(P, @) > c. By establishing some
appropriate geometric facts, we may ensure that G(c) contains no complete p = p(c)-
graph. Hence we know (by Turdn’s theorem) that the number of pairs (P, Q) with
p(P, Q) > c cannot be too large. Assume that we apply this method with many constant
€1 > ¢ >...> ¢, > 0. If f(x) is a monotone decreasing function and we are interested

> fp(Pi, Fy))

then we may obtain lower bounds on this expression by replacing all the distances
between ¢; and ¢; 11 by ¢;. The “only” problem to be solved is:
How to choose the constants ¢; > ¢y > ... > ¢, > ... > 0 to get the best results?
This was the point, where the packing constants came in:
Let M be a metric space, and let F be a family of finite subsets of M each of which
has diameter at most ¢, for some fixed constant c¢. Typical examples are
(i) the family of all finite subsets with diameter at most ¢ of a closed set D C M
(ii) the family of all subsets of a bounded set D C M.
We are interested in the distribution of distances p(P;, P;) for an n-element set
{Pi,...,P,} € F. In characterizing these distributions, we find that the “packing

1"In applications we use only “nice sets” but Bollobds formulated his result in this generality. The
reader can replace “outer measure” by “measure”.
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constants” (defined in the previous section) are very useful. The k™ packing constant is

dp = sup  minp(Q;, Q;).
{Q1,..Qr}eF FI
Clearly, if there are at least k+ 1 different points in M| then for the £** packing constant
di11 < di. If M is a bounded subset of the m—dimensional Euclidean space R™, then
dr — 0. Such constants (depending largely on the geometric situation) are called packing
constants. Their investigation goes back at least to a dispute between Newton and
Gregory [73, 150].

Observe that, by the definition of di, if {Py,...,P,} € F and if G, is the graph
defined on the vertex set V = {Pj,..., P,} by joining P, and P; by an edge if and only
if p(P;, P;) > dy41, then G, contains no complete subgraph Kj.;. Applying Turdn’s
theorem to this G,, we obtain a slightly simplified version of Turdn’s distance distribution
theorem [148]:

Theorem 72. For any {P,...,P,} € F, the number of distances p(P;, P;) < dj41 is

at least )
%n(n — k).

Under some quite natural additional conditions, Theorem 72 becomes sharp.

It is not worth giving a detailed description of the results obtained this way, since
the Introduction of [54] does it.

In the next part we shall regard the applications of Turan’s graph theorem to the
distribution of distances in metric spaces. Using the distance-distribution results Turan,
V. T. Sé6s [137], and later Erdds, Meir, V. T. Sés and Turdn [54, 55, 56|, could give
estimates on certain integrals.

8.2. The dual problem

Definition 73 (k"' covering constant). Given a metric space M, the k'™ covering
constant ¢, (M) is defined as the infimum of those r for which there exist & points
Py, ..., P, and r-balls B(P;,r) around them so that

M = U B(P, 7).
An equivalent formulation is

¢y == inf sup minkp(Q,Pi)

= (PrysPr) @ =15y
where Q € M, P, € ML

Theorem 74 ([137]). If A= {P,,...,P,} is a point set in the plane, having k*™® cov-
ering constant cy, then at least

e(n,k):=(k—1)(n—1)+ [

of the distances p(P;, P;), (1 <i < j <n) satisfy p(P;, P;) > ck.

n—k+2
2
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The result is sharp, the proof follows from a theorem of Erdés and Leo Moser, [58]
on k-universal graphs:

Theorem 75 (Erdds-Moser). If G, is a graph of order n with the property that to
every k-verter subset X C V(G,,) there is an x € V(G,,) joined to all the vertices of X
then

e(Gn) > (k—1)(n—1) + [”—7"?”} .

2

8.3. Embeddability

Assume that we are given n points in a metric space with their distances and we wish
to decide if they can be embedded into a low-dimensional Euclidean space.

Proposition 76 ([54]). If P, ..., P, aren points in a metric space (M, p) and max p(P;, Pj) <

1 and if
PRS2\ 2
for more than %an pairs (i,7), then this point-set cannot be embedded into R.

It is known (see below) that in R* for the case when F is the family of sets of diameter
at most 1, then

d1:d2:...:dk+1:1 (8)
and
k
it = 2%k + 2 )

if k is even and
doso — k2 +2k —1
TV R Ak 13
if k& is odd. The second expression is the smaller! Clearly, (8) and the above estimates of
k

dy, are obtained by putting [g] + 1 points into the vertices of a [Z]-dimensional simplex
and the remaining L%J + 1 points into the vertices of another simplex in an orthogonal
plane. (The related results come from Schonberg, [120] Schiitte, Seidel [121] ... and
one can find a simple and elementary proof of this geometric fact in a note of I. Barany
with a related more general conjecture, [9].)

The above proposition can be stated as follows: if we have too many distances larger
than the above dj o then — by Turdn’s theorem — we have a set of k£ + 2 points having

_k
2k+2

k + 2 points into R¥. The positive feature of applying Turdn’s theorem is that to check
this distance-distribution takes only (g) trivial steps while checking the existence of
those k + 2 points with pairwise large distances takes more steps.

pairwise distances > > dg19, and this shows that we cannot embed even these
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8.4. Chromatic number of geometric graphs

There is a large area of combinatorial geometry, where extremal graph results can well
be applied. Instead of going into details we mention just one subfield and refer the
reader to the Handbook of Combinatorics (Erdés—Purdy, [60]) and to the book of Pach
and Agarwal [113].

(i) The topic we wish to mention here is embedding graphs into low dimensional
Euclidean spaces so that the adjacent vertices be at unit distances in the space. One of
the papers to be mentioned in this field was that of P. Erdés, F. Harary, W. Tutte, [53].
In [53] the following (not too difficult) assertion is proved:

Theorem 77. If G is a d-chromatic graph then it can be embedded into R?*? so that if
two vertices are adjacent then the representing points have distance 1.

The proof idea is that regard in R?¢ d circles of radii \%2 around the origin, in pairwise

orthogonal planes, say Ci,...,Cy, and put the vertices of the i*® color class of G onto
the i*® circle C;, for i :=1,...,d. M

(ii) The minimum dimension d for which G' can be embedded into R? so that the
edges join vertices of distance 1 is the dimension of the graph. '

(iii) For each graph G we can also ask its faithful dimension. This is the minimum
dimension d for which G can be embedded into R? so that z and y are joined in the
graph if and only if their distance is 1 in the space. (The faithful dimension can be much
larger than the ordinary dimension, e.g., the dimension of bipartite graphs is at most 4
and their faithful dimension can be arbitrary large.)

(iv) It would be interesting to know the chromatic number of R%, i.e. of the (infinite)
graph the vertices of which are the points of R? and two vertices (points) are joined if
their distance is 1. This problem can easily be transformed into a question on finite
graphs, using the de Bruijn-Erd8s theorem. Larman and Rogers [101] proved that this
chromatic number is smaller than (3 + o(1))? and much later Frankl and Wilson [78]
proved that it is at least (1 — o(1)) - 1.2%.

(v) Another related paper on some geometric dimension of a graph G where the
extremal graph theoretical approach is used is an Erdds-Simonovits paper [65]. Here the
essential chromatic number of R? is defined. This equals to ¢ if in any graph (G,,)
embedded into R? one can delete o(n?) edges (as n — o) so that the resulting graph
has chromatic number < ¢ (in sense of (ii)).

There are many problems and results on application of extremal graph theory in
geometry also in the paper of Erdds [41].

8.5. Applications in analysis

There are many quantities in analysis depending on distance-distributions in a set. En-
ergy integrals are among them. Some other quantities occur in connection with the
theory of analytic functions, conformal mappings and so on. Such quantities are the
“capacity” of a plane set, and the conformal radius, among others. In this section — for

18Here two vertices can have distance 1 even if they are not joined!
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the sake of brevity — we shall skip the definitions, and refer the reader to Chapter 7 of
the book of Goluzin, available both in Russian and English, [83, 84].

8.5.1. Transfinite diameter, capacity

In the typical applications of Turdan’s theorem Turan, and later Erddés, Meir, Sés and
Turan in [54, 55, 56] used to assume some regularity conditions which sometimes are not
really needed (only for the sharpness) but are natural in the applications. Here are the
conditions assumed in [54]:

Let (X, p) be a complete metric space and F be a family of point sets in it, satisfying

1. There exists an R such that all the sets of F are in B(0, R).
2. If S € F and S; C S is finite, then S; € F.

3. If S € F is finite and P € F, then for any € > 0 there is a P, € X so that P, # P,
p(P,P1)<8 andSU{Pl}Ef.

Theorem 78. Suppose that B is a bounded closed set in the plane and that 0B belongs
to an F-family of sets satisfying Conditions 1, 2, 3 and having packing constants dy. If

1 log 1
E: 2
- k dy,
diverges, then the capacity of B s 0.

Perhaps a heuristic explanation of this theorem is that in some sense a set is small
if its capacity is 0, in some other sense it is small if its packing constants tend to 0 fast
and this theorem connects the two quatities.

8.5.2. Outer conformal radius

Theorem 79. If B is a bounded closed continuum whose complement is simply con-
nected and 0B belongs to an F-family of sets satisfying 1,2,3 and having packing con-
stants dy, then the outer conformal radius r = r(B) satisfies

r(B) < [J(d)/¥"1.
k=2

8.5.3. Potential theory

Let f(r) be a decreasing function, and let p(z,y) be the distance between x and y in
R™. If D is a closed subset of R™ and p is a mass distribution (or measure) on D, then
the generalized potential is defined by

I(f) = / F(ple, 9)) ditodpsy.

DxD

(In classical physics, f(r) = —logr for m = 2, and f(r) = r>=™ for m = 3,4, ...)
Theorem 72 immediately implies the following result (see [148]):
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Theorem 80. (Turdn’s Potential Theorem). If D C R™ is compact, if dy is its k™
packing constant, and if f(r) > dy for r € (0,ds), then

19> w) Y 1%

E>2

8.6. Lipschitz functions

Theorem 81 ([56]). Let F denote the set of functions in C[0,1] satisfying f(0) = 0
and |f(x1)— f(xa)| < |21 — 22| whenever 0 < xy < xo < 1. ||f—gl| is the usual mazimum
difference norm. For k =1,2,...,ifn> 2¥ an fi,..., f, € F then the number of pairs
(fir f3) with || fi — f;|| < % is at least

2k 2
This estimate is sharp.

A corollary of this theorem is that the probability that randomly chosen f,g € F
satisfy ||f — g|| < 2 is at least =, for k=2,...

8.7. Triangle functionals

Up to now we have considered only binary functionals. Of course, the same methods can
be applied to value-distributions of geometric data depending on more than 2 points.
Thus e.g., we may ask

Problem 20. Given a set of points, x1,...,T, in a metric space M,

e If for any triple (x;x;xy) the perimeter of the triangle is at most 1, how many
triples (z;xjx) may have perimeter larger than t?

o If for any triple (x;x;zy) the area of the triangle is at most 1, how many triangles
(zixjxK) may have area larger than t?

Obviously, these are related to extremal hypergraph problems (on 3-uniform hyper-
graphs). For related results see [55].

8.8. Probability theory

G.O.H. Katona started applying extremal graph theory to probability theory, [88, 89, 90,
91, 94]. The germ of these application was the observation that if we have two random
variables ¢ and 7, then — knowing their distribution and applying Turan type extremal
graph theory, — we can derive estimates on the probabilities P(¢ +7n < x), i.e. on the
distribution of the sum. One typical result in this field was
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Theorem 82 (Katona’s Inequality [88]). If £ and n are vector-valued independent
random variables with the same distribution, then

P(E+n]> ) > SP(€ > 2)”

Katona and later Sidorenko have published several results on this topic, [125, 126,
124, 127, 129, 128].

We do not give a detailed description of the topic here, primarily since Katona gave
an excellent survey of the field in [94].

One could say that the probability applications are mostly application of geometry,
with one new feature: instead of describing the distribution of pairwise distances between
geometric points one has to describe length distribution of certain vector sums. If e.g.,
we want to prove that Theorem 82 holds in an arbitrary Hilbert space, then one has to
use

Lemma 83. For any three vectors ai,as,a3 € R® of length at least 1 we may choose
two appropriate ones, a; and a; for which |a; + a;| > 1.

This implies that for an arbitrary Hilbert space H

Lemma 84. Let ay,...,a, € H with ||a;|| > x and let the vertices of a graph G, be
these vectors and the edges be the pairs (a;, a;) for which ||a; +a;|| > x. Then K5 ¢ Gy,

Then — using the last lemma and Turdn’s theorem — one can show relatively easily
that

Theorem 85 (Katona). Let &, n be independent random variables with values from a
Hilbert space H which have m different values of equal probabilities. Then

P(l¢] > 2)*.

(NSRS

P& +nl > z) = P(€+nll = =, [[€]| = 2, [[n]] = z) >

If &,n7 have a continuous range, they can have arbitrary many values but if the
probability space is “atom”-free '° then the previous argument can be modified to give
the same result.

The general case, when atoms are also allowed, can also be handled. But we skip
here the discussion of this case.

8.8.1. Related extremal graph results

Some new types of extremal problems occur in these applications. To be precise, the
results motivated by these applications often have occurred earlier but without being
applied to other fields.

(a) One has to extend Turdn type extremal problems to continuous versions.

19j e. each set A of positive probability can be partitioned into two measurable subsets of strictly

smaller measure.
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(b) Sidorenko proved that to prove certain kind of probability distribution results
is equivalent with solving extremal graph problems with colored vertices. Here we fix
a set of colors, say, x1,...,x¢ and the graph G, will be replaced by a vertex-colored
graph: G, C Ky(ny,...,n,) where these class-sizes are treated as arbitrary but known,
fixed parameters. The forbidden graphs also L € L are vertex-colored (where vertices
of the same color are allowed to be joined). We allow L; C G, in most positions, but we
exclude L; C G, so that the vertices of the ;' color of L; are in the ;' color-class of
Gn, (j=1,...,£). Such problems were earlier investigated in [132], in connection with
hypergraph extremal problems.

(c) In some other applications weighted extremal graph problems have to be solved.
(These are of course strongly connected to multigraph extremal problems.)

8.9. Applications in number theory

Extremal graph theory has several roots, and the two most important ones among them
are Turdn’s paper [146] and the “Tomsk” paper of Erdés, [33].

Erdés often arrived at graph problems from the applications in other fields. A de-
tailed description of this “story” can be found in the “preface”-paper of Szekeres included
in the Art of Counting, [140]. Here we are interested in the birth of extremal graph the-
ory.

In 1938 Erdés published a paper [33] which has several interesting features.

e It contains the first extremal graph problem Erdos dealt with, namely, the
problem of excluding the Cy and (not too surprisingly) it contains the first application
of “finite geometrical” methods to provide lower bounds for extremal graph problems.

e This seems to be the first example where Erdés used extremal graph theory in
other fields, namely, in number theory.

A few years ago Erdés, A. Sarkozy and V. T. Sés [63] returned to this field, solved
some further problems from combinatorial number theory, using extremal graph theory,
then G.N. Sarkozy, and E. Gyéri proved some related extremal graph results, (Gyo6ri’s
results [87] completely settled the related graph theoretical question) and earlier Faudree,
Simonovits, de Caen and Székely had some related results.

A somewhat more detailed description of the problem can be found in [63] and [87].

9. FURTHER OPEN PROBLEMS

There are various intriguing open problems in connection with the above theorems.
Some of them are mentioned in the corresponding sections, some further ones are listed
below.
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9.1. Ramsey-Turan problems

The problem below is motivated by the Bollobas-Erdés construction. Assume that g is
fixed. Here we are looking for two graphs, F,,, and H,,, with girth > ¢ and a(G,,) =
a(Hy,) = o(m) and try to join them by im? — o(m?) edges so that the resulting Gon,
contains no K. Observe that in the Bollobds—Erdés construction we have large odd
girth but our graphs are full with large complete bipartite graphs Ks(p,p). (It would be
nice also to have F,,, = H,,.)

Of course, we have constructions for graphs with large girth H,, but we do not know
if they can be joined densely without getting a Kj.

Problem 21 (Generalized BE-graphs). Can one construct a graph similar to the
Bollobds-Erdds graph, where the girth of the components is arbitrary large: Find a graph
Gom with two vertez-disjoint subgraphs F,, and H,,, so that g(Fy),9(Hy) > g and
a(Fn) = o(n) and a(Hy) = o(n) and e(Gap) = 5(2m)? and Ky € Gop,.

A solution to this problem would (almost) imply that it is the Arboricity which
determines the asymptotical value of RT (n, L, o(n)), (see Section 2.6).

The following problem seems to be very difficult and may be raised in several different
settings but we cannot solve it even in the simplest case. We formulate the problem here
for graphs and many colors.

Problem 22 (The spectrum). Let RT (n,L,...,L,,m) be the set of integers e for
which there ezists a graph G, with a(G,) < m, and e(G,,) = e which can be edge-colored
in T colors so that the i™ color contains no L;, fori=1,...,r. Is this set an interval?

As it is remarked e.g. in [52], this problem may be relevant in several different cases,
e.g. in investigating size-Ramsey numbers.

Problem 23. Determine 9(K,, Ks).
Perhaps the following is true.

Construction 86. Let t = R(q,s) Color T, by RED and BLUE canonically (with
respect to the classes of T,, ;) — i.e. the coloring of an edge depends only on the classes
it joins, — so that the colored graph should contain neither RED K,, nor BLUE K,. Put
into each class of this graph o RED Erdds graph F,, of Construction 16. The resulting
graph U, = U(n, q, s) will contain neither a RED Koy, nor BLUE K. Clearly,

e(Un) 2 e(Tn,t)a

and

Hence
RT(n,2q—1,s,0(n)) > e(Thy).

Conjecture 24. U(n,q,3) of Construction 86 is extremal for RT (n,2q — 1,3,0(n)).
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9.2. Kj,-independence problems

Various open problems are stated in [51]. Here we list some further ones. The first two
of these are the simplest special cases of Conjecture 18 where we got stuck.

Problem 25. Determine 93(K11) and 93(K14).

According to Conjecture 18, ¥3(K11) = 5 and 93(K14) = 2

21°

Problem 26. Is there a finite algorithm to find the limait
T L
9,(L) = lim lim S0 Lo2n),

e=>0n—o0 (3)

We have proved in [50] that there is a finite algorithm to find ¥9(Ly, ..., L,) if the
sample graphs L; are complete graphs. A paper of Brown, Erdés and Simonovits [24]
shows that for the digraph extremal problems without parallel arcs (which seem to be
very near to the Turdn-Ramsey problems) there is an algorithmic solution, though far
from being trivial. What is the situation in case of ¥,(Ly,...,L;) ?

9.3. Related Ramsey problems

Ramsey-Turan problems often lead to interesting and difficult questions in Ramsey the-
ory. Erdds and Sés made the following conjectures on the Ramsey functions [67].

Conjecture 27.
R(3,3,n)

nh—>120 R(3,n) (10)
and
lim (R(3,n+ 1) — R(3,n)) — oo, (11)

n—oo

It is very surprising that (10) and (11), which seem trivial at first sight, causes serious
difficulties.

Conjecture 28.
. R(3,3,n)
lim — — X
n—,oo n

and perhaps R(3,3,n) > n3~¢ for every e > 0 if n > ny(e).

Acknowledgement. We thank Stephan Brandt and Zoltan Fiiredi for their valuable
remarks.

40



References

[1]
[2]
3]
[4]
[5]
[6]

[7]
[8]
[9]

[10]

M. Ajtai, P. Erdds, J. Komlés and E. Szemerédi: On Turdn’s theorem for sparse graphs, Combi-
natorica 1(4) (1981), 313-318. MR#483d:05052.

M. Ajtai, J. Komlés, J. Pintz, J. Spencer and E. Szemerédi: Extremal uncrowded hypergraphs,
J Combin. Theory A 32(3) (1982), 321-335. Math Reviews: : 83i:05056

M. Ajtai, J. Komlés and E. Szemerédi: A note on Ramsey numbers, J. Combinatorial Theory
(A) 29 (1980), 354-360; MR82a:05064.

M. Ajtai, J. Komlés and E. Szemerédi: A dense infinite Sidon sequence, European J. Combina-
torics 2 (1981) 1-11.

N. Alon and P. Erd6és: An application of graph theory to additive number theory, European J.
Combin. 6 (1985) no. 3, 201-203 Math Reviews: 87d:11015;Zentralblatt: 581.10029.

N. Alon, L. Rényai and T. Szab4: Norm-graphs: Variations and Applications, Journal of Combi-
natorial Theory, Series B, 76 (1999), 280-290.

B. Andrésfai: Uber end Extremalprobleme, Acta Math. Hung. 13, (1962) 443-455.
B. Andrésfai: Graphentheoretishe Extremalprobleme, Acta Math. Hung. 15, (1964) 413-438.

I. Bérdny: The densest (n + 2)-set in R, Intuitive geometry, 7—10, Proc. Coll. J. Bolyai Math.
Society, Budapest, 63, (Szeged, Hungary, 1991)

J. Beck: Almost collinear triples among N points on the plane. it in A tribute to Paul Erdos,
39-57 Cambridge Univ. Press, Cambridge, 1990. Math Reviews: : 92h:52019

C. T. Benson: Minimal regular graphs of girths eight and twelve, Canad. J. Math. 18 (1966),
1091-1094, MR33+#5507.

B. Bollobds: Extremal graph theory, Academic Press, London, 1978.

B. Bollobds: An extension of the isoperimetric inequality on the sphere, Elemente der Math. 44
(1989) 121-124.

B. Bollobéas and P. Erdds: On a Ramsey-Turdn type problem, Journal of Combinatorial Theory,
B 21 (1976) 166-168.

S. Brandt: Dense graphs with bounded clique number, PhD thesis, 2000 (Freie Univ. Berlin).

W. G. Brown: On graphs that do not contain a Thomsen graph, Canad. Math. Bull. 9 (1966),
281-285; MR34+# 81.

B. Bollobds, P. Erdés and G. P. Jin: Ramsey problems in additive number theory, Acta Arith.
64 (1993) no. 4, 341-355 Math Reviews: 94g:11009;Zentralblatt: 789.11007.

W.G. Brown: On an open problem of Paul Turdn concerning 3-graphs, Studies in Pure Math
(dedicated to the memory of P. Turdn), Akadémiai Kiad6 and Birkhduser Verlag, 99-93.

W. G. Brown, P. Erdés and M. Simonovits: Extremal problems for directed graphs, Journal of
Combinatorial Theory B15(1), (1973), 77-93; MR52# 7952.

W. G. Brown, P. Erdés and M. Simonovits: Multigraph extremal problems I, Preprint, (1975)
W. G. Brown, P. Erdés and M. Simonovits: Multigraph extremal problems II, Preprint (1975)

W. G. Brown, P. Erdés and M. Simonovits: On multigraph extremal problems, Problemes
Combinatoires et Theorie des Graphes (ed. J.-C. Bermond et al.) CRNS, Paris 1978, 63-66;
MR81e:05005.

W. G. Brown, P. Erdés and M. Simonovits: Inverse extremal digraph problems, Proc. Collog.
Math. Soc. Janos Bolyai 37, Finite and Infinite Sets, Eger (Hungary) 1981 Akad. Kiad6, Budapest
(1985) 119-156.

41



[24]
[25]
[26]

[27]

w
D
[ T T i T

W. G. Brown, P. Erdés and M. Simonovits: Algorithmic Solution of Extremal digraph Problems,
Transactions of the American Math Soc. Vol 292/2 (1985) 421-449.

W. G. Brown, P. Erdés and M. Simonovits: Asymptotical uniqueness of extremal digraphs and
multigraphs (manuscript, under publication)... (1999)

W.G. Brown and F. Harary: Extremal digraphs, Combinatorial theory and its applications,
Collog. Math. Soc. J. Bolyai 4 (1970) 1. 135- 198; MR 45 #8576.

S. Burr and P. Erdds: A Ramsey-type property in additive number theory, Glasgow Math. J. 27
(1985), 5-10 Math Reviews: 87b:11014;Zentralblatt: 578.10055.

S. Burr, P. Erdés and L. Lovédsz: On graphs of Ramsey type, Ars Combinatoria, 1 (1976),
167-190.

F.R.K. Chung: ... on local Ramsey numbers, Oral communication, (see [52], p80).

F. R. K. Chung: Regularity lemmas for hypergraphs and quasi-randomness, Random Structures
and Algorithms, Vol. 2(2) (1991) pp241-252.

F. R. K. Chung, R. and R. L. Graham: Quasi-random hypergraphs, Random Structures and
Algorithms, 1, (1990), 105-124.

F. R. K. Chung, R. L. Graham and R. M. Wilson: Quasi-random graphs, Combinatorica, 9(4),
(1989), 345-362.

P. Erdés: On sequences of integers no one of which divides the product of two others and some
related problems, Izvestiya Naustno-Issl. Inst. Mat. © Meh. Tomsk 2, 74-82. (1938) (Mitteilungen
des Forschungsinstitutes fir Math. und Mechanik, Tomsk, in Zentralblatt 20, p5.)

P. Erdds, Elemente der Math. 10 (1955) 114.

P. Erdés: On sets of n points, American Math. Monthly, 53 248-250.

P. Erdés: Remarks on a theorem of Ramsey, Bull. Res. Council Israel 7 (1957) 21-24.

P. Erdés: Graph Theory and Probability, II. Canad. Journal of Math. 13 (1961) 346-352.

P. Erd6s: On extremal problems of graphs and generalized graphs, Israel J. Math. 2 (1964),
183-190Math Reviews: 32#1134;Zentralblatt: 129,399.

P. Erdés, On the construction of certain graphs, J. of Comb. Theory. 1(1966), 149-153.

P. Erd6s: Some recent results on extremal problems in graph theory, Internat. Computation
Centre Rome, 1967, 117-130.

P. Erdés: On some applications of graph theory to geometry, Canad. Journ. of Math. 19 (1967),
968-971.

P. Erdds: On some new inequalities concerning extremal properties of graphs,Theory of Graphs,
Proc. Coll. Tihany (1966) (Eds. P. Erdés and G. Katona) Acad. Press, N.Y., (1968) 77-81.

P. Erdds: On some extremal problems on r-graphs, Discrete Mathematics (1), (1971/72) 1-6,
Math Reviews: 45#6656;Zentralblatt: 211,270.

Art of Counting, Selected Writings of Paul Erdds, (ed Joel Spencer) MIT PRESS, 1973.

P. Erdés: Some applications of Ramsey’s theorem to additive number theory, Europ. J. Combin.
1 (1980) no. 1, 43-46Math Reviews: 82a:10067;Zentralblatt: 442.10037.

P. Erdés: Problems and results on extremal problems in number theory, geometry, and combina-
torics, Proceedings of the 7th Fischland Colloquium, I (Wustrow, 1988), Rostock. Math. Kollog.,
No. 38 (1989), 6-14Math Reviews: 91d:05088;Zentralblatt: 718.11001.

42



[47]

P. Erdés: Problems and Results on graphs and hypergraphs, similarities and differences, in
Mathematics of Ramsey theory, 214-231 Series: Algorithms Combin., 5, (1990) Springer, Berlin,
1990.

P. Erdés and A. Hajnal: On chromatic number of graphs and set-systems, Acta Math. Acad.
Sci. Hung. 17 (1966) 61-99.

P. Erdés and A. Hajnal: On Ramsey like theorems. Problems and results, Combinatorics (Proc.
Conf. Combinatorial Math., Math. Inst., Ozford, 1972), 123-140, Inst. Math. Appl., Southend-
on-Sea, 1972 Math Reviews: 49 #2405; Zentralblatt: 469.05001.

P. Erdds, A. Hajnal, M. Simonovits, V. T. Sés, and E. Szemerédi: Turdn-Ramsey theorems and
simple asymptotically extremal structures, Combinatorica, 13 (1993) 31-56.

P. Erdés, A. Hajnal, M. Simonovits, V. T. Sés, and E. Szemerédi: Turdn-Ramsey theorems for K-
stability numbers, Combinatorics, Probability and Computing 3(3) (1994), (Paul Erdés birthday
Conf., 1993, Cambridge, ed by Bollobéas) 297-325.

P. Erdés, A. Hajnal, V. T. Sés, E. Szemerédi: More results on Ramsey-Turdn type problem
Ramsey-Turdn type problems, Combinatorica 3(1) (1983), 69-82.

P. Erdés, F. Harary, W. Tutte: On the dimension of a graph, Mathematika 12 (1965), 118-122.
Math Reviews: 32#5537; Zentralblatt: 151,332.

P. Erdés, A. Meir, V. T. Sés and P. Turdn: On some applications of graph theory I. Discrete
Math. 2 (1972) (3) 207-228. Math Reviews: 46#5053;Zentralblatt: 236.05119.

P. Erdés, A. Meir, V. T. S6s and P. Turdn: On some applications of graph theory II. Stud-
ies in Pure Mathematics (presented to R. Rado) Academic Press, London, (1971) 89-99. Math
Reviews: 44 #3887; Zentralblatt: 218.52005.

P. Erdés, A. Meir, V. T. Sés and P. Turdn: On some applications of graph theory III. Canadian
Math. Bulletin 15 (1972) 27-32.

P. Erdés, A. Meir; V. T. Sés and Turdn: Corrigendum: “On some applications of graph theory,
1.” [Discrete Math. 2 (1972) no. 3, 207-228], Discrete Math. 4 (1973), 90 Math Reviews: 46#7093,;
Zentralblatt: 245.05130.

P. Erd6s and L. Moser: A problem of tournaments, Canad. Math. Bull. 7 (1964), 351-356.

P. Erdds, J. Nesetril and V. R6dl: On Pisier type problems and results (combinatorial applications
to number theory), Mathematics of Ramsey theory, Algorithms Combin., 5, pp. 214-231, Springer,
Berlin, 1990, Zentralblatt: 727.11009.

P. Erd6s and G. Purdy: Extremal problems in combinatorial geometry in Handbook of Combi-
natorics, Vol. 1, 2 (1995) (Edited by R. L. Graham, M. Grotschel and L. Lovasz) Elsevier Science
B.V., Amsterdam; MIT Press, Cambridge, MA, 1995, pp 809-874.

P. Erd6s, A. Rényi, and V. T. Sés: On a problem of graph theory, Studia Sci. Acad. Math.
Hungar. 1, (1966), 215-235. MR34 #6310. (reprinted in [44])

P. Erdés and C. A. Rogers: The construction of certain graphs, Canadian Journal of Math.
(1962) 702-707. (Reprinted in Art of Counting, MIT PRESS.)

P. Erdés, A. Sarkozy, V.T. Sés: On product representation of powers, I, European J. Combina-
torics, 16(1995), 567-588.

P. Erdés and M. Simonovits: A limit theorem in graph theory, Studia Sci. Math. Hungar. 1
(1966) 51-57.

P. Erdds and M. Simonovits: On the chromatic number of Geometric graphs, Ars Combinatoria,
9 (1980) 229-246. MR #82¢:05048.

43



[66]

P. Erdds, V. T. Sés: Some remarks on Ramsey’s and Turdn’s theorems, Combin. Theory and
Appl. (P. Erdés et al eds) Proc. Collog. Math. Soc. Janos Bolyai 4, Balatonfiired (1969) 395-404.
Math Reviews: 45#8560; Zentralblatt: 209,280.

P. Erd6s and V. T. S6s: Problems and results on Ramsey-Turdn type theorems (preliminary
report), Proceedings of the West Coast Conference on Combinatorics, Graph Theory and Com-
puting (Humboldt State Univ., Arcata, Calif., 1979), Congress. Numer. XX VI, 17-23, Utilitas
Math., Winnipeg, Man., 1980 Math Reviews: 82a:05055; Zentralblatt: 463.05050.

P. Erdés and V. T. Sés: On Turdn-Ramsey type theorems, II., Studia Sci. Math. Hungar. 14
(1979) no. 1-3, 27-36, 1982 Math Reviews: 84j:05081; Zentralblatt: 487.05054.

P. Erd6s and V. T. Sés: On Ramsey-Turdn type theorems for hypergraphs, Combinatorica
2(3) (1982), 289-295. Math Reviews: 85d:05185; Zentralblatt: 511.05049.

P. Erdés and J. Spencer: Probability methods in combinatorics. Acad. Press and Publishing
House of Hung. Acad. Sci. New York, 1974.

P. Erdés and A. H. Stone: On the structure of linear graphs, Bull. Amer. Math. Soc. 52 (1946),
1089-1091.

P. Erd6s and Gy. Szekeres: A combinatorial problem in geometry, Compositio Math. 2(1935),
463-470.

L. Fejes T6th: Regular Figures, Internat. Series of Monographs on Pure and Applied Mathematics,
(Pergamon Press, London, 1964).

D. G. Fon-der-Flaass: On a construction method of (3,4)-graphs, Matem. Zametki 44 N4, (1988),
546-550.

P. Frankl and Z. Fiiredi: An exact result for 3-graphs, Discrete Mathematics 50, (1984), 323-328.

P. Frankl and V. R6dl: Some Ramsey—Turdn type results for hypergraphs, Combinatorica, 8(4)
(1988) 323-332.

P. Frankl, V. Rédl and R. M. Wilson: The number of submatrices of given type in an Hadamard
matrix and related results, Journal of Combinatorial Theory B44,(3), (1988) 317-328.

P. Frankl and R. M. Wilson: Intersection theorems with geometric consequences, Combinatorica
1(4) (1981), (1981) 357-368.

Z. Fiiredi, Finite geometries and Extremal graph theory, PhD thesis.

A. Galluccio, M. Simonovits and G. Simonyi: On the structure of co-critical graphs, in Graph
Theory, Combinatorics, and Algorithms, Vol. 1, 2 (Proc Conf. Kalamazoo, MI, 1992), 1053-1071.

A. Gyarfas, J. Lehel, R. H. Schelp and Zs. Tuza: Ramsey numbers for local colorings. Graphs
and Combinatorics, 3 (1987), no. 3, 267-277.

A. Gyérfas, J. Lehel, J. Negetfil, V. Rodl, and R. H. Schelp: Local k-colorings of graphs and
hypergraphs. 1987 Journal of Combinatorial Theory B43(2), (1987), 127-139.

Goluzin, G.M.: Geometriceskaya teoriya funkcii kompleksnogo peremennogo. [Geometrical theory
of functions of a complex variable.] (In Russian) (1952), Gosudarstv. Izdat. Tehn.-Teor. Lit.,
Moscow-Leningrad, 1952, 540 pp Math Reviews: : 15,112d

Goluzin, G.M.: Geometric theory of functions of a complex variable. (English translation) Trans-
lations of Mathematical Monographs, Vol. 26 (1969) American Mathematical Society, Providence,
R.I, 1969, vi+676 pp. Math Reviews: : 404308

R. L. Graham, B. L. Rothschild and J. Spencer: Ramsey Theory, Wiley Interscience, Ser. in
Discrete Math. 1980.

J. E. Graver and J. Yackel: Some Graph Theoretic Results Associated with Ramsey’s Theorem,
J. Combin. Theory 4 (1968), 125-175. [MR 37#1278]

44



[87]
[88]
[89]
[90]
[91]
[92]
[93]
[94]
[95]
[96]
[97]
[98]
[99]
[100]
[101]
[102]
[103]
[104]

[105]

[106]
[107]

E. Gyéri: Cg-free bipartite graphs and product representation of squares, Discrete Mathematics
165-166 (1977), 371-375.

Gy. Katona: Grafok, vektorok és valdszinliségszamitasi egyenlStlenségek, Mat. Lapok, 20 (1-2)
(1969) 123-127.

Gy. Katona: Inequalities for the distribution of the length of sum of random vectors, Teorija
Verojatnost. i Primenenij, 15 ( 1977), 466-481.

Gy. Katona: Continuous versions of some extremal hypergraph problems, Proc. Colloq. Math.
Soc. Janos Bolyai 18, Combinatorics, 1978, 653-678.

Gy. Katona: Continuous versions of some extremal hypergraph problems, II. Acta Math. Acad.
Sci. Hungar. 36 (1980) 67-77.

Gy. Katona: Sums of vectors and Turdn’s problem for 3-graphs, European J. Combin. (1981) 2,
145-154.

Gy. Katona: “Best” inequalities for the distribution of the length of sums of two random vectors,
Z. Warsch. Verw. Gebiete 60 (1982) 411-423.

G. Katona: Probabilistic inequalities from extremal graph results (a survey), Random Graphs
'83 (Poznan 1983) Annals of Discrete Math. 28 (1985) 159-170.

Gy. Katona and B. S. Stechkin: Combinatorial numbers, geometrical constants and probabilistic
inequalities, Dokl. Akad. Nauk. SSSR, 251 (1980) 1293-1296.

G. Katona, T. Nemetz and M. Simonovits: A new proof of a theorem of P. Turdn and some
remarks on a generalization of it, (In Hungarian), Mat. Lapok, XV. 1-3 (1964) 228-238.

Kim, Jeong-Han: The Ramsey number R(3,t) has order of magnitude ¢?/logt, Random Struc-
tures and Algorithms, 7 (1995), no. 3, 173-207.

J. Komlés, J. Pintz, E. Szemerédi: On Heilbronn’s triangle problem, J. London Math. Soc.
(2)24(3) (1981) 385-396.

J. Komlés, J. Pintz, E. Szemerédi: A lower bound for Heilbronn’s problem, J. London Math. Soc.
(2)25 (1982) 13-24.

J. Komlés and M. Simonovits: Szemerédi Regularity lemma and its application in Graph Theory,
Paul Erdds is 80, Proc. Coll. Bolyai Math. Soc. Vol 2. (Keszthely, 1993)

D. G. Larman and C. A. Rogers: The realization of distances within sets in eucliedan space,
Mathematika, 19 (1972) 1-24.

J. Kollar, L. Rényai and T. Szab4: Norm graphs and bipartite Turdn numbers, Combinatorica
16(3) (1996), 399-406.

A.V. Kostochka: A class of constructions for Turan’s (3,4) problem, Combinatorica 2(2) (1982),
187-192.

L. Lovasz: Kneser’s conjecture, chromatic number, and homotopy, J. Comb. Theory A, 25, 319-
324.

A. Lubotzky, R. Phillips, and P. Sarnak: Ramanujan Conjecture and explicit construction of
expanders, (Extended Abstract), Proc. STOC 1986, 240-246,

A. Lubotzky, R. Phillips, and P. Sarnak: Ramanujan graphs, Combinatorica 8(3) (1988), 1988,
261-277.

E. Makai and P. Turdn: Never published by the authors, reconstructed in several places.

G. A. Margulis: Arithmetic groups and graphs without short cycles, 6th Internat. Symp. on
Information Theory, Tashkent 1984, Abstracts, Vol. 1, 123-125 (in Russian).

45



[108]

[109]

[110]
[111]
[112]

[113]
[114]

[115]
[116]
[117]
[118]
[119]
[120]
[121]
[122]

[123]

[124]

[125]

[126]

[127]

G. A. Margulis: Some new constructions of low-density parity-check codes, convolution codes and
multi-user communication, 3rd Internat. Seminar on Information Theory, Sochi (1987), 275-279
(in Russian)

G. A. Margulis: Explicit group theoretic construction of group theoretic schemes and their appli-
cations for the construction of expanders and concentrators, Journal of Problems of Information
Transmission, 1988 pp 39-46 (translation from Problemy Peredachi Informatsii, 24(1) 51-60
(January—March 1988)

T. S. Motzkin, E. G. Straus: Maxima for graphs and a new proof of a theorem of Turdn, Canadian
Journal of Math. 17 (1965), 533-540.

D. J. Newman and L. Raymon: Optimally separated contractions, Amer. Math. Monthly, 77,
(1970) 58-59.

J. Pach: Graphs whose every independent set has a common neighbour, Discrete Mathematics
37 (1981), 217-228.

J. Pach and P.K. Agarwal: Combinatorial Geometry, Wiley Interscience, 1995.

F. P. Ramsey: On a problem of formal logic, Proc. London Math. Soc. 2nd Series, 30 (1930),
264-286.

I. Reiman: Uber ein problem von K. Zarankiewicz, Acta Math. Acad. Sci. Hungar. (1958) 269-273,
MR 32 #2336.

K. F. Roth: On a problem of Heilbronn, ITI, Proc. London Math. Soc. (3) 25 (1972), 543 - 549;
MR, 4643452;

V. R6dl, On universality of graphs with uniformly distributed edges, Discrete Mathematics 59
(1986),, 125-143.

I. Z. Ruzsa: An infinite Sidon sequence, J. Number Theory, 68(1998), 63-71.

E. Schmidt: Die Brunn-Minkowski Ungleichung und ihr Spiegelbild sowie die isoperimetrische
Eigenschaft der Kugel in der euklidischen und nichteuklidischen Geometrie I, Math Nachrichten,
Berlin, 1 (1948) 81-157.

I. J. Schonberg: Linkages and distance geometry, Proc. Koninkl. Neder. Akad. Wetenschap 72
(1969) 43-63.

J.J. Seidel: Quasi-regular two-distance sets, Proc. Koninkl. Neder. Akad. Wetenschap 72 (1969)
64-70.

E. Shamir: Generalized stability and chromatic numbers of random graphs, (1988) Preprint,
under publication

A. F. Sidorenko: Classes of hypergraphs and probability inequalities. Klasszi gipergrafov i vero-
jatnosztynije nyeravensztva, Doklady Akad. Nauk SSSR 254 (1980), no. 3, 540-543. Math Re-
views: 81m:05105 (English translation: Soviet Math. Dokl. 22 (1980), no. 2, 399 - 402.)

A. F. Sidorenko: The method of quadratic forms in a combinatorial problem of Turdn. Vestnik
Moskov. Univ. Ser. I Mat. Mekh. 1982, no. 1, 3-6, 76. Math Reviews: 83g:05040

A. F. Sidorenko: Extremal estimates of probability measures and their combinatorial nature
Math. USSR - Izv 20 (1983) N3 503-533 MR 84d: 60031. (=Translation) Original: Izvest. Acad.
Nauk SSSR. ser. matem. 46 (1982) N3 535-568. Math Reviews: 84d:60031

A. F. Sidorenko: Asymptotic solution for a new class of forbidden r—graphs, Combinatorica 9(2)
(1989) 207-215.

A. F. Sidorenko: Extremal problems for k-colored graphs and unimprovable inequalities for pairs
of random elements. Diskretnaya Matematika, 1 (1989), no. 3, 47-52. (In Russian) Math Re-
views: 91a:05061

46



[128]

[129]
[130]
[131]
[132]

[133]

[134]
[135]
[136]
[137]

[138]

[139]

[140]

[141]

[142]

[143]

[144]
[145]
[146]

[147]

A. F. Sidorenko: An unimprovable inequality for the sum of two symmetrically distributed ran-
dom vectors. Teor.-Veroyatnost.-i-Primenen. [Akademiya-Nauk-SSSR] 35 (1990), no. 3, 595-599
(Translation: Theory of Probability and its Applications, 35 (1990), no. 3, 613—617 (1991)) Math
Reviews: 93¢:60021

A. F. Sidorenko: Inequalities in probability theory and Turdn-type problems for graphs with col-
ored vertices, Random Structures and Algorithms 2 (1991), no. 1, 73-99. Math Reviews: 92h:60024

A.F. Sidorenko: On Ramsey-Turdn numbers for 3-graphs, Journal of Graph Theory 16(1) (1992),,
73-78.

M. Simonovits: A method for solving extremal problems in graph theory, Theory of Graphs, Proc.
Coll. Tihany, (1966), (Ed. P. Erdés and G. Katona) Acad. Press, N.Y., 1968, 279-319.

M. Simonovits: Extremal graph problems with conditions, Combinatorial Theory and its appli-
cations, Coll. Math. Soc. J. Bolyai. 4 Balatonfiired (1969) 999-1011.

M. Simonovits: Note on a hypergraph extremal problem, Hypergraph Seminar, Columbus Ohio
USA (1972) (ed. C. Berge and D. Ray-Chaudury), Lecture Notes in Mathematics, 411 Springer
Verlag (1974) 147-151. MR51#2987.

M. Simonovits: Extremal Graph Theory, Selected Topics in Graph Theory (ed. by Beineke and
Wilson) Academic Press, London, New York, San Francisco, (1983) 161-200.

M. Simonovits and V. T. Sés: Szemerédi’s Partition and quasi-randomness, Random Structures
and Algorithms, 2 (1991) pp 1-10.

M. Simonovits and V. T. Sés: Hereditarily extended properties, quasi-random graphs and not
necessarily induced subgraphs, Combinatorica 7(100) (1987), ...

V. T. Sés: On extremal problems in graph theory, Proc. Calgary International Conf. on Combi-
natorial Structures and their Application, (1969) 407-410.

V. T. Sés: Remarks on the connection of graph theory, finite geometry and block designs, Colloq.
Internazionale Sulle Teorie Combinatorie (Rome, 1973) Tomo II, pp 223-233, Atti dei Convegni
Lincei, 17 Accad Naz. Lincei Rome, 1976.

V. T. Sés: Interaction between number theory and graph theory, Conference on Discrete Math-
ematics, Preliminary Program of SIAM ANNUAL MEETING, University of Toronto, p53, Ab-
stracts of Invited Plenary Lectures.

Gy. Szekeres: A Combinatorial Problem in Geometry, in the introductory part of [44], xix-xxii.

E. Szemerédi: On graphs containing no complete subgraphs with 4 vertices (in Hungarian) Mat.
Lapok 23 (1972) 111-116.

E. Szemerédi: On regular partitions of graphs, Problémes Combinatoires et Théorie des Graphes,
(Proc. Conf. Orsay 1976, ed. J. Bermond et al.) CNRS Paris, (1978) 399-401.

A. Thomason: Random graphs, strongly regular graphs and pseudo-random graphs, in Surveys
in Combinatorics, 1987 (Whitehead, ed.) LMS Lecture Notes Series 123, Cambridge Univ. Press,
Cambridge, 1987, 173-196

A. Thomason: Pseudo-random graphs, in Proceedings of Random graphs, Poznan, 1985, (M.
Karonski, ed.), Annals of Discrete Math. 33 (1987), 307-331.

M. Truszczynski, Z. Tuza: Linear upper bounds for Local Ramsey Numbers, Graphs and Combi-
natorics 3(1) (1987), 67-73.

P. Turdn: On an extremal problem in graph theory, Matematikai Lapok, 48 (1941), 436-452 (in
Hungarian), (see also [153] in English).

P. Turdn: On the theory of graphs, Colloq. Math. 3 (1954), 19-30, (see also [153]).

47



[148] P. Turédn, Applications of graph theory to geometry and potential theory, Proc. Calgary Interna-
tional Conf. on Combinatorial Structures and their Application, (1969) 423-434 (see also [153]).

[149] P. Turan: Constructive theory of functions, (Proc. Internat. Conference in Varna, Bulgaria, 1970
Izdat. Bolgar Akad. Nauk, Sofia, 1972, (see also [153]).

[150] P. Turdn: Remarks on the packing constants of the unit sphere, (in Hungarian) Mat. Lapok, 21
(1970) 39-44.

[151] P. Turdn: A general inequality of potential theory, Proc. Naval Research Laboratory, Washington,
(1970) 137-141, (see also [153]).

[152] P. Turdn: A Note of Welcome, Journal of Graph Theory, 1 (1977), 7-9, (see also [153]).
[153] Collected papers of Paul Turdn: Akadémiai Kiadd, Budapest, 1989. Vol 1-3.

[154] A. A. Zykov: On some properties of linear complexes, Mat Sbornik, 24 (1949) 163-188, Amer.
Math. Soc. Translations 79 (1952).

48



