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Abstract

This is a continuation of our work on quasi-random graph proper-
ties. The class of quasi-random graphs is defined by certain equivalent
graph properties possessed by random graphs. One of the most im-
portant of these properties is that every fixed sample graph L,, has
the same frequency in G, and in each not too small induced subgraph
F}, of G, as in the p-random graph. (This holds for induced and not
necessarily induced containment.) Earlier we proved for not necessar-
ily induced subgraphs the converse assertion: if the frequency of just
one fixed L, in large induced subgraphs F} C G, is the same as for
the random graphs, then (G,) is quasi-random. Here we shall inves-
tigate the analogous problem for induced subgraphs L,. In such cases
it may happen that (G,,) is not quasi-random but the union of two
quasi-random graph sequences (with distinct attached probabilities.)
So we are interested in the following question:

For which graphs L is it true that if the number of induced
copies of L in every induced F}, C G, is asymptotically the
same as in a p-random graph,? then (G,,) is the union of
(at most) two quasi-random graph sequences.

!Research supported by the Hungarian Research Council Grants, T026069, T038210,
and OTKA T032236.

%j.e., up to an error term o(n?®)).
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We shall prove that if, e.g., L is a regular graph, then this is the case.
We shall reduce the problem to solving a system of polynomials. This
gives a “simple” algorithm to decide the problem for every given L,,.

1. NOTATION

We shall use notations that are mostly standard. For a (simple) graph G,
v(G) and e(G) denote the number of vertices and edges, V(G) and E(G)
denote the set of vertices and edges respectively. The (first) subscript in case
of graphs will almost always denote the number of vertices. If X C V(G),
then e(X) denotes the number of edges of the subgraph induced by X, and
G[X] denotes the subgraph of G induced by X. Given two disjoint subsets
X,Y CV(G), then e(X,Y) denotes the number of edges joining X and Y.

Mostly we shall have a sample graph L = L, with v vertices, (V(L) =
{ai,as,...,a,}), and a graph G with some copies of L. The vertices of a
copy L C G will typically be denoted by {by, b, ..., b,}.

e A not necessarily induced (abbreviated to NNI) labelled copy is given
by a function ¢ : V(L) — V(@) mapping different a;’s into different b; :=
1(a;)’s, where we assume (only) that if (a;, a;) € E(L), then (¢(a;),¥(a;)) €
E(G). Denote by N(L C G) the number of labelled not necessarily induced
copies of L in G.

e A labelled induced copy of L C G is given by a function ¢ : V(L) —
V(G) mapping different a;’s into different b;’s, where (¢(a;), ¥ (a;)) € E(G)
iff (a;,a;) € E(L). Denote the number of labelled induced copies of L C G
by N*(L C G). If we wish to emphasize that L C G is an induced graph, we

shall write L é G.
We shall use u,, ~ v, if u, /v, — 1 as n — oc. B
The complementary graph of H is denoted by H.

2. INTRODUCTION

This paper is strongly connected to our previous papers [8, 9]: it is a contin-
uation of [9]. Therefore we give here only a shortened introduction. For a
longer one see [9].

One of the important questions of modern mathematics and computer
science is, how random-like objects can be generated in nonrandom ways
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and when an individual event could be considered random, and in which
sense.

A. Thomason, [12, 13|, P. Frankl, V. R6dl and R. Wilson [6], and F. R.
K. Chung, R. L. Graham, and R. M. Wilson [1], gave some characterization
of random-like graph sequences.

Our starting point is a theorem of Chung, Graham and Wilson [6]. There
some graph properties P are considered, all possessed by (binomially dis-
tributed) random graphs and at the same time equivalent to each other in
some well-defined sense. A graph sequence is called p-quasi-random if it sat-
isfies one of these properties, (and therefore all the others as well).

Here we need only two of the quasi-random properties. Let p € (0,1).
Let v =v(L).2

We consider the following property of a graph sequence (G,):

Pi(v): for fixed v > 4, for all graphs L,

N*(L, C G,) = (1+ o(1))n*p? ) (1 — p)B)e) a5 n o0, (1)

Obviously, Pj(v) says that the graph G,, contains each graph L, of order
v with the same frequency as the p-random graph. Property Pj(v) refers to
the induced copies. We define the analogous property for “not necessarily
induced” (NNI) copies:

Pi(v): for fixed v > 4, for all graphs L,

N(L, C Gp) = (14 0(1))n"p*™) as n — oco. (2)

Trivially, the above two properties are equivalent for fixed v and p.
According to the Chung-Graham-Wilson theorem, both P, (v) and P7(v)
are quasi-random properties. This implies

Corollary 2.1. If (1) — or (2) — holds for a given v > 4 for every graph
L, (of v vertices), then it holds for arbitrary other graphs L, (for arbitrary

pw>3) eg.,
N*(L,, C Ga) = (1+ o(1))nptE) (1 — p) (8) ~elbu), (3)

In [8] we proved that the Szemerédi partition of graphs is crucial the
theory of quasi-random graphs.

3Sometimes we shall use n = e(L, ), in other cases we shall write e(L,).
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Given a graph G, with two disjoint subsets of vertices, X and Y, the
edge-density between X and Y is defined as

e(X,Y)

X.Y)=—" 7~
HXY) = TXT7]

Definition 2.2 (e-Regularity). Given a graph G and two disjoint vertex
sets X,Y C V(G), we shall call the pair (X,Y) e-regular, if for every
X'"C X and Y’ C Y satisfying | X'| > ¢|X| and |Y’| > €]Y|, we have

(X", Y") —d(X,Y)| <e.
Our main result in [8] was
Theorem A (Simonovits, T. Sés). (G,,) is p-quasi-random iff

Ps(p): For every € > 0 and k there exist two integers, Q(, k)
and ny(e, k) such that, for n > ng, V(G,,) has a partition into k
classes Uy, ..., Uy, with k < k < Q(e, k), ||Ui] — n/k| < en/k*
such that for all but at most ek? pairs (i,7), 1 <1 < j <k,

(U, Uj) is € —regular, and  |d(U;,U;) — p| < e.

In our previous paper [9] we investigated those properties P which do
not imply quasi-randomness of graph sequences (G,) on their own, but do
imply if they are assumed not only for the whole graph G, but also for

every sufficiently large induced subgraph Fj, C G,,. We called such properties
Hereditarily Extended Properties. To consider such extensions is motivated
by the fact that sufficiently large induced subgraphs of random-like graphs
must also be random-like: being a random graph is a “hereditary property”.

Denote by £ (p) and 7 (p) the “densities” of labelled induced and labelled
not necessarily induced copies of L in a p-random graph, respectively:

ﬁL(p) _ pe(Lu)(l _ p) (;)_B(Lu) and ’YL(p) — pe(L”). (4)

“Sometimes we use the error-term 1, here the error term en/k, “for historical reasons”:
they are obviously equivalent in this context.
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In [9] we have considered graph sequences for which, for a fixed L,,

for every induced subgraph Fj, é G, (5)
N(Ll, Q Fh) = ")/L(p)hu + O(TLV).

Of course, (5) holds for any sequence of p-random graphs, or, more generally,
for any sequence of p-quasi-random graphs (G,,). The question is if (5) implies
p-quasi-randomness.

Observe that in (5) we used o(n”) instead of o(h”), i.e. for small values
of h we allow a relatively much larger error-term. As soon as h = o(n),
condition (5) is automatically fulfilled. One of our main results in [9] was

Theorem B. Let L, be a fixed sample-graph, with e(L,) > 0, and p € (0,1)
be fixed. Let (G,) be a sequence of graphs for which (5) holds. Then (G,)
is p—quasi-random.

Consequently, (5) holds for every other graph L,,.

Theorem B means that instead of assuming that for a v > 4, (1) holds for
every graph on v vertices it is enough to assume it just for one specific L,,
but in the stronger, hereditarily extended sense of (5). Moreover, Theorem B
holds even for v = 3.

3. NEW RESULTS

The aim of this paper is to investigate phenomena analogous to the one
described in Theorem B for the induced case, i.e., when (5) is replaced by

for every induced subgraph F é G, (6)
N*(L,, g Fh) = ﬂL(p)hV + O(HU).

We shall see that the situation for the induced case is much more involved,
because, if G, is a p-random graph, then the expected number of N*(L, C
G.p) is not monotone for fixed n while p increases.’

* * *
5Here we use the C in two places: F, C G, and L, C Fj,. They are completely
*
different: the question does not make sense if we replace Fj, C G,, by Fy, C G,,.



Simonovits-T. Sés: Hereditary properties and quasi-random graphs 6

0.0025

Clearly, Br(p) (in (4)) is a function of p

0.002| | which is monotone increasing in [0,e(L,)/(3)],
monotone decreasing in [e(L,)/(}), 1] and van-
0.0015 | { ishes in p = 0 and in p = 1. For every p €
(0,e(Ly)/(3)) there is a unique probability p €
0.001 (e(L,)/(3),1) yielding the same expected value.

Therefore the hereditarily assumed number of
induced copies does not determine the proba-

bility uniquely, unless p = e(L,)/(3).

0.0005 |

Definition 3.1. Given a graph L,, the probabilities p and p are called con-
jugate if ﬁL(p) = ﬂL(Z_))a i'e':

pe(L”)(l . p) (g)—e(Lu) — ﬁe(Lu)(l — ﬁ) (;)_C(LV), (7)

and p # 7°.

Obviously, a random graph sequence with edge-probability u satisfies (6)
iff u € {p,p}.

Example 3.2. If ¢(L,) = e(L,), then for every p the conjugate probability
is p=1—p. This is the case, e.g., if L, is self-complementary.

Assume that G = (G,) is obtained by merging two infinite graph se-
quences: G; being a p-quasi-random and G, being a p-quasi-random one.
Then G satisfies (6) but is not quasi-random (unless p = p). We shall call
this the case of merged sequences with conjugate probabilities.

Given a graph L,, and a p € (0,1), we call a graph sequence a Strong
Counterezample sequence for (L,,p) if it satisfies (6) but it is not
a quasi-random graph sequence, not even a merged sequence with conjugate
probabilities.

We will show that there are two reasons for the existence of strong coun-
terexamples:

e There may occur “strange” algebraic coincidences.

e There are some degenerate counterexamples.

fFor the “peak” p =e(L,)/(3), p=P: pis “selfconjugate”.
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Remark 3.3. If (G,,) is a strong counterexample sequence for (L,,p), then
the same sequence is also a strong counterexample sequence for p. Further,

the complementary graphs, (G,) form a sequence of strong counterexamples
for L, and 1 — p (and 1 — D).

To formulate our main results, we generalize the notion of random graphs
as follows (see [8] for a more general notion of the r-class generalized random

graph).

Definition 3.4 (2-class generalized random graph). Define the graph
G, = G(V1,Va,u,v,s) as follows: V(G,) =V, UV, (where Vi NV, = 0). We
join independently the pairs in V; with probability u, in V5 with probability
v and the pairs (z,y) for x € V; and y € V, with probability s. We shall call
this graph trivial if w = v = s and non-trivial otherwise.

Remark 3.5. If u € (0,1) is fixed and |Vi| > ¢n, then almost surely
N*(L, C G(V1,Va,u,v,s)) — E(N*(L, C G(V1, Va,u,v,s))) = o(n”).

So we do not have to distinguish whether we speak of the expected value or
of the almost sure value.

Remark 3.6. Assume that G, = G(V1, Vs, u,v,s) for en < |Vi| < (1 — ¢)n.
If (G,) satisfies (6) then the two parts G[V;] form random graphs satisfying

(6) and therefore
{u,v} C {p,p}- (8)
Our main result is

Theorem 3.7 (Two-class counterexample). If there is a strong coun-
terezample sequence (G,) for a fized sample graph L and for a probability
p € (0,1), then there is also a strong counterexample sequence of form G, =
G(WV1, Vo, u,v, 8) (s # u) with |Vi| ~ n/2, and satisfying (8): {u,v} C {p,p}.

Remark 3.8. In such cases, i.e., if for some ¢* > 0, for (L,,p) there is a
strong counterexample sequence of form G, = G(V1, Va,u,v,s) (s # u) with
V1| € (¢*n, (1 —c*n)), we shall simply say that G(n, Vi, Vo, u, v, s) is a strong
conterexample for (L, p).

The following theorem shows that for (Ps,p) and (Ps,p), for some p €
(0,1), there exist strong counterexamples.
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Theorem 3.9. Let L, = P;. Then
(a) For every p > %, (p # %) there exists an s € [0, 1], namely,

5= s(p) = 3p3—5 )

such that the sequence G, = G(Vl("), VZ("),p,p, s) is a strong counterexample
for Ps, assumed that for some constant ¢* > 0 we have |V1(")|, |V2(")\ > c*n.

(b) Let for P, and p. = % ~ 0.577 the conjugate probability be p,.”

For every p <P, (p # 3), taking

1
5= 3y _pl e [0, 1], (10)

the sequence G, = G(Vl("),VZ(n),T),ﬁ, S) is a strong counterexample for Pj
assumed that for some constant ¢* > 0 we have [V, |[Vi™| > ¢*n.8

This means that for p € (p.,p,) we have two different strong counterex-

ample sequences.
To understand the situation, consider Fig-
ure 1 where one can see that s = s(p) of
! Theorem 3.9, is negative in (0, %), then it be-
. comes positive but larger than 1 and becomes
a probability only for p > %

As examples, we get strong counterexam-
ple sequences for p = %, if s = %, or for
08 p = %, if s = 1. The sharpness of this
B theorem is expressed by Theorem 3.10 below:

\ it asserts that essentially these are the only
strong counterexample sequences for Ps:

q 0.2 0.4 .6 0.8 1

Fig 1. s(p) := 3p%
Theorem 3.10 (Structure of P;-counterexamples). If for G = (G,)
N*(Ps C Fy) = p*(1 = p)h* + o(n). (11)

holds for every F}, é Gn, then G = (Gy) can be split into four subsequences
G, where

7— _ 1 1, V3 _
Pe=—55ts+ = .7486098314.

8Here 5 is not (necessarily) the conjugate probability of s!
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(a) Gi is p-quasi-random,
(b) Gs is p-quasi-random,

(¢) For each G, € Gs, V(G,,) can be partitioned into two parts: V(G,) =
VUV so that both G, [VY"] and G,,[V3"] are p-quasi-random,® d(V{*, V) =
s+o0(1), s#p, and V]* and V3* are joined o(1)-regularly;

(d) Gy is like Gs, but p and s are replaced by p and s, respcetively.
We think that P; and Pj are exceptional sample graphs:

Conjecture 3.11. Let L, be fized, v > 4 andp € (0,1). Let (G,) be a graph
sequence satisfying (6). Then (G,) is the union of two sequences, one being
p-quasi-random, the other p-quasi-random (where one of these two sequences
may be finite, or even empty).

A possible weakening of Conjecture 3.11 could be that for given L, there
are only finitely many values of p for which there exist strong counterexample
sequences.

We can prove the conjecture only for some special cases.

Theorem 3.12 (Regular Graphs). Given a reqular sample graph L, (v >
4) and a probability p, if for a graph sequence (G,) (6) holds, then (Gy,) is
the union of a p-quasi-random and a P-quasi-random graph sequences.

Theorem 3.13. Let L, be a graph, v =4 or L, = K(2,3), and p € (0,1).
If for a graph sequence (G,) (6) holds, then (G,) is the union of a p-quasi-
random and a D-quasi-random graph sequences.

Theorem 3.13 will be proved in a continuation of this paper.

As we have mentioned, there is a singular, trivial case of counterexamples
of which we would like to forget:

Construction 3.14 (Degenerate Counterexamples). If L, is connected,
and L, # K,, and if G, is the vertex-disjoint union of 7, > 2 complete
graphs, then N*(L, C G,) = 0: (G,,) is a sequence of strong counterexam-
ples for L, and p = 0.

9Here G,[V{"] is not a graph of n vertices!
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To avoid this and similar counterexamples, we shall always assume that

p € (0,1). We shall also always exclude e(L,) =0 and e(L,) = 0.

k) %k 3k

By Theorem 3.7, to prove that Conjecture 3.11 holds for some specific
(Ly,,p), it is enough to prove that there are no two-class generalized random
graph counterexamples. As we shall see, this reduces to proving that some
algebraic equations on (u,v,s) have only the trivial solutions u = v = s.
So, Theorem 3.7 can often be used to prove that Conjecture 3.11 holds for
certain graphs.

If for some p € (0,1) there exists a counterexample sequence, we may
restrict ourselves to the 2-class generalized random graph counterexample
sequences G, (V1, Vs, u,v, s) and these may be of three different types:

e “Counterexamples of first kind”: Gn(V1, Va, 0,0, 5).
e “Counterexamples of the second kind”: G,(V1,V5,D,7, s).
[ ] “Mixed C&SG”Z Gn(‘/la ‘/Qap’ﬁ7 8)5 (p 7é ]_))

We shall see that for P; there are no “mixed” counterexamples. So Con-
jecture 3.11 would imply that there are no “mixed” counterexamples at all.
A trivial corollary of Theorem 3.7 is

Algorithm 3.15. There is a finite algorithm such that if there is no strong
counterexample for (L,,p), then the algorithm will “prove” this.

Indeed, one can reduce the problem to deciding if a given system of poly-
nomials has roots in a 3-dimensional cube or not. For more details, see
Section 5.4. We do not claim that this algorithm is “efficient”.

Remark 3.16. All the theorems of this paper are formulated for labelled
graphs (induced or not necessarily induced), however, all our results easily
extend to unlabelled graphs.

4. THE COPY-POLYNOMIALS

We shall introduce some polynomials counting the induced copies of L, in
F, C G, = G(Vi,Va,u,v,s). The simplest way to define them is as follows:

Definition 4.1 (Copy-polynomials). Let L = L, be a fixed “sample graph”
and £k =0,...,v. For a fixed k we partition the vertices of L into two classes
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A and B with |A| =k, |B| =v — k. Let n =e(L,). Then

Pt (s) = (Z) u(1 —u)&) 1~ (12)
Z w1 — u) (’;)—e(A)Ue(B)(l _ U)(”;’“)—e(B)Se(A,B)(l — 5)k(—k)=e(A,B)

ACV(Ly)
|Al=Fk

Here the terms of the ) are the probabilities that if we choose & (labelled)
points in V; and v —k points in V5, then we get an induced (labelled) L,. The
first term counts these L, if u = v = s. The meaning of these polynomials is
expressed in

Lemma 4.2 (Copy-polynomials). Fiz an L, and a p € (0,1). Assume
that |V1|,|Va| > c¢*n for some fized ¢* > 0. Then a graph sequence (Gy)
consisting of 2-class generalized random graphs G(Vi, Vo, u, v, s) satisfies (6)
almost surely iff (8) holds: u,v € {p,p}; further, s is a common zero of the
corresponding system of polynomials of (12).1°,'!

Generally we shall be interested in the solutions of the system of polyno-
mial equations

]P’ﬁ,u(s) =0, k=0,...,v, where ue€ {p, D} (13)

We may forget k = v, since Py (s) = 0 for all 5. It is worth considering the
cases k = 0 and k£ = v — 1 separately. For £ = 0 we get back (7):

u(1 — u)(;)_" =071 — U)(;)*",

where n = e(L,), i.e., v € {p,p} as well. What is much more important,
Py ' (s) does not contain v, since |B| = 1. Actually, if V(L,) = {a1,...,a,}
and d; denotes the degree of a; in L, then (taking B := {a;}) we get

Lemma 4.3. P;7'(s) = 0 is equivalent to

) () 11

Therefore, for a given s we can choose u only in finitely many ways.

10For a given p we have three choices for {u,v} and they are considered as parameters:
we have to solve systems of equations consisting of polynomials of one unknown s.

11 The expression “almost surely” could mean here two different assertions: that for each
fixed n “almost surely” or that generating such a generalized random graph for each n,
we have the assertion for the obtained sequence of graphs, almost surely. However, here
both assertions hold.
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Proof of Lemma 4.3. If the degree sequence of L, is (dy,dy, . ..,d,), then,
by e(B) = 0, so (12) reduces to

Pt(s) = yu%Ed"(l—u)(;)_%zd”‘

— Zu%Zdi—di(l _ U)(V 1) Zdrf—dz d; (1 o S)l/—di—l
So Pyt (s) = 0 is equivalent to

0=uv(l—u)" Zu di( dighi(] — g)v—di~1 (15)

This proves Lemma 4.3. 1

The following trivial lemma will be useful:

Lemma 4.4. If D =2e(L,)/v (i.e., D is the average degree of L, ), then the
conjugacy relation (7) is described by

p’(1=p) " =p"(1-p)" """ (16)

Proof. Fora =p”(1-p)""P~' > 0andb=7p"(1-p)* "' >0,P (s) =0
is equivalent to

what is equivalent to a = b. 1

Symmetries of the Copy-polynomials

The vertices of L, are labelled. Each L, é G(WV1, Va, u, v, s) defines a partition
of V(L,). The partitions correspond to the 2” 0-1 sequences, and (Z) of them
contribute to P¥  (s). Replacing k by v — k is equivalent to switching to the
complementary set of A. Hence the system of Copy-polynomials is symmetric

in the following sense:
Py (s) =Pyt (s). (17)

So, in the symmetric case, when u = v € {p,p}, we have |%| equations.
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Motivation of Conjecture 3.11

One motivation for the conjecture is as follows.

If we count the number of equations for the induced case, then mostly we
find that the system of polynomials is over-determined. Indeed, generally we
have a fixed p which determines p and therefore we have to solve the three
systems of equations.

Obviously, v = v = s is a solution of (13). We wish to motivate the
conjecture that there are no other solutions.

If p is fixed, v and v may have only two values, and then the unknown
(variable) s must satisfy the system (13) of v —2 Copy-polynomial equations,
or in the symmetric case, [4| equations. So for v > 4 we have at least 2
equations for s: more equations than unknowns. And this gets “worse” as
v increases. (On the other hand, as v — oo, the possibilities for L, grow
exponentially. This could work against the conjecture.)

If for some fixed sample graph L, and p € (0,1) Conjecture 3.11 does not
hold, then Theorem 3.7 guarantees that there is a generalized random graph
counterexample (G(V1, Vo, u, v, s)) where |Vi| = |V,| > en, and we know that
there are only 3 possibilities for {u, v}, but earlier we did not know the value
of s. By Lemma 4.2, we know that d(V;,Vs2) = s is one of the roots of the
“corresponding” copy-polynomials.

4.1. Proof of Lemma 4.2

Take a G := G(V4,Va,u,v,s). Let X CV, Y CVy, | X| =2z, Y] =y.
We think of L, as a graph on a4, ..., a, and for any of the 2" possible 0-1
sequences we have a partition of V(L,) into A and B.

Let us count the expected value Sy of L, é G[X,Y,u,v,s) C G, having
k vertices in X, v — k vertices in Y.

Put the corresponding & vertices b; = ¥(a;) of A into V3, the others into
V,. The vertices a; € A can be put into X C V; in ~ z* ways. > The
vertices a; € B = V(L,) — A can be chosen in ~ y*~* ways. Consider the
sum in (the second line of)

S, = a:ky”*k X

12The error comes from that we use z(z —1)...(x — k + 1) ~ .
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Z w1 — ) (’;)—e(A)Ue(B)(l _ U)(";k)—e(B)se(A,B)(l — g)k—k)=e(4,B)

ACV(Ly)
|Al=k

+0(n*™h).

In each term, the first two factors correspond to the probability that for the
vertices a; € A the images, b; = ¢(a;) € X C V; are joined according to the
pattern described by L,[A] C L,, the next two factors reflect the probability
that L,[B] C L, is mapped into G,,[Y] appropriately; the last two factors
express the probability that ¥)(A) C X is joined correctly to ¢(B) C Y. Here
the sum is just the one in definition (12) of P} ,(s).

Condition (6) holds iff for all the possible choices of z,y (z +y < n),

ZS’“ = u"(l—u)(;)_"(x—i—y)”—i-o(n”) = Z (Z) u”(l—u)(;)_”xky”_k+o(n”).

k

If ¢* > 0 is fixed and z,y > c¢*n, then the o(n”) term is negligible: the two
sides are equal iff

Sk = Z oo 2Py = <V)u”(1 - u)(;)’"xky”_k for k=0,...,v.

k
|A|=k
This gives just the Copy-polynomial system. 1

Observe that the above argument also showed that if E(.) denotes the
expected value, then (for | X|, Y| > ¢n)

E(N*(L, € G(X,Y,u,v,5)) ~ Y PE () X[V . (18)
k=0

4.2. Breaking the symmetry

Assume that we wish to prove that for a given L, there are no strong coun-
terexamples if p € (0, 1). Since the condition (6) does not distinguish p from
p, and if there were strong counterexamples, then there would be strong
counterexamples of form (G(Vi, Vs, u,v,s)) where either u or v would be p
or p, therefore we can assume in our proof that u = p: It is enough to check
graphs of form G(V1, Vs, p,q,s), where ¢ = p or ¢ = p. (This assumption
may include that we replaced the original p by p.)
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5. PROOF OF THEOREM 3.7

5.1. Regularity Lemma, Szemerédi Partitions

An important tool in the proof of our theorem is the Szemerédi’s Regularity
Lemmma which will make possible for us to apply Theorem A to prove that
some graph sequences are quasi-random. We have defined the edge-density
d(X,Y) and the “regular pairs” in the introduction.

Regularity Lemma (Szemerédi, [10]). For every ¢ > 0 and integer k
there exist an ng(e, k) and an (e, k) such that for n > ng for every graph
G, the vertex set V(G,) can be partitioned into k subsets Uy, ..., Uy with
k < k < Q(e, k) so that ||U;] —n/k| < 1 and all but at most ek? pairs (U;, U;)
are e-regular.

Such partitions will be called Szemerédi Partitions, x will be called the
lower bound on the number of classes, ¢ the precision and (a minimum)
Q(e, k) the upper bound function.

Remark 5.1. In most applications of the Regularity Lemma one has to
allow that £ = k,, depends on n. Here, when for some fixed p > 0 the
densities are roughly equal: d(U;,U;) = p+ o(1), one can also choose a fized
k= kl (8, K/).

Below we formulate a theorem, which says that even if a graph sequence
(G,) is a strong counterexample to Conjecture 3.11 for (L,,p), yet G,, must
have a relatively simple structure: the Szemerédi Partitions of the graphs in
such sequences use only densities which are roots of the Copy-polynomials.

Definition 5.2. Given a graph (), we shall say that it satisfies the density
condition D(p,¢) if for every X C V(Q), |X| > ev(Q) we have

w-9(3) <cexn<o+a('y): (19

Theorem 5.3. Let L, and p € (0,1) be fized. Let the graph sequence (G)
satisfy (6). For every w, — 0o (as n — oo) there exists an e, — 0 (as n —
o0) such that (G,) has a Regular Partition Uy, ..., Uy, for some ky, < wp,
where

e the graphs G,[U;] satisfy the density condition (19) with p, or D in
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the classes, and
o (all) the pairs (U,,Up) (1 < a < b< k) are e,-regular, and for each
density d(U,, Uy) there is a root s?’b of the “corresponding” Copy-polynomials,
such that
d(Us, Uy) — s7°| < ep.

We shall not prove Theorem 5.3 here, primarily because it is slightly
technical (and if, by chance, it turns out that Conjecture 3.11 holds, then
this theorem and some possible sharpenings of it will become uninteresting).

5.2. Preparation to prove Theorem 3.7

The standard counting technique, connected to the Szemerédi Lemma, shows
that

Lemma 5.4 (Approximate Counting). There is a function f,(¢) — 0
(as € — 0) with the following property. Let Uy, ..., Uy be an e-reqular parti-
tion of G, k > %, and, for some indez set I C [1, k|, Zy C G, be spanned by
Uier Ui- Assume that all the pairs (U;, Uj) fori,j € I (i # j) are e-reqular. If
we replace the edges in Zy between U; and U; independently by random edges
of probability d(U;,U;), and we change arbitrarily the edges with endvertices
in the same classes U;, then almost surely, in the resulting Wy,

|N*(Lu - WM) - N*(Lu - ZM)‘ < (% + fu(6)> M”. (20)

Observe, that (20) is trivial if [I| < (3). We may and shall assume that
f.(e) > V. (21)

Here f,(¢) corresponds to the “errors” coming from the application of
the Regularity Lemma and the approximation by random graphs, (‘;) MY/
estimates the number of copies of L,’s having at least two points in the same
U, (t=1,...,I|): if ag,ac € V(L,) are mapped into be, b, € Uy, (i.e., into
the same class), then each b; (i = 1,...,v) can be selected in at most M ways,
and having selected b, fixes Uy, so b; can be selected in at most |U,| < M/|I]|
ways.
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5.3. Proof of Theorem 3.7

The threshold R;

Let ¢t be an arbitrary integer, ¢, = % We fix a Ramsey number r;, as
the minimum integer such that every t-edge-coloring of a K,, contains a
monochromatic Kj;.

Next fix a number R := Ry, such that, for any graph Hy, if £ > R; and
e(Hy) > k*/t?, then Hy D Ko(ry, 7). This can be done, using the Kévari-T.
S6s-Turdn theorem [7] according to which,

1 —1
if K(a,0) £ Gy then e(Gy) < 5¥b—1n> Yo+ “Tn (22)

Therefore, we can fix an R; for which,

—1 K2
if k>R, then %kH/” LAy

. = (23)

This R; is what we wished to define.

Types of Regular Partitions

Assume that for a fixed 7 > 0 and for ¢ = ¢; < 7 for each G,, of a
sequence (G,) we have an e-regular partition, (for n sufficiently large). Our
partition of V(G,) can have (at most) ek® non-e-regular pairs (U;, U;). For
each such pair we delete all the edges joining U; to U;. That may change
N*(L, C G,) by at most en” and we may forget about this slight difference.
After this all the pairs become e-regular.

An e-Regular Partition (Uy,...,U) of a graph G, will be classified as
follows:

(a) At least Tk? e-regular pairs (U;, U;) satisfy

|d(U;,Uj) —p| >7 and [d(U;,U;) — | > 7. (24)
(b) Assume that (a) does not hold, but

{ |d(U;,U;) — p| < 7, for at least 7k pairs (U;, U;) and (25)

|d(U;,U;) —p| <7, for some other 7k? pairs (U;, U;).

(¢) Neither (a), nor (b) hold.
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Classification of graph sequences

Below certain subgraphs and subsets obtained from some graphs G, € G
may depend on n but we suppress indicating this dependence in our notation.
Also, ignoring the simpler case p = p, assume that p # p.

Let L = L, and p € (0,1) be fixed. We shall create a 2-dimensional,
infinite matrix of graphs, B. For every pair of integers, (7,t) it will have a
“box”, Br; which may be empty or may contain a graph G, € G, with an
gi-regular partition. (Remember that &, = %, and think of T as T < t.)

For a given ¢ define R; as described earlier. Next find 2 = ; as the
“upper bound function” in the Regularity Lemma, corresponding to ¢; and
k := Ry. Finally, denote by G[t] the subsequence of graphs G,, € G for which

for every F, C G, with h>n/S,

IN*(L, CFy) — Bi(p)h”| < eh. (26)
(Note that by h > n/Q;, and |N*(L, C Fy) — Br(p)h”| = o(n"), (26)
holds fro every sufficiently large n.) For each 7 = 7 and each ¢ = } we

check if there exist graphs G,, € G[t] having ¢;-Regular Partitions for k = Ry,
satisfying either (a) or (b).

If there exist no such graphs, or if 7 < ¢;, we define Br; = 0. If there exist
such graphs G,,, we put one of them into Br;, and also fix a corresponding
ei-regular partition of it, {U, ..., Ux}.

We distinguish two cases:

(i) There exists a T for which infinitely many By, are non-empty. (In
other words, there exists an 7 > 0 for which we have infinitely many ¢ with
corresponding graphs G, .,.)

Mostly we shall neglect indicating the dependence on t.

(ii) For any 7 > 0, we have only finitely many non-empty boxes Br;: if
e; < €(7) then for any G,, with sufficiently large n every e,-regular partition
{Un,...,Ux} has at most 7k? pairs (U;, U;) satisfying (24) or (25).

In Case (i) we shall provide the 2-class counterexamples; in Case (ii) we
shall prove that every G = (G,) satisfying (6) is the union of a p-quasi-
random and a p-quasi-random graph sequences.

We start with the simpler case.

Settling Case (ii)

Let G = (G,) be a graph sequence satisfying (6). Decompose G into
G1 U G, by putting into G; those G, whose density 2e(G,)/n? is nearer to p
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then to p. We show that Pg(p) holds for G,,. Therefore, by Theorem A, G;
is p-quasi-random. Similarly, G, is p-quasi-random.

Fix an 7 < 5(p — p). We may restrict ourselves to the case 7 = 7.
Let 7 > 0 be sufficiently small. Since the T™ row of our matrix has only
finitely many nonempty “boxes”, therefore for any sufficiently small £ > 0 the
corresponding “box” is empty: every e-Regular Partition of G, is of Type (c)
in our classification. We may assume that n is sufficiently large, therefore, by
(6), we also have (26). So the only reason why we have not put this G,, into
this “box” is that it does not satisfy (24), nor (25). Hence for all but at most
27k? e-regular pairs (U;, U;) we have |d(U;,U;) — p| < 7 and consequently,
Ps(p) holds. (In principe these densities could also be near p but then the
edge-density of G, would be nearer to p than to p.) This shows that G is the
union of two quasi-random graph sequences.

Settling case (i)

Now we know that there is a T for which the T*" row of our matrix
contains infinitely many nonempty boxes. Fix this 7" and the corresponding
T = % > 0. Choose infinitely many graphs G, from this row: they form a
sequence G = (G,)."* We recall that each graph is fixed also with a Regular
Partition. We shall distinguish two subcases:

() For this T row of the matrix, there exist a sequence of integers
t — oo and the corresponding graphs Gy, ., whose e;-regular partition is of
Type (a) (see (24)). (This is the most important case.)

(8) In the T™ row of the matrix, there exist infinitely many G, whose
e-regular partition is of Type (b) (see (25)).

In these two cases we shall find the promised 2-class counterexample
sequences of type G(V1, Vo, u, v, s).

Details of Case (o) ™

(o) Now we assumed that there exists an 7 > 0 and infinitely many G,
with the e-regular partition

V(G,) =UiU...UUy

having at least T7k? e-regular pairs (U;, U;) satisfying (24).

13This G forms a strong counterexample, but we shall not need this directly.
14 In this case R could be replaced by r: a single application of Ramsey Theorem to
define R; would suffice.
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Restrict ourselves to a fixed GG, and the corresponding Regular Partition
(Uy,...,Ug). Consider the graph Hy the vertices of which are the classes
U; and the edges of which are the regular pairs satisfying (24).!> We shall
color these edges (=pairs) with their rounded densities: (U;,U;) gets color
x(U;, Uj) := ¢[t-d(U;,U;)]. This way we get a < t-colored Hy. (The edges of
G, corresponding to irregular pairs were deleted and therefore the irregular
pairs get color 0. In principle Hy could have ¢t + 1 colors, but many of the
colors, corresponding to densities near to p or p, are excluded, by (24).)

Let H} denote the monochromatic subgraph of Hy, having the most edges.
By the choice of the lower bound k = R; in the application of the Regularity

Lemma,
T . 5 k)’
Hp)>—-k*> (-] .
e(p) > 7> (£)

So we have a monochromatic K(R;, R;) C Hy, i.e., two sets of classes,
Ay, ..., Ag, and By, ..., Bg, so that all the pairs (4;, B;) are from the pairs
in (24) and of the same color, say s = s,,.

() Here the edges (A;, Av) and (Bj, By) of Hy, (1 < i,7,j,7 < Ry),
may have many colors. We apply Ramsey’s theorem to Hy. The subgraph of
Hj spanned by Ay, ..., Ag, contains a monochromatic K; spanned by some
classes {A4; : i € I}, (|I| = t) and the subgraph spanned by By,..., Bg,
contains a monochromatic subgraph, spanned by some classes {B; : j € J},
(|J| =t). Let the color used for (A;, Ay) be u = u,, and for (Bj, Bj) v = v,
Since the colors encode densities, we used at most 3 (rounded) densities.
These define a “structure” G(Vi, Va, Uy, Uy, $n). Clearly,

1
|d(AzaAz’)_un| S ;:g, ‘d(BjaBj’)_,Un| ng

and
d(As, By) = 5| <.

Here we have infinitely many graphs G,,, and each of them corresponds
to smaller and smaller ¢ = ¢, = % — 0. Take for each of them the cor-
responding “structure” G(Vi, Vo, ty, Uy, S5 ). If by any chance, (uy, vy, s,) is

not convergent, then we take a convergent subsequence:

(Un, Vn, Sn) — (o, o, So)-

15Generally we would call this graph the colored reduced graph or colored cluster graph.
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(Typically, ug, vy € {p,p}, but we do not know this yet.) By (24),
|so—p|>7—¢, and |sg—p|>T—c¢c.

We assert that G(V1, Va, ug, vo, So) is a strong counterexample

We may assume that the classes U; have size h ~ 2 > Q—n where (); was
fixed when we applied the Regularity Lemma. Denote by Doy, the subgraph
of G, spanned by these A;’s and B;’s.

(a3) We wish to prove that G(Vi, Vs, ug, vo, So) is a strong counterexam-
ple.t6 Therefore we select a subgraph G' = G(V/, V3, ug, v, So) of it, with at
least h > n— vertices, and count the L,’s in G'. Of course, the basic idea is

that G' is the randomization of G,[V] U V]| and therefore, by Lemma 5.4,

N*(L, € G') = Br(p)v(G)" + o(v(G)"). (27)

Yet we need several technical steps to prove (27):

(1) To apply Lemma 5.4, we should use the actual probabilities d(A;, 4;),
d(A;, Bj), and d(B;, B;), instead of (ug, vg, So). Replacing the actual densities
by the rounded densities (un, v, s,) yields an error at most 1v(G')"; then
replacing (y,, Uy, S) by (1o, vo, o) results an error of at most

2(max{|u, — ug|, |[vn — vol, |80 — s0|})v(G")” (28)

L,’s if v(G') > h. (We used the factor 2 to compensate the randomness.)

(2) Some negligible error comes from the fact that we take an arbitrary
subgraph G’ and not only subgraphs spanned by whole classes U; of the Reg-
ular Partition. However, the vertices of G(V7, Va, ug, vo, So) are “symmetric”
in the sense that we can replace the vertices of the original G’ by other ver-
tices spanning some complete classes A; or B; and two “remainder” classes
of at most h vertices each. This results in an error at most

20 (G’ < ew(G')” (29)

(3) To apply Lemma 5.4, we take an integer A < 2¢ and select an arbitrary
A C TUJ with |[A] = XA > V/t. Let Dy, be the subgraph of G,, spanned by

16We remind the reader that G(Vi, Vs, ug,vo, So) is a generalized random graph and
we should have written that “the graph sequence G, = G(V1, Va2, uo,v0, So) is almost
surely a strong counterexample if |Vi| ~ mn/2” but we agreed to say, instead, that
G(V1,Va,u0,v0,80) is a strong counterexample, meaning that the “generalized random
structure” defined by it provides a strong sequence of counterexamples, see Remark 3.8.
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Uica Ui- The Zy; of Lemma 5.4, be Zy; = Dy Its randomization (described
in Lemma 5.4) is just Wy, := G(V], V3, uy, vy, Sp), where

Vi = U Uy and V)= U Uj.
ieINA JEINA
By Lemma 5.4,
2

IN(Ly € GOVt 50) = BRI < (len) + 5 ) (). (30)

Since G,, € G[t], it satisfies (26). So we get
IN"(Ly, € Dan) — B(p)(AR)”| < e(AR)”  as n — oo. (31)

Using (30) and taking into account all the above error estimates, (28), (29),(31)
we get (27). Since sy # p, P, this concludes the proof of that G(V/, V3, ug, v, So)
is really a strong counterexample sequence.

Details of Case (53)

We have to modify the previous argument just a little bit. We know that
there are many pairs (U;,U;) with densities around p and also many with
densities around p and that 0 < 7 < @.

We first consider the pairs of density approximately p and repeat the
argument of (o). We get a graph Doy, as above. Then, taking the limit, we
get a 2-class graph G(V, V3, p, ¢, s) which is a counterexample, unless it is a
G(V1,Va,p,p,p). Then we can consider the pairs of density ~ p and either
get a counterexample or a G(V1, Vs, 5, D, D).

If we have not obtained the desired 2-class counterexample as yet, then
we proceed as follows. In the original graph GG, we have the classes A4, ..., A,
and By, ..., B, corresponding to G(V1, Vo, p,p,p), and C4,...,C, and Dy, ..., D,
corresponding to G(V4, Vs, B, P, p)- To simplify the notation, change it by us-
ing Ai+r := B; and Cjy, := D,. All the densities d(A4;, A;) ~ p and all the
densities d(C;,C;) ~ p. Since p # D, after deleting at most one group we
may assume that these two sets of groups are disjoint. Let the corresponding
groups be Ay, ..., Ay _y and C4,. .., Co_1. The densities d(A;, C;) could be
arbitrary, but applying (22) to them we can get (apart from the indexing)
Ay, ..., Ay and C4,...,C,, where d(A;,C;) ~ s for some s. So, taking the
limit, we get the same type of G(V1, Vs, u, v, s) as in («), except that there we
knew that sg is far from p and P, now we know that the densities d(A;, A;)
are far from d(C;, C;). That is equally good for us. 1
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5.4. The algorithm

We have a system of polynomials, which have some trivial zeros. We shall
eliminate some trivial zeros and then the question is reduced to finding
an algorithm which decides if some polynomials have zeros at all in the
3-dimensional unit cube. Such an algorithm was given by Tarski [11].

One part of Tarski’s theorem is trivial here. It is trivial that if there are
no counterexamples, then that can be algorithmically proven: We have to
decide if the copy-polynomials P%  (s) have zeros for some (u, v, s) where not
all the coordinates are equal. Assume there are no such zeros and we wish
to prove this.

There are two cases: eitheru =pand v =poru=pandv=p# p. In
the first case we have polynomials depending on one parameter p and having
the root s = p. So we can factor out s — p, (maybe more than once) and we
can often factor out some powers of p, ¢, (1 —p) and (1 —q). (Often p =0,1
are also roots and we have to get rid of them, too.) Then we have to show
that the resulting system of polynomials has no zeros at all in [0, 1].

Indeed, we have the polynomials, can estimate their gradients, say by a
constant M, and therefore if we check the values of the polynomials on a
sufficiently fine grid, in the (u, v, s)-space, then we have a lower bound in the
grid points and also know that the polynomials are positive in all the other
points of [0, 1]* as well. 1

(b) The other case is when there exist strong counterexamples for (L,, p).
According to a theorem of Tarski [11] this can algorithmically be proven.

(c) Clearly, the two parts can be combined in one algorithm which decides
in finitely many steps if case (a) or case (b) holds.

6. PROOF OF THEOREM 3.12

Below we show that if L, is d-regular and u,v, s € (0, 1), and

PL.(s) = 0 (32)

thenu=v=s=poru=v=s=

]
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Using P, '(s) =0

We know that for any L, if G(V1, V3, u, v, s) is a counterexample, then u, v €
{p,p}. For d-regular graphs we can easily see that even s € {p,p}. Indeed,
we can use (15) from the proof of Lemma 4.3:

0=v(1—u)" Zu (1 —u)tisi(1 —s)r~ %1

yielding
ul(1 — )17 = 51 — )4t (33)

Observe that (by Lemma 4.4) s = v or s = u. Further, (14) reduces to

a=1--2 =12 x::<1_“>2, y::(3)2, (35)

v—1’ 1—s

alogz + Blogy = 0. (36)

Using P, *(s) =0

Let us calculate P *(s) = 0. By the d-regularity (!) P,?(s) has (at most)
three distinct terms:

o A fixed term:

@u (1= u)(®) -3,

e A term corresponding to the case when the two points in B are inde-
pendent: e(B) =0, e(A, B) = 2d, e(A) = jvd — 2d; and
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e A term corresponding to when B contains an edge: e(B) =1, e(A4, B) =
2d — 2, e(A) = svd — 2d + 1;

Hence

Plo(s) = <2 us (1 — u) ()3
- <<;> - %ud) (1- v)u%"d—m(l - u)("52)*%vd+2d82d(1 — g)2v2d—4
_ %Vdvu;ud—m“(l _ u) (”;2),;ud+2d7182d—2(1 _ S)2y—2d_2

Plugging in the conjugacy for s,

s2(1 — g)20-2 — g 2d(] _ g)w-2d-2
into the equation PZ;)Q(S) = 0 and then simplifying we get
0=w-1)- (1/ —1- d)(l —v)(1 —u)(1 —5)"2 —dvus™®  (37)
From here on, we distinguish two cases:
e u=wv,5=1uand

o uFu.

The symmetric case: v =u

Now (37) gives
0=(@—1)— (y- 1—d)(1—u)2(1—s)_2—du23_2 (38)

Rearranging, we get
d 1-u\®> d 2
1- %)+ (%) =1
v—1 1—s v—1\s

ax + Py =1,

Hence we get

but this and the concavity of logt contradicts (36), unless z = y, implying
that u = s and completing this part of the proof.
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The asymmetric case: v # u

(ii) We start again with (37)
0=w-1)- (l/ -1- d)(l —v)(1 —u)(1 —5)"?% — dous™2

By v # u, either s = u or s = v. By symmetry, we may assume that s = v.'7

v—1)= (,,_ 1 —d)(l —u)(1—5)7" + dus™!

(1_1/?1) (1:Z)+<ui1> (%):1' (39)

Here we can use the same convexity argument used in the previous subsection,

with X
—u u
xz:(l—s)’ y:z(;).

(The squaring is missing!) This completes the whole proof. 1

7. PROOF OF THEOREM 3.9
ON INDUCED P3’S

First we calculate the Copy-polynomials of P;, (using (12)) and then solve
the corresponding system of equations.
Clearly,
Py, (s) :== u*(1 —u) — v*(1 —v). (40)
To get P, ,(s) use k = 1in (12): e(A) = 0 and either e(B) = 0 or e(B) = 1.
If e(B) = 0, then e(A4, B) = 2. So we get (1 — v)s?. In the other case, when
e(B) =1, then e(A, B) = 1: we get vs(1 — s), but we get this term twice:

P, (s) = (1 —v) + 2vs(1 — s) — 3u*(1 — v). (41)
Exchanging in the first two terms u and v we get

P, ,(s) = s*(1 —v) + 2us(1 — s) — 3u*(1 — v). (42)

1"Below we shall use (34) which uses u and this may seem to create some asymmetry.
However, (34) remains valid if w is replaced bu v.
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(i) P2 ,(s) does not contain v. Since s = u is a trivial root of P2 (s) =0,
we can decompose P2, (s):

P ,(s) = (s — u) <(1 —3u)(s+u)+ 2u).

For each value of u, the equation P,  (s) = 0 yields two values of s. One of
them is s = u, (of course!) but we are interested in the other one:

1—u
3u—1’

s =3u

1

5) and exceeding 1 in (3, %) Observe that 3uz—

3

which is negative in (0,
u, iff u = 2/3.

(ii) To verify Theorem 3.9, observe that G(V1, Va, u, v, s) is a strong coun-
terexample (for v = p or v = p) iff the corresponding copy-polynomials
vanish and s € [0,1] and u = v = s does not hold. Now we assumed that
u = v, so (40) is automatically satisfied, (41) and (42) coincide. So we have
to satisfy only that (42) vanishes and ensure that u,s € [0,1]. But the for-
mula of Theorem 3.9 (b) is just the solution of (1 — 3p)(s + p) + 2p = 0,
providing an s € (0, 1) for every p > % This proves (b).

Ju—1 =

(iii) To prove (a) we have to solve the system of equations provided by
(40), (41), (42). Subtract P2 (s) from P, (s):

P,.(s) =P, (s) = s°(1—v)+2vs(l—s)—s°(1—v)—2us(l—s)
= 5(3s—2)(u—v).

This means that P, ,(s) and P% (s) can vanish at the same time if and only
ifv=wuors=0o0rs=2/3. Here s =0 is excluded, since then ]P’fb’v(s) =0
would imply u = 0 or u = 1. For s = 2/3 (42) yields

4 —27u*(1 —v) = 0.

Then u?(1—v) = 5. This 5= is the maximum of the conjugacy curve u?(1—v),
at u = 2/3. Sou =2/3 and v = u. Hence case s = 2/3 is completely settled.

So u = v. Then P} (s) = 0 automatically holds, P, ,(s) = P2 ,(s) = 0
follows from (i). This completes the proof of Theorem 3.9. ]
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Corrigendum to [9]. In [9] we have forgotten to explicitly state that
e(L,) > 0. Ife(L,) = 0, then N(L, C F,) = (") is independent of the
structure of G, and of p: the theorem trivially does not hold.
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