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Abstract

In this paper we formulate four families of problems with which
we aim at distinguishing different levels of randomness.

The first one is completely non-random, being the ordinary Ramsey-
Turán problem and in the subsequent three problems we formulate
some randomized variations of it. As we will show, these four levels
form a hierarchy. In a continuation of this paper we shall prove some
further theorems and discuss some further, related problems.

1. Introduction

This paper is an introduction to a field on the hierarchy of randomness with
some new problems and results.

1.1. The original questions

Below graphs of order n will be considered and “almost surely” or “almost
every” means that the probability of some event – in a class of n-vertex
graphs – tends to 1 as n→ ∞.

∗The work was supported by Hungarian OTKA grants: T-038210, T-034702, T032236
and T-042750.
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To start in the middle, we formulate very briefly (and informally) four
questions. The paper is centered around them. The questions are as follows:

Fix a graph property, i.e., a class P of graphs (closed under iso-
morphism) and an integer r ≥ 2.

(DD) How many edges guarantee for a graphGn that if we r-color
its edges arbitrarily, we always find a monochromatic subgraph
G∗

n ⊆ Gn, with G∗
n ∈ P?

(DR) How many edges guarantee for a graphGn that in almost all
r-edge-colorings, we find a monochromatic subgraph of G∗

n ⊆ Gn,
with G∗

n ∈ P?

(RD) How many edges guarantee for a random graph Gn almost
surely, that r-coloring its edges arbitrarily, we always find a mono-
chromatic subgraph of Gn, G∗

n ∈ P?

(RR) How many edges guarantee for a random graph Gn al-
most surely, that r-coloring its edges at random, almost all the
r-colorings contain a monochromatic G∗

n ∈ P?

Notation

We shall restrict our considerations mostly to ordinary graphs without loops
and multiple edges. Gn, Hn,. . . will denote graphs with n vertices, e(G), v(G)
and χ(G) will denote the number of edges, vertices in the graph G, and the
chromatic number, respectively.

A graph property P is a set of graphs and G ∈ P means that “G has
property P”. A graph property P is assumed to be closed under isomorphism,
i.e., invariant under the permutation of vertices. P is called monotone
(upward) if adding an edge to an Hn ∈ P, we get an H∗

n ∈ P.

Examples.

(1) For a fixed family L of sample graphs, PL denotes the family of graphs
containing some L ∈ L.

(2) PH denotes that G has a Hamiltonian cycle.

(3) Pχ≥k denotes that χ(G) ≥ k.

(4) PD denotes the property that G has diameter ≤ D
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(5) For a given function d = d(n) ≥ 0, Pdmax denotes the property that the
maximum degree is ≥ d(n).

(6) For a given function d = d(n) ≥ 0, Pdmin denotes the property that the
minimum degree is ≥ d(n).

(7) For a fixed constant α ∈ (0, 1], Pd(α) is the property that G has a
subgraph of size at least αn with minimal degree ≥ d(n).

(8) Pd−reg: G has a d-regular subgraph.

(9) P
∗
d−reg: G has a d-regular spanning subgraph.

(10) PNonP lanar: family of non-planar graphs.

— · —

Below we use a(n) ∼ b(n) if both a(n)
b(n)

and b(n)
a(n)

are bounded, a(n) ≈ b(n)

if a(n)
b(n)

→ 1. a(n) ≫ b(n) means that a(n)
b(n)

→ ∞. We shall use the notation

a(n) ≻ b(n) if for some constant c > 0, a(n) ≥ (1 + c)b(n).

— · —

Our investigation is strongly related to three basic topics in graph theory:
Extremal Graph Theory, Ramsey Theory, and Random Graphs. Here we list
some of the basic definitions and notations:

1. For a monotone graph property P, ext(n,P) is the maximum number
of edges a graph Gn 6∈ P can have. We call a graph Sn 6∈ P extremal
for P, if it has ext(n,P) edges.

2. Gn ∈ Gn,p means that Gn is a random graph with binomial distribution,
where the edge-probability is p = p(n).

3. ER(n,P) is the Erdős-Rényi weak threshold for property P, in the
uniform model (see Theorem 4.4).

4. The Ramsey number R(L1, . . . ,Lr) is the maximum integer q for which
Kq can be r-colored without any monochromatic L ∈ Li of color i, (for
any i ∈ [1, r].)

For related literature see, [59], [5], [50], [34], [25], [7], [2],
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2. Four levels of Deterministic and Random

Ramsey problems

We could consider two types of problems: the vertex-problems, where
we increase the number of vertices and suddenly some “phase-transition”
occurs, and the edge-problems, where for a given n we consider graphs on
n vertices and increase the number of edges. Ramsey theorem is the typical
case of the vertex-phase-transition: if we increase the number of vertices of
the graph Gn, then – after a while – either Gn or the complementary graph
Gn has the regarded property. For vertex-problems (and also for hypergraph
problems) our knowledge is very poor in the fields discussed here.

In this paper we are interested primarily in the edge-phase-transitions
connected to Ramsey properties: for fixed n we consider graphs Gn on n
vertices and gradually increase e(Gn) from 0 to

(
n
2

)
. Concerning a fixed

property P, – which now will be some “Ramsey Property” – for some number
of edges, f(n), we have a radical change in the structure of the graph, and we
are interested in finding this f(n). This f(n) will be called the threshold
function.

All the vertex problems will be discussed in a continuation of this paper.
The sharp difference between the edge-problems and the vertex problems is
that for the edge-problems it turned out that most of the problems reduce to
already known problems, while for vertex problems we have many deep and
interesting questions but very few answers.

In this paper all colorings are edge-colorings.

Random edge-colorings

There are several ways to define random colorings. To make the picture
simpler and clearer, we agree to use the “uniform edge-coloring”:

Definition 2.1 (Random edge-coloring). A random r-edge-coloring of a
graph Gn is a coloring when the edges are colored by 1, . . . , r and for each
edge we choose each color uniformly and independently. The subgraph of Gn

defined by the edges of color i will be denoted by G
[i]
n .
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2.1. Threshold functions

We shall always assume that a monotone property P is fixed: for non-
monotone properties most questions we regard here do not make sense. In
some other non-monotone cases the phenomena completely change. Two
typical non-monotone properties showing many difficulties are

(i) e(G) is even
and

(ii) G contains an L 6= Kp as an induced subgraph.
The four general problems we discuss here can be formulated as follows:
Beside fixing a monotone property P we also fix a color-number r. To

avoid trivialities or degenerate cases, we shall always assume that

(∗) in any considered r-coloring of Kn some K
[i]
n ∈ P.

Definition 2.2 (Deterministic-Deterministic). f r
DD(n,P) is the minimum Γ

for which for every r-coloring of every Gn of Γ := f r
DD(n,P) edges, at least

one of the “color graphs” G
[i]
n has property P.1

Observe that there is no randomness in this definition and f r
DD(n,P) is

uniquely defined for any fixed n. (The family of considered graphs is non-
empty, by (∗).)2

Clearly, f 1
DD(n,P) = ext(n,P).

The next definition is related to the usual uniform threshold function (the
binomial version is analogous). Here we use the uniform model, and we do
not ask about random graphs but about random colorings of deterministic
graphs.

Definition 2.3 (Deterministic-Random). We call f r
DR(n,P) a weak DR-

threshold function if
(a) for

f(n)

f r
DR(n,P)

→ ∞, as n→ ∞,

1Here we often think of small subgraphs: G
[i]
n ∈ P may mean that G

[i]
n contains a

triangle, or any other (small) subgraph. On the other hand, it may also mean that G
[i]
n is

hamiltonian: sometimes we thing about spanning subgraphs.
2We cannot forget (∗): for the property that “G is hamiltonian”, for two or more colours

this does not hold and therefore our functions are not defined. See e.g. Section 5.3.
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for every graph Gn with f(n) edges in almost every r-coloring at least one of

the color-graphs G
[i]
n has property P;

(b) on the other hand, if

f(n)

f r
DR(n,P)

→ 0,

then for every Gn of f(n) edges for almost every r-coloring of Gn we have

G
[i]
n 6∈ P, for i = 1, . . . , r.3

This threshold function is often a sharp threshold function, (see below)
moreover it is often uniquely determined, or determined up to a very small
additive error term.

The weak threshold functions are determined only up to a multiplicative
constant: if f(n) is a threshold function, then c(n) · f(n) is as well, for any
bounded function c(n) > 0 for which 1/c(n) is also bounded.

Definition 2.4 (Random-Deterministic). f r
RD(n,P) is a weak RD-threshold

function assuming that
(a) if

f(n)

f r
RD(n,P)

→ ∞, as n→ ∞,

then in almost every Gn of f(n) edges, in every r-coloring at least one of the

color graphs G
[i]
n (i = 1, . . . , r) has property P; while

(b) if
f(n)

f r
RD(n,P)

→ 0, as n→ ∞,

then almost every Gn of f(n) edges has an r-coloring where the color graphs

G
[i]
n 6∈ P for i = 1, . . . , r.

This area became a widely investigated research field. Among the first re-
lated results we should mention the paper of  Luczak. Ruciński and Voigt [39]
on monochromatic triangles and Füredi’s paper [32] on graphs in which ev-
ery 2-coloring contains a monochromatic C4. Many papers of Rödl, Ruciński
[45], [46], and others should also be mentioned here. For some more details
see Section 4.4.

3In the uniform model, when we speak of a graph of f edges, we assume that f is
integer-valued.
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Definition 2.5 (Random-Random). We call f r
RR(n,P) a weak RR-threshold

function if
(a)

f(n)

f r
RR(n,P)

→ ∞,

implies that for almost all graphs Gn with f(n) edges, for almost all r-

colorings of (at least) one of the color-graphs G
[i]
n is in P;

(b) on the other hand,

f(n)

f r
RR(n,P)

→ 0,

implies that for almost all Gn of f(n) edges, for almost all r-colorings, we

have G
[i]
n 6∈ P, for i = 1, . . . , r.

Sharp thresholds

The sharp threshold functions were defined already by Erdős and Rényi
[23]. We shall define gr

RD, gr
DR, gr

RR similarly to the threshold functions f r
RD,

f r
DR, f r

RR above:

Definition 2.6 (Sharp threshold, uniform). Let U, V ∈ {D,R}. We call
gr
UV(n,P) a sharp threshold function for “UV” if there exist two functions
g−UV and g+

UV such that

g−UV(n,P) = (1 − o(1))gr
UV(n,P)

and
g+
UV(n,P) = (1 + o(1))gr

UV(n,P)

and e(Gn) = g+
UV implies “YES” while e(Gn) = g−UV implies “NO” in the

corresponding question in §1.1 for r colors and P.

We discuss here questions related to the existence of “sharp threshold”
only in particular cases. There are many very interesting results on the
existence of sharp thresholds, see e.g., many results of Friedgut and others.
Here we refer the reader only to some papers related to our approach, like
Friedgut and Krivelevich, [30], Friedgut, Rödl, Ruciński and Tetali [31], and
also, for graph properties (more precisely, in a more general setting) to
Friedgut and Kalai [29], and Friedgut [27].
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For a very recent survey, see Friedgut, [28].
All the definitions for ordinary graphs can be extended to hypergraphs

and digraphs.

Basic Questions

Having these definitions, we are interested in the following problems:

1. When do these threshold functions exist? The weak threshold exists in
all the four cases. This will shortly be discussed in Section 2.2.

2. Which are the basic relations (inequalities) among our threshold func-
tions when the property P and r are fixed? (Mostly we fix r, but
occasionally r → ∞ slowly. See, e.g., the next section, Claim 3.1,
Theorems 4.1, 4.2, etc.)

3. How are the threshold functions related to other, more well known
graph theoretical functions? (E.g., connections to Ramsey or Turán
numbers, see Theorems 4.1, 4.11,. . . )

4. What are the order-relations between these functions?

5. Which graph-theoretical properties of P influence the threshold func-
tions, and how? See, e.g., Theorem 4.11.

Altogether we are interested here in at least 10 functions: the gr
DD(n,P),

the binomial and uniform versions of the other three thresholds, the extremal
function ext(n,P), (which coincides with g1

DD(n,P)) the binomial and uni-
form versions of the Erdős-Rényi threshold (which coincides with f 1

RR(n,P)
and also with f 1

RD(n,P),. . . )
The structure of this paper is as follows. In the next section we discuss

the existence of threshold functions, then we state some basic inequalities
relating the above threshold functions to each other. The results formulated
there will be proved in the subsequent sections. In Section 4 we shall turn
to the Local Properties P and show that gDD is the Turán-Ramsey function,
fDR is almost the Turán-extremal function, fRD is described by Rödl and
Ruciński, and fRR is essentially the same as the Erdős-Rényi threshold. The
non-trivial separation results will follow from these characterizations.

2.2. Existence of weak threshold functions

The function gDD(n,P) is deterministic: there nothing is needed to be proved.
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It is easy to prove the existence of fDR(n,P):
(a) if e(Gn) ≤ ext(n,P), then Gn 6∈ P may occur and this Gn, when

r-colored, has neither a monochromatic G
[i]
n ∈ P.

(b) If e(Gn) > r · ext(n,P) then at least one G
[i]
n will have at least

ext(n,P) edges and therefore will be in P.
A general result of Bollobás and Thomason [12] (see the appendix, p29)

implies the existence of threshold functions for monotone graph properties
as well. So it also implies the existence of the threshold functions f r

RD(n,P)
and f r

RR(n,P). Indeed,
(c) for any P we may define P

∗
r as the set of those graphs Gn for which in

any r-coloring Gn there is a monochromatic G
[i]
n ∈ P. P

∗
r is a monotone graph

property and therefore it has a threshold function f ∗
r . This is just what we

needed.
(d) The existence of the threshold function for fRR is also very simple:

If we fix a threshold function ER(n,P) for P and take a graph Gn with
o(ER(n,P)) edges, then even without coloring it, almost surely Gn 6∈ P, and
of course, coloring Gn in r colors, we get subgraphs that will be neither in
P. The other side of our assertion is trivial in the binomial model. There
we can refer to the fact that if Gn is a random graph with binomial edge
distribution, with edge probability p(n) and we randomly and independently

r-color its edges, then each G
[i]
n is a random graph with binomial distribution

and edge probability p(n)/r. Now the standard technique used to prove the
equivalence of the two models for monotone properties also shows that if
ω(n) → ∞ and we take a random graph Gn with ≥ ω(n)ER(n,P) edges,

and randomly r-color its edges, then each G
[i]
n ∈ P, almost surely.

We know much less about the existence of sharp thresholds.

3. Basic Inequalities

Now we know that the weak thresholds exist in all the four cases. Below,
having inequalities for weak thresholds, (since these functions are determined
only up to constants) we mean that one can normalize the function so that
the corresponding inequalities hold.4 To emphasize that we speak of sharp

4Inequalities where one can normalize the sides may often be problematic. Actually, one
standard way to normalize is to take that very number of edges for which the corresponding
probability is as close from below to 1

2 as possible, see e.g., Bollobás and Thomason,
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threshold (or in case of gDD about a uniquely defined number), we shall often
write g instead of f .

Claim 3.1. For every monotone graph property P, for every n if the corre-
sponding functions are defined and r ≥ 2

ext(n,P) ≤ f r
DR(n,P) ≤ gr

DD(n,P) ≤ r · ext(n,P) (1)

and
ER(n,P) ≤ f r

RR(n,P) ≤ f r
RD(n,P) ≤ r · ext(n,P). (2)

If ext(n,P) ≺
(

n
2

)
,5 then

ext(n,P) ≺ gr
DD(n,P). (3)

The proof of the claim is trivial from the definitions.
It also immediately follows from (1) and (2) that fRD = o(fRD) is im-

possible. More precisely, there is a constant c = c(r,P) for which

fDR ≥ c · fRD.

Perhaps the most interesting question we could not settle is whether there
is a real hierarchy, i.e, a given order-relation among the above functions. Here
this boils down to the following:

What can be said about the relation between f r
DR(n,P) and f r

RD(n,P),
resp. gDR(n,P) and gRD(n,P)?

In the last part of this paper we shall see that in some degenerate cases
gr
DR(n,P) < gr

RD(n,P), say if r = 2 and the property P is that “the graph is
connected”. However, we do not know if

Problem 3.2. Is gr
DR(n,P) ≺ gr

RD(n,P) possible
(a) for gr

DR(n,P) ≥ cn2?.
(b) for gr

DR(n,P) = o(n2)?

Problem 3.3. What do we know about the orders of magnitude of these
functions for general P?

We can answer this question only for some special classes of properties.

— · —

[12]. Then our inequalities hold. In many cases one can also overcome the problem
of normalization by forgetting about the functions and speak about the corresponding
families of graphs.

5i.e., ext(n, P) <
(
n

2

)
− cn2 for some constant c > 0,
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4. Local Properties

To simplify our notation, if PL is the graph property that

L ⊆ G for some L ∈ L,
then fUV(n,PL) will be abbreviated to fUV(n,L), and if L = {L}, then we
write fUV(n, L). If L is finite, then we speak of “local” properties. All other
properties will be called “global”.

First we restrict ourselves to “local” properties.
We should remark here that the extremal graph problems behave com-

pletely differently if L contains bipartite graphs from the cases when L con-
tains no bipartite L’s. This difference will be inherited by our problems
related to fDR, as well.

To formulate our results, put

t = t(L) = min
L∈L

χ(L). (4)

d1 := d1(L) := min
L∈L

max
F⊆L

e(F )

v(F )
, (5)

and

d := d(L) := min
L∈L

max
F⊆L

e(F ) − 1

v(F ) − 2
. (6)

Let q = q(r,L) be the minimum integer for which there exists an m = m(r,L)
such that if Kq(m, . . . ,m) is r-colored then it must contain a monochromatic
L ∈ L. By [40], if L contains a bipartite graph, then q = 2. On the other
hand, if t > 2 then q > t.

For general L we have

Theorem 4.1 (Non-degenerate Case). Let L be a finite family of graphs and
r ≥ 2. Then,

(a) for t = minL∈L χ(L) ≥ 3 we have the following relations:

r · ext(n,L) ≻ gr
DD(n,L), (7)

gr
DD(n,L) ≈ ext(n,Kq) =

(

1 − 1

q − 1

) (
n

2

)

+O(1), (8)

gr
DR(n,L) ≈ ext(n,L) =

(

1 − 1

t− 1

) (
n

2

)

+ o(n2), (9)

f r
RD(n,L) ∼ n2−(1/d), (10)

f r
RR(n,L) ∼ ER(n,L) ∼ n2−(1/d1) (11)
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(b) For t := minL∈L χ(L) ≥ 3 the above relations imply that

f r
RR(n,L) ≪ f r

RD(n,L) ≪ gr
DR(n,L) ≺ gr

DD(n,L). (12)

Theorem 4.2 (Degenerate case). Let L be a finite family of graphs and
r ≥ 2. For the sake of simplicity, in (15) below we exclude the forests from
L. Then,

(c) for t = minL∈L χ(L) = 2 we have the following relations:

gr
DD(n,L) ≈ r · ext(n,L) = o(n2), (13)

gr
DR(n,L) ≈ ext(n,L), (14)

f r
RD(n,L) ∼ n2−(1/d), (15)

f r
RR(n,L) ∼ ER(n,L) ∼ n2−(1/d1) (16)

(d) Further, the above relations imply that

f r
RR(n,L) ≪ f r

RD(n,L) < gr
DR(n,L) ≺ gr

DD(n,L). (17)

To prove this, we shall need the following two theorems

Theorem 4.3 (Erdős-Stone-Simonovits [24], [17], [49]). Given a (finite or
infinite) family L of forbidden graphs, with

t = t(L) = min
L∈L

χ(L). (18)

Then

ext(n,L) = ext(n,Kt) + o(n2) =

(

1 − 1

t− 1

) (
n

2

)

+ o(n2). (19)

6

Theorem 4.4 (Erdős-Rényi, [23]). Let L be a finite family of graphs and

d1(L) = min
L∈L

max
F⊆L

e(F )
v(F )

. (20)

(i) The binomial threshold function is 1
n1/d1(L) : for p = ω(n) · 1

n1/d1(L) , if
Gn ∈ Gn,p, then

lim
n→∞

Prob(L ⊆ Gn for some L ∈ L) =

{
1 if ω(n) → ∞;
0 if ω(n) → 0;

6Mostly this is used for one graph L but we need it for finite graph families L.
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(ii) In the uniform model the threshold function is

ER(n,L) := n2−1/d1(L). (21)

For infinite families we have to be careful: we cannot simply take the
infimum of the exponents. If, e.g., L is the family of all graphs with minimum
degree 4, then the Erdős-Rényi threshold will be at least n3/2 for each L ∈ L,
while any random or non-random graph with Γ := 4n will contain at least
one of them: the threshold for L will be linear.

4.1. The Deterministic-Deterministic case

Though this section is related to the local properties, yet in many cases the
proofs work for more general classes of P.

To describe gr
DD we distinguish two cases:

(a) ext(n,P) = o(n2),
(b) Properties where P = PL with t ≥ 3, where L may be infinite as

well.
One could think that if ext(n,P) ≥ cn2, then

gr
DD(n,P) ≺ r · ext(n,P). (22)

A counterexample to this is given in Claim 5.6.

Problem 4.5. Are there natural conditions ensuring (22)?

For the important particular case P = PL (see Example (1)) in Section
1.1) Theorems 4.6 and 4.1 completely answer this question.

We start with (a).

Theorem 4.6. If ext(n,P) = o(n2), then, for every fixed r,

gr
DD(n,P) ≈ r · ext(n,P). (23)

Obviously, on the one hand, (23) cannot hold if ext(n,P) > c
(

n
2

)
and

r > 1/c. On the other hand, there are also many examples where for any
fixed r, we have the even stronger

gr
DD(n,P) = r · ext(n,P) for infinitely many n. (24)
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(Observe that here we have “=”, not only “≈”.)
First we prove Theorem 4.6. We shall need the following assertion.7

Lemma 4.7. If Gn is an arbitrary graph with e(Gn) = o(n2) and π is a
random permutation of the vertices, then, almost surely,

|E(Gn) ∩ E(π(Gn))| = o(e(Gn)), (25)

where π(Gn) is the image of Gn under the vertex permutation. 8

We leave the proof of the lemma to the reader.

Proof of Theorem 4.6 (Outline). Fix an extremal graph Sn (for P). By
the assumption, e(Sn) = o(n2). By Lemma 4.7 we can put on n vertices r
copies of Sn (permuting their vertices in an appropriate way) so that any two
of them intersect in at most o(e(Sn)) edges. Deleting the edges in the

(
r
2

)

intersections, we get an r-colored Gn with (r − o(1)) ext(n,L) edges, where

the color-graphs G
[i]
n 6∈ P. This proves gDD(n,P) ≥ (r − o(1)) ext(n,P). The

upper bound (contained in (1)) is trivial.

This implies (13) in Theorem 4.2.

The case when P = PL.

The answer to the DD-problem in the case P = PL (r ≥ 2) is a special case
of the Ramsey-Turán problem to determine RT∗(n,L, . . . ,L, | m), where
this function is defined below and its asymptotic value is given by Theorem
4.8. For a more detailed description of the situation, see [51].

Below we reduce the DD-problem for this case (apart from some error-
term) to Theorem 4.8.

Ramsey-Turán problems. Given r families of sample graphs L1, . . . ,Lr

and an integer m. Find the maximum number of edges a graph Gn on n
vertices can have under the condition that it can be r-colored so that the
ith color contains no L ∈ Li for i = 1, . . . , r and the independence num-
ber α(Gn) ≤ m. Denote by RT∗(n,L1, . . . ,Lr | m) this maximum. Put
RT(n,L1, . . . ,Lr) := RT∗(n,L1, . . . ,Lr, n).

7Based on a paper of Chung and Graham it seems to us that much earlier Joel Spencer
arrived to exactly this result, see [55].

8If Gn ∩ π(Gn) is the graph on the common vertex set having the common edges, then
we could also write that e(Gn ∩ π(Gn)) = o(e(Gn)).
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Generally we do not know if such graphs exist at all. The special case
RT(n,L1 . . . ,Lr) means that we have no restriction on the independence
number.9

Obviously gr
DD(n,L) = RT(n,

r
︷ ︸︸ ︷

L, . . . ,L) : they are identical, just the
notation is different.

This Ramsey-Turán problem (and therefore the problem of determining
gr
DD(n,P)) can be solved as follows.

Theorem 4.8 (T. Sós [52], Burr-Erdős-Lovász [14]). Let q := q(L1, . . . ,Lr)
be the smallest integer such that if m is sufficiently large and we r-edge-color
the complete q-partite graph Kq(m, . . . ,m), then there will be an i ≤ r for
which we shall have a monochromatic L ∈ Li in the ith color. Then10

RT(n,L1, . . . ,Lr) = ext(n,Kq) + o(n2). (26)

Thus gr
DD(n,L) = ext(n,Kq) + o(n2) which proves (8) of Theorem 4.1

Theorem 4.8 is an almost immediate consequence of the Erdős-Stone theorem
[26]. For the details see [19] or [51]. Also, it can easily be obtained from the
equivalence principle described in the next section.

One could ask: what if we have an arbitrary P? (Not only a PL!) Can we
reduce the problem of gDD(n,P) to some kind of a Ramsey-Turán problem?
Define RT(n,P1, . . . ,Pr) as the maximum number of edges a graph Gn can
have under the condition that it can be r-colored so that the color-graphs
G

[i]
n 6∈ Pi (i = 1, . . . , r). Again, gDD(n,P) = RT(P, . . . ,P).

However, often these quantities do not exist: Condition (∗) on p5 is just
to exclude the trivial exceptions in such cases.

4.2. Detour: An equivalence principle

Each Ramsey-Turán problem of the simpler type (i.e., when we do not have
any upper bound on the independence number α(Gn)) is equivalent to an
ordinary Turán problem:

Given the color-number r and the (finite or infinite) families
L1, . . . ,Lr of forbidden graphs, define M as the family of vertex-

9Typically we are interested in estimating RT
∗(n, L1, . . . , Lr, | o(n)) see [51], but here

we may restrict our attention to RT(n, L1, . . . , Lr). (See also Section 4.2.)
10We formulated their result slightly more generally.
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minimal11 graphs M such that in any r-coloring of M , there is a
monochromatic L ∈ Li, of the ith color, for some i ∈ [1, n]. Then

RT(n,L1, . . . ,Lr) = ext(n,M). (27)

This trivial observation implies that many of the results (error terms,
structural stability of the extremal graphs. . . ) that we know for ordinary
extremal graph problems, automatically generalize to this simpler type of
Ramsey-Turán problems.

Remark 4.9. Unfortunately, no such theorem exists for the general Ramsey-
Turán problems, where we consider a sequence (Gn) of graphs and beside the
coloring condition also assume that α(Gn) = o(n). To see this we quote the
surprising Szemerédi-Bollobás-Erdős theorem, [58], [10] according to which

RT∗(n,K4 | o(n)) =
1

8
n2 + o(n2).

Since

ext(n,L) =

(

1 − 1

p

) (
n

2

)

+ o(n2)

for any L, for some integer p, therefore the positive extremal densities are
at least 1

4
, while the density in the above mentioned Ramsey-Turán problem

(with the “extra condition” α(Gn) = o(n)) is 1
8
. So it cannot be equivalent

to any ordinary extremal graph problem.

See also Erdős, Hajnal, T. Sós and Szemerédi [20] and Bollobás [9] for
related topics, or [51] for a survey on Ramsey-Turán type problems, Sudakov
[57] for some newer results in the field.

4.3. The Deterministic-Random case

Almost Local Properties, DR

For Local Properties, for DR, we always have a sharp threshold. The exis-
tence of the sharp threshold was stated in Theorem 4.1, by stating f r

DR(n,L) ≈
ext(n,L), and will be generalized in the next theorem. We shall go slightly
beyond properties PL.

11This minimality can be omitted, but then we may get infinite families M in cases
where otherwise we would get a finite M.
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Definition 4.10. Fix r. Let us call P log-concentrated if (a) any edge-
minimal Gν ∈ P has at most 1

2
logr ext(ν,P) edges, and (b) ext(ν,P) → ∞.

Here (b) is to exclude a few trivial cases. (a) says that any Gν ∈ P

contains a small Gh ∈ P. 1
2

could be replaced by any γ < 1.

Theorem 4.11. If P is log-concentrated then the sharp threshold gr
DR(n,P)

exists and
gr
DR(n,P) ≈ ext(n,P).

Proof. We know that f r
DR(n,P) ≥ ext(n,P). We need only that

f r
DR(n,P) < (1 + ε) ext(n,P). (28)

Fix an ε > 0 and take a Gn with E := (1 + ε) ext(n,P) edges. It contains a
subgraph H1 ∈ P with at most

φ = φ(n) =
1

2
logr ext(n,P)

edges. Delete its edges from Gn and take in the remaining G′ an H2 of at
most φ(n) edges. Iterate this in µ := ⌈ε ext(n,P)/φ(n)⌉ steps. This way we
get µ edge-disjoint P-graphs. The probability that for a random r-coloring
none of them will be monochromatic is

≤ (1 − r−φ)µ ≈ exp
(

− µ

rφ

)

≈ exp

(

− εE

φ
√
E

)

→ 0 if n→ ∞.

This proves (28).

If L is finite and P := PL, then P is trivially log-concentrated. This
proves (9) of Theorem 4.1 and 14 of Theorem 4.2. In this case we have an
even sharper estimate:

Theorem 4.12. Let L be finite, r be fixed, and let ω(n) → ∞ be arbitrary.
If

e(Gn) > ext(n,L) + ω(n),

then with probability tending to 1, a random r-coloring of Gn contains a
monochromatic copy of some L ∈ L.
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Loosely we could say that for any ω(n) → ∞

0 ≤ gr
DR(n,L) − ext(n,L) ≤ ω(n) if n > n0(L, ω).

However, this is not quite correct, since g was defined only up to an (1+o(1))
factor. The proof is easy and roughly the same as the proof of Theorem 4.11.

The finiteness of L cannot be dropped, see Claim 5.1.
There are cases when this is sharp: we need ω(n) → ∞. In some other

cases ω(n) can be dropped, see Theorem 4.15.

Remark 4.13. The phenomenon described in the above theorem is actually
the following: if L is finite, then determining f r

DR(n,L) or gr
DR(n,L) is

the same as determining, when will Gn have ψ(n) edge-disjoint copies of
subgraphs from L with ψ(n) → ∞.

Remark 4.14. Theorem 4.12 can easily be extended to digraphs, multi-
graphs or hypergraphs. Observe the very weak dependence on r.

4.3.1. Weak dependence on the number of colors

One could ask,

When do the threshold functions depend on the number of colors
and when are they (almost) independent?

Speaking of the DD case, we restrict ourselves to the simplest case of
gDD(n, L, . . . , L) and assume that χ(L) ≥ 3. This function “strongly” de-
pends on the number of colors, since the corresponding Ramsey numbers
strictly increase when we increase the number of colors and gDD is around
the corresponding extremal function ext(n,KR(...)), which increases as R in-
creases. (For the bipartite case this dependence is even stronger, by Theo-
rem 4.6.)

Contrary to this, the dependence on r is “negligible” in the DR case.

4.3.2. Eliminating the error term?

One could ask if ω(n) is really needed in Theorem 4.12. There are cases
where it is needed, in some others gDR(n,L) = ext(n,L) for n > n0(L). One
of the the simplest cases when we need ω(n) → ∞ is if P = {Gn : P3 ⊆ Gn},
and more generally, P = {Gn : Pk ⊆ Gn}.
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Below we shall show that for L := {Kp} the additive error term ω(n)
can be discarded. More generally, let us call an edge e ∈ E(L) “critical”
if χ(L − e) < χ(L). One general phenomenon in extremal graph theory is
that for sample graphs L with critical edges the things are simpler: almost
everything is the same as for the complete graphs, at least if n is sufficiently
large. Among others, for t = χ(L),

ext(n, L) = ext(n,Kt) if n > n0(L).

We shall prove the following, general result.

Theorem 4.15 (Critical edge). Let L be a fixed t-chromatic graph (t ≥ 3)
with an edge e for which χ(L−e) < t. Then, for any fixed r and n > n0(L, r),
we have

gr
DR(n, L) = ext(n,Kt) = ext(n, L).

Proof of Theorem 4.15. It is enough to ensure ℓ copies of L having a
common edge e and otherwise being edge-disjoint. If ℓ → ∞, then these
copies will ensure (almost surely) a monochromatic L.

Let us consider T (tm, t, 1): the graph obtained from Kt−1(m, . . . ,m) by
adding an edge to it. A theorem of Simonovits [49] (generalizing some results
of Erdős) asserts that

ext(n, T (tm, t, 1)) = ext(n,Kt) if n > n0(L).

So for e(Gn) > ext(n,Kt) we shall have a T (tm, t, 1) for m > ℓ · v(L),
which contains ℓ copies of L having one common edge e0 but otherwise being
edge-disjoint. Any r-coloring of this T (tm, t, 1) contains a monochromatic L
(namely, of the color of e0) with probability tending to 1, as n → ∞ (and
therefore m→ ∞).

We close this part with the following

Problem 4.16. Does there exist the sharp threshold function f r
DR(n,P) for

every monotone P?

4.4. Random-Deterministic case

Here we are interested in the problem: when, at which edge level will a
random graph (almost surely) imply some Ramsey property, say have – for
all r-edge-colorings – a monochromatic subgraph L?
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We have to emphasize that there are very many related, deep results in
this field. It would go far beyond the scope of this paper even to attempt to
describe them. Also, there are very many related open problems. One of the
places to look for such results is the book of Janson,  Luczak and Ruciński
[35]. Here we mention a few related papers: [39], [46], [45].

We formulate here just one important result:

Theorem 4.17 (Rödl-Ruciński [45]). Fix a color-number r > 2. Assume
that L is not a star-forest, or if r = 2, then L is not the union of a star-
forest and paths P3. Define12

d := d(L) := max
M⊆L

e(M) − 1

v(M) − 2
. (29)

Then there exist two constants, c > 0 and C > 0 such that if p > C/ d
√
n,

then for almost all Gn,p every r-coloring of Gn,p contains a monochromatic
L. If, on the other hand, p ≤ c/ d

√
n then for almost all Gn,p there exists an

r-coloring13 of Gn,p not containing monochromatic L’s.

This means that if L contains no star-forests or path, then f r
RD(n,L) ∼

n2− 1
d , which gives (10) of Theorem 4.1 and (15) of Theorem 4.2.
It is worth noticing that here we have something between the weak and

sharp thresholds: multiplying f by a large but fixed constant we get proba-
bility 1, by a small constant, we get probability 0: (not ε and 1 − ε).

We formulated this result for the binomial model since the original version
was also formulated for that one. Here we shall prove a much weaker, almost
trivial assertion.

Claim 4.18. For every L with minL∈L χ(L) ≥ 3 there is a cL such that

f r
RD(n,L) < n2−cL.

This proves ext(n,L) ≫ f r
RD(n,L) implicitly stated in Theorem 4.1.14

12as in (6)
13Observe that the “threshold” does not really depend on r. The larger is r, the stronger

the upper and the weaker the lower bounds are. Therefore the strongest form of the lower
bound is that there is a c > 0 for which, if p < c/ d

√
n then even in the two-colorings the

probability of monochromatic L’s tends to 0.
14Actually, here the difference between a single L and a family L disappears. Fix any

L ∈ L. If we know Claim 4.18 for an L ∈ L then we know it for the whole L. To get the
inequality ext(n,L) ≫ f r

RD
(n,L), we may pick an L ∈ L of minimum chromatic number.

Then by Theorem 4.3, we know that if χ(L) ≥ 3, then ext(n,L) ≈ ext(n, L). This implies
that if we know this inequality for one L, then we know it for graph families as well.
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Proof of Claim 4.18. By Ramsey theorem, we know that there exists
an integer R = R(r) such that if we edge-color KR in r colors, it always
contains a monochromatic copy of this L. By the Erdős–Rényi Theorem (see
Theorem 4.4) if Gn is a random graph (either with uniform or with binomial
distribution), and if

e(Gn)

n2− 2
R−1

→ ∞,

then the probability Prob(KR ⊆ Gn) → 1. This proves the claim.

The meaning of the Rödl-Ruciński theorem is that if M ⊆ L is the “dens-
est” subgraph of L,15 then the threshold f r

RD(n, L) is the same as the “mo-
ment function” in Proposition 6.1 (in the Appendix): that edge-number Γ
where the expected number of copies of M in Gn, N(M ⊆ G) = c · Γ.16 17

Problem 4.19. Can one prove a more general theorem on the order of mag-
nitude of f r

RD(n,P), for general P
18?

4.5. The Random-Random case

The problem of f r
RR reduces to the famous Erdős-Rényi threshold result 19

(both for the binomial and the uniform models).
Since a random r coloring of a random graph Gn ∈ Gn,p is a collection of

r graphs G
[i]
n ∈ Gn,p/r, one easily sees the following

Theorem 4.20. For any fixed r > 0, using d1 defined in (5),

f r
RR(n,L) ∼ n

2− 1
d1(L) as n→ ∞.

Since d1(L) < d(L), this implies that f r
RD(n,L) ≫ f r

RR(n,L), proving
the corresponding statement of Theorems 4.1 and 4.2.

15Here the “densest” is the one where e(M)−1
v(M)−2 attains its maximum for M ⊆ L.

16While p or Γ are small, N(M ⊆ G) ≤ Γ but as Γ increases, N(M ⊆ G) becomes much
larger, and as soon as we have many M ⊆ Gn, each of them can easily be extended into
many L ⊆ Gn.

17We would like to thank A. Ruciński for turning our attention to [31] and for his
valuable remarks on this topics.

18Observe that this is a special case of the earlier Problem 3.3
19originally formulated only for balanced graphs, where “balanced” means that if F ⊆ L,

then e(F )
v(F ) ≤ e(L)

v(L) . The general case can be found, e.g., in Bollobás [6].
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Claim 4.21. If P is monotone and there is a sharp threshold ER(n,P), then
gr
RR(n,P) also exists (the threshold is sharp) and

gr
RR(n,P) ≈ r ·ER(n,P).

4.6. Remarks on Bipartite Graphs

Our problems for some cases are more difficult for bipartite graphs because
we do not know enough about the corresponding extremal problems. The
bipartite extremal problems are difficult (a) partly because we do not have
good enough upper bounds, (b) partly because in most cases where we have
promising upper bounds, the lower bounds are missing and seem to be hope-
less.

Direct constructions

As to the function gr
DD(n,L), we used random methods to prove the related

results, e.g., Lemma 4.7. The surprising part is that in some cases Theorem
4.6 immediately follows from some old results connected to the so called
polarized partition relations, see e.g. Chvátal [15], Berge and Simonovits [3],
Sterboul [56].

There are some cases where explicit constructions also work. This is
formulated in the Claim and Remark below.

Claim 4.22. It is possible to color the edges of a Kn by ≈ √
n colors so that

each color class has approximately the same number of edges, ≈ 1
2
n
√
n, and

no monochromatic C4 occurs (except in one color class).

Sketch of the proof. It is enough to consider the case n = p2 where p
is a prime. The vertices of Kn are the pairs (a, b) taken mod p and the color
of the edge joining (a, b) to (a′, b′) is i = aa′ + bb′ (mod p). Then one can

check that e(G
[i]
n ) ≈ 1

2
n
√
n and C4 6⊆ G

[i]
n , for each i 6= 0.

Remark 4.23. This idea extends to several sporadic cases, e.g., combining
a new result of Füredi [33] with a generalization of the Brown construction
[13] we can prove by an explicit construction that for every r ≤ (1

2
− ε) 3

√
n,

the upper bound in Theorem 4.6 is (asymptotically) sharp for L = K(3, 3)
as well.
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For χ(L) ≥ 3 we know that f r
DR(n,L) ≥

⌊
n2

4

⌋

, while f r
RD(n,L) =

O(n2−c). This separates the order of magnitude of f r
DR(n,L) and f 2

RD(n,L).
For χ(L) = 2 we do not know the order of magnitude of ext(n,L), we have
only that f r

RD(n,L) = o(f r
DR(n,L)) cannot happen.

However, we have

Conjecture 4.24. For the bipartite case, if L is not a forest, then

f r
DR(n, L) ≫ f r

RD(n, L). (30)

In several “sporadic” cases, we know (30). E.g., we know it for the fol-
lowing cases.

1. For L = C2k, we can separate ext(n, L) and the moment function
Γ(n, L, c), using results of Margulis [42], Lubotzky-Phillips-Sarnak [38]
or of Lazebnik-Ustimenko-Woldar [37] 20.

2. In all the cases when L is finite and the extremal number is obtained by
some algebraic construction: for Ka,b if a = 2, 3, for Ka,b if b > (a−1)!,

3. For the cube graph Q8, where the conjectured lower bound is still miss-
ing but we know at least, that

ext(n,Q8) ≥ ext(n, C4) ≈ cn3/2 ≫ fRD(n,Q8) ∼ n2− 6
11 ,

proving (30). (At the end we used Theorem 4.17.)

We know (30) for many further particular cases as well.
We do not know (30) in those cases, when the known best lower bound for

ext(n,L) is obtained by random methods, (mostly from the “first moment
method” of Erdős, see [16], etc. or Simonovits [48]). Just the contrary, since
in these cases, by Theorem 4.17 the “first moment method” yields exactly
that very bound (i.e., the threshold functions in Proposition 6.1) that is given
by Theorem 4.17 for fRD and since we conjecture that the bound of the first
moment method is far from the truth, we are confident that (30) holds.

However, we have no way to approach the general case.

20In several places the first author misstated the corresponding result, due to a misprint,
writing C2k instead of Ck.
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5. Global Properties

Below we turn our attention to “global” properties. Many of the thresholds
below will be “sharp” thresholds.

5.1. Separating ext(n,P) and f r
DR

(n,P)

(a) Let us consider the case when P means that G contains a cycle. Clearly,
ext(n, C) = n−1, where C is the set of all cycles. Thus, gr

DD(n, C) = r(n−1).
(b) Until now we had examples showing that ext(n,P) ≈ gDR(n,P).

Below we give two examples where they are relatively far.

Theorem 5.1 (All cycles). Let C be the family of all cycles. Then, for r ≥ 2,

f r
DR(n, C) ≥

(
6

5
− o(1)

)

ext(n, C) ≥ 1.2(n− 1) − o(n). (31)

The more colors we use the easier the proof is. So we shall give two
proofs: in the second one we shall assume that r ≥ 3, but the first one works
for r = 2 as well.

Actually, we can prove the following sharper theorem. Denote by g(G)
the girth of G.

Theorem 5.2 (High girth). Fix an integer d ≥ 3 and c > 0. Let Gm be an
arbitrary graph with maximum degree at most d and g(Gm) > c logd−1m. Let

ℓ >
(1/c) + 1

logd−1 r
. (32)

If we replace each edge of Gm with a path Pℓ+1 (i.e. with a path of ℓ edges),
then we get a graph Gn with n = m + (ℓ − 1)e(Gm) vertices such that if we
r-color its edges, then almost surely, as m→ ∞ the resulting graph will have
no monochromatic cycles.

Proof of Theorem 5.1 from Theorem 5.2. We choose r = 2, and
d = 3 and we consider graphs Gm in which almost all vertices are of degree
3, with girth ≥ log3m = log2m/ log2 3. (c > 0.63) By Theorem 5.2, ℓ = 2
works. So we get a Gn with n = 5/2m and e(Gn) ≈ 3m = 6m

5
, proving

Theorem 5.1.
To get the appropriate graphs, we use the construction of Biggs and

Hoare, [4], as shown by Wiess [60] yields 3-regular graphs Gm with g(Gm) ≥
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4
3

log2 m, proving Theorem 5.1. If we do not wish to use algebraic con-
structions, the Erdős-Rényi theory can be used: for d = 3, using the edge-
deletion method for random graphs we get a Gm with e(Gm) ≈ 3

2
m, and

g(Gn) ≥ log3m. The above argument, used with ℓ = 2, also proves Theorem
5.1.

(The second proof is postponed after the proof of Theorem 5.2.)
Proof of Theorem 5.2. Consider a Gm satisfying the conditions of the

theorem. Construct Gn from it, as described above. Then, r-coloring the
edges of Gn, each hanging path remains monochromatic with probability ≤
1/r(ℓ−1). What is more important, each fixed path Pg of Gm corresponds to a
path Pℓg ⊆ Gn and will be monochromatic with probability r−ℓg+1. (Here we
also took into account that we have r possible colors for the monochromatic
path.)

Let g = g(Gm). Since Gm contains at most 1
2
md(d− 1)g paths Pg+1, the

probability that in the colored Gn we have a monochromatic path of length
g · ℓ can be estimated by

md

2
· (d− 1)g−1

rgℓ−1
< mr

(
d− 1

rℓ

)g

= o(1). (33)

Indeed, we know that (d− 1)g > mc. Put γ = ℓ · logd−1 r. By rℓ = (d− 1)γ,
we have

mr

(
d− 1

rℓ

)g

= mr

(
1

(d− 1)γ−1

)g

=
mr

((d− 1)c logd−1 m)γ−1
=

mr

(mc)γ−1
= o(1)

if c(γ−1) > 1, i.e., γ > 1+ 1
c
. Since γ = ℓ · logd−1 r, we get that if (32) holds,

then (33) also holds. This completes our proof.

For the next proof we shall need

Theorem 5.3 (Erdős–Rényi, Theorem 4c of [23]). if

lim
n→∞

e(Gn)

n
= c <

1

2
,

then for any function ωn → ∞ the (induced) tree-components of Gn cover
almost surely at least n− ωn vertices.

This theorem can be extended to the binomial model as well.
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2nd proof of Theorem 5.1, using random graphs. One could pro-
duce graphs satisfying the conditions of Theorem 5.2, using the Erdős-Rényi
uniform graph model or using the binomial model. One technical problem
to fight would be that vertices of degrees larger than 3 could occur. So we
shall use the binomial model and some of their results proved originally for
the uniform model.

Consider a binomially distributed random graph Gn with edge probability
p = λ

n
, for any fixed λ < 3. The expected number of cycles of length ℓ is

1
ℓ
(pn)ℓ. So the expected number of cycles of length smaller than h is

∑

ℓ<h

1

ℓ
(pn)ℓ <

2

h
(pn)h.

So we may color o(n) edges GREY and the remaining edges BLACK and then
the girth of the BLACK graph will be at least h = logλ n. Now we denote
the BLACK part of Gn by GB

n and color the edges of Gn in RED-BLUE-
GREEN uniformly, (thus also 3-coloring the edges of GB

n uniformly). The
6 graphs defined by the three colors will be binomially distributed random
graphs with edge-probability λ

3n
. If they were from the uniform distribution,

we could directly apply Theorem 5.3 with ωn = log log n. The 3-coloring
ruins all the cycles longer than log log n and the deletion of GREY edges
ruins all the cycles shorter than log3 n: GB

n shows that

f 3
DR(n, C) ≥

(
3

2
− o(n)

)

n.

For C we know that ext(n, C) = n− 1 and gr
DD(n, C) = r · (n− 1) for any

fixed r. We do not know the value of fDR.

Problem 5.4. Is it true that f 2
DR(n, C) ≈ 3

2
n? If not, can one prove at least,

that
f 2
DR(n, C) < (2 − c)n? (34)

Why could one believe this? Because whenever we have a graphGn having
vertices of degree 2, we may replace the corresponding induced path by one
edge and the probability that in the new graph (in a random 2-coloring) all
the cycles will be ≥ 2-colored increases.
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Problem 5.5. Take any of the constructions on regular graphs with bounded
degree and high girth, say, the 4-regular Margulis graph described in [41], or
some Ramanujan graphs with bounded degrees, see e.g., [38] or [42]. Can one
prove that a random edge-coloring with 2 colors (or with r colors for some
larger but fixed r) almost surely will have no monochromatic cycles?

Next we consider the max-degree problem, but only for the case when
dmax(n)/ logn→ ∞. For gDD the problem is trivial.

Claim 5.6 (The max-degree case). Fix an integer r and a function, d = d(n)
for which d(n)/ logn → ∞. Let Gn ∈ Pdmax mean that the maximum degree
in Gn is at least d(n). Then

lim
n→∞

f r
DR(n,Pdmax)

ext(n,Pdmax)
= lim

n→∞

gr
DD(n,Pdmax)

ext(n,Pdmax)
= r.

Proof. Clearly, ext(n,Pdmax) = 1
2
nd(n) + O(1) and, by (1), it is enough

to prove f r
DR(n,Pdmax) ≥ (r − o(1)) · ext(n,Pdmax). Take an arbitrary ∆-

regular graph Gn for ∆ = ⌈(1 − ε)rd(n)⌉. 21 There exists a c = c(ε) > 0
for which, if we color the edges of a Gn in r colors, randomly, uniformly,
then the probability that for a fixed vertex x of original degree ∆ ≫ logn
in the ith color has degree δi(x) ≥ (1 + ε)∆

r
is smaller than 2−c∆ = o( 1

n
). So

the maximum degree in each color will be, almost surely, smaller than d(n).
Therefore

fDR(n,Pdmax) ≥
1

2
∆n ≥ 1

2
(1− ε)rd(n)n ≥ (1− ε)r · ext(n,Pdmax)−O(1).

5.2. Connectedness

Let PConn be the graph property that G is connected.

Claim 5.7.
g2
DD(n,PConn) =

(
n
2

)
= g2

RD(n,PConn).
g2
DR(n,PConn) =

(
n
2

)
− (n− 2).

gr
RR(n,PConn) =

1

2
r n log n+O(n log logn)

21If n is odd, we allow one vertex of degree ∆ − 1.
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We mention that the sharp threshold is a corollary of the corresponding
Erdős-Rényi theorem.

Remark 5.8. Observe that until now we saw only properties P where we
had g2

DR(n,P) > g2
RD(n,P) but now, for P = PConn we have the opposite

inequality.

One can go somewhat further in analysing this situation: if (Gn) is a
sequence of connected graphs and Gn has a vertex x for which the edge-
connectivity η(Gn − x) → ∞, then almost all 2-colorings of Gn contain a
connected, monochromatic spanning subgraph.

5.3. Hamiltonicity and 1-factor

Let P be any one of the following properties:
(a) Gn has a Hamilton cycle, or that
(b) Gn has a Hamilton path, or that
(c) Gn contains a 1-factor. In the last case we shall restrict ourselves to

even values of n.
Trivially, for these properties Condition (∗) on p5 does not hold.
However, the corresponding functions gr

DR(n,P) exist:

Claim 5.9. If ω(n) → ∞ and e(Gn) =
(

n−1
2

)
+ ω(n), then almost all ran-

dom r-colorings of Gn contain a monochromatic Hamilton cycle. Hence
g2
DR(n,PH) =

(
n−1

2

)
.22

Claim 5.10. If e(Gn) =
(

n−1
2

)
+ 1, then almost all random r-colorings of Gn

contain a monochromatic Hamilton path and (for n even) a 1-factor.

Claim 5.11. gr
RR(n,PH) = 1

2
r n log n. and the same holds for the 1-factor.

Claim 5.12 (Stopping Rule). Fix a function ω(n) → ∞ and use the stop-
ping rule model, stopping when degmin(Gn) ≥ ω(n). Then almost all the
r-colorings of Gn contain monochromatic Hamiltonian cycles, for fixed num-
ber r of colors.

To prove the Claim, one can reduce it to the uncolored case: to results
proved by Ajtai, Komlós, and Szemerédi [36, 1], and Bollobás [8]. (The first
breakthrough on the Hamiltonicity of random graphs is due to Pósa, [43].)

One would get very similar results for the Hamiltonian path.

22Here one has to be slightly careful: as we have defined the sharp threshold, any

function n
2

2 + o(n2) would do.
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Problem 5.13. Can we prove some reasonable inequality, comparing f r
RD(n,P)

and f r
RR(n,P) for general (monotone) P?

6. Appendix

We often need/use the “moment” function: given an L and a constant
c ∈ (0, 1), p = pM = pM(n, L, c) will be that very probability for which the
expected number of copies of L ⊆ Gn ∈ Gn,p is cp

(
n
2

)
. One can easily see

that,

Proposition 6.1. For every graph L,

p(n, L, c) =
c′

n
v(L)−2
e(L)−1

. (35)

and the corresponding uniform edge-number is

Γ(n, L, c) = c′′ · n2−
v(L)−2
e(L)−1 , (36)

where c′ > 0, c” > 0 depend only on L and c.

— · —

The existence of a threshold function for some random event A(λ),
– depending on some parameter λ – means (at least in our cases) that for
any ε > 0, if for some λ0 and λ1 the probability

Prob(A(λ0)) ≥ ε and Prob(A(λ1)) > 1 − ε.

then
λ1

λ0

= Oε(1).

Bollobás and Thomason proved a general existence theorem [12] on the
existence of threshold functions, for monotone properties.

Theorem 6.2 (Bollobás and Thomason). Every non-trivial monotone in-
creasing property of subsets of sets has a threshold function.
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[43] L. Pósa, Hamiltonian circuits in random graphs, Discrete Math. 14(4) (1976),
359–364.
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