APPROXIMATION OF RADII AND NORM-MAXIMA:
NO NEED TO RANDOMIZE
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Abstract: For a conver body K in euclidean n-
space E" let m(K) denote the circumradius, the
diameter, the inradius or the width of K, or the
mazimum of the lo norm over K. Then for each
c1 > 1 there is a deterministic polynomial-time
algorithm A that computes, for each K C R
given by a well-guaranteed optimization oracle, an
approzimation mA(K) of m(K) such that

mA(K) <m(K) < e /lognmA(K).

This result is essentially best-possible even if ran-
domization is permitted since there exists a pos-
itive constant co such that if a randomized poly-
nomial-time algorithm A produces a wvalue
mA(K) < m(K) for each convex body K C R",
then the probability that

mA(K()) S m(K()) S C2 mA(K())

logn

is less than 1/2 for some such body Kj.

In addition to these results for euclidean spaces,
we give tight results for the error of determinis-
tic polynomial-time approzimations of radii and
norm-mazima for convex bodies in finite-dimen-
sional 1, spaces.
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1. Introduction

Given a convex body K (or simply body) in the
n-dimensional Minkowski space (R",|| ||) (with
n > 2), we are concerned with computing or ap-
proximating its fundamental geometric parame-
ters diameter (i.e., the maximal distance between
two points of K), width (i.e., the minimum of
the distances between pairs of parallel support-
ing hyperplanes), inradius (i.e., the radius of a
largest ball that is contained in K), and circum-
radius (i.e., the radius of a smallest ball that con-
tains K) — here these are all called radii —, and
the norm-maximum maxgcg ||z||. The computa-
tional complexity of radii computation and norm-
maximization for polytopes was studied in [8] and
[10]. Here we assume that K is given by an oracle,
as described in detail in Grotschel, Lovasz and
Schrijver [11] and briefly below, and study the er-
ror in deterministic and randomized polynomial-
time approximations. Our results are in sharp
contrast to those known for another fundamental
functional, the volume of K.

To set our results in some broader perspective
let us begin with the euclidean case, i.e., with
bodies in E".

A first rough approximation of the volume and
also of the radii of a body K can be obtained by
computing an approximate “Lowner—John ellip-
soid” of the body [11]. This yields an approxi-
mation of its volume with relative error O(n3"/?)
and of its radii with relative error O(n®/?). (Note
that we use the ‘asymmetric relative error’ as a
measure of the performance of algorithms here
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that reflects the fact that we can always guar-
antee a ‘one-sided approximation.” The corre-
sponding ‘symmetric relative error’ is then just
the square root of the error terms given in the
following.) While these factors grow with n, noth-
ing substantially better can be achieved in poly-
nomial time, at least not in a deterministic way.
Bdrany and Firedi [1] showed, extending ideas
of Elekes [7], that in order to compute the vol-
ume approximately with a relative error less than
(cn/log(n))™, or to compute the diameter or width
of K approximately with a relative error less than
(v/cen/logn), one has to make a superpolynomial
number of calls to the oracle. This statement
about diameter and width holds also for circum-
radius, inradius, and norm-maximization (see The-
orem 3.2 below). Thus the message of the results
of Elekes, Barany and Fiiredi is that deterministic
algorithms are very bad in estimating these pa-
rameters for bodies in high-dimensional euclidean
spaces.

These negative results concern the oracle model
(see below). However, hardness results are also
known when K is given as the solution set of a
system of linear inequalities: then the computa-
tion of volume is #P-hard [5], [13], and the com-
putation of radii and norm-maximum is NP-hard
[8], [10], even for rather simple sorts of bodies.

A breakthrough in the positive direction was
achieved by Dyer, Frieze, and Kannan [6], who
gave a randomized polynomial-time algorithm that
finds an approximation of the volume with ar-
bitrarily small relative error. Thus for volume
computation in the oracle model, randomization
provably helps. (See [12] for more details and the
fastest known volume algorithm).

The success of randomized algorithms in vol-
ume approximation, in conjunction with the sim-
ilar behavior of volume and radii in determinis-
tic approximation, suggests that randomization
might also be useful in computing radii. However,
a principal result of this paper is that random-
ization does not help here. In fact, an analysis of
the complexity (in an oracle model) of both deter-
ministic and non-deterministic algorithms shows
that they achieve essentially the same approxi-
mation ratio in polynomial time. It turns out
that the approximation ratio O(y/n/logn) can
be achieved by a deterministic polynomial-time
algorithm matching the negative result of Barany

and Firedi; on the other hand, we prove that even
randomized algorithms cannot achieve, in poly-
nomial time, any better approximation ratio for
radii and the norm-maximum than this.

In the positive direction, we show that random-
ization does give an improvement in the degree of
the polynomial.

The proofs depend on results in Section 4 that
show the oracle complexity of the norm-maxi-
mization and radii problems to be very closely
related to the problem of covering a sphere with a
prescribed number of caps, or equivalent, approx-
imating a sphere with proper polytopes. More
precisely, for norm-maximization, circumradius,
and diameter the complexity can be measured in
terms of the number of facets of a polytope that
contains the unit ball B and that itself is con-
tained in the unit ball scaled by a factor A >
1 that depends on the approximation error (H-
approximation), and for inradius and width in
terms of the number of vertices of a polytope con-
tained in B" that approximates B” with respect to
the inradius (V-approximation). This connection
enables us to invoke basic results on the measure
of caps, along with a construction of Kochol [14].

Another way of viewing the results is that
rather than approximating the body K by an-
other body (like an ellipsoid as in the approach
of [11] mentioned above) the euclidean space E"
is approximated by a suitable Minkowski space
whose norm is polytopal, i.e., for which the unit
ball is a polytope, where the functionals can be
computed in polynomial time. This view allows
using techniques of Carl and Pajor [3], [4] on the
entropy in Banach spaces together with a gener-
alization of Kochol’s construction to obtain posi-
tive and negative result for deterministic approx-
imation of radii and norm-maxima in an arbi-
trary finite-dimensional /, space. This way we get
quantitative information on how the “distance”
of a Minkowski space from being polytopal in-
fluences the error in polynomial-time approxima-
tions of radii and norm-maxima.

For details omitted here and various other re-
sults see [2], the full journal version of this paper.

2. What is a body?

There is no way to describe a general convex
body K by a finite number of data, and hence
it is customary to describe bodies by an oracle



(subroutine), i.e., a “black box” to which we can
present questions about K and use the answers in
our algorithms. Depending on the kind of ques-
tions allowed and on the kind of answers given, we
get different descriptions of the body, and these
may be used in algorithms in very different ways.
However, the main result of Grotschel, Lovasz
and Schrijver [11] says that all the natural oracles
to describe a body are essentially equivalent from
the point of view of using them in polynomial-
time algorithms. More exactly, if the body is
given by any of these oracles, we can compute
the answer of any other in polynomial time.

In this field one mostly uses separation ora-
cles which, given a point y and a body K, either
decide that y € K or deliver a separating hyper-
plane. For our present purposes, the most con-
venient oracle is the closely related optimization
oracle which, given a vector u # 0 in R” returns
the value max{u’z: r € K}.

To be precise, the equivalence of oracles men-
tioned above is valid only for their “weak” ver-
sions, reflecting the fact that we cannot avoid nu-
merical errors. Furthermore one usually needs
a guarantee consisting of two numbers r, R > 0
such that K is contained in the ball of radius R
about the origin and contains some ball of radius
r. For the optimization oracle, this means that
the input is a rational vector u € R \ {0} and an
€ > 0, and the oracle returns a value 7 such that
|y —max{ulz: z € K}| <e.

For the simplicity of presentation, we assume
throughout this paper that bodies are presented
by strong optimization oracles. For the lower
bounds on complexity, this gives stronger results
than having weak oracles; for the upper bounds,
it would be easy to modify the arguments (and
the statements of the results) and allow weak or-
acles. (One may use, e.g., the methods described
in [16].) Also, we assume that we have exact real
arithmetic; it would again be easy to make mod-
ification so as to accommodate the restriction to
rational arithmetic with the usual binary encod-
ing.

3. Results

3.1. £, spaces. We begin by stating our results
on the error of deterministic polynomial-time ap-
proximation of radii and norm-maxima in arbi-
trary £, spaces.
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Theorem 3.1. (a) For each p with 1 < p < oo,
the 1, circumradius, diameter, and norm-maz-
imum of bodies in R™ can be deterministically ap-
prozimated in polynomial time with relative error

(0] (n1/2) forp=1

nl/?

1
O(( n )p> for2 <p < 0.
logn

In I spaces circumradius, diameter, and norm-
mazimum can be computed in oracle-polynomial-
time.

(b) In 1y spaces inradius and width can be com-
puted in oracle-polynomial-time. For each p with
1 < p < oo, the l, inradius and width of bod-
ies in R® can be deterministically approrimated
in polynomial time with relative error

n -5
0(( ) p) forl<p<2
logn

n1/2
0] (W) fO’I" 2< p<x©
0 (n1/2)

These results are obtained by generalization
and refinement of a construction of Kochol [14]
that uses Hardamard matrices. The following re-
sult shows that the above bounds are tight or at
least tight up to the exponent in the logarith-
mic term. The result of Bardny and Fiiredi [1]
mentioned in the introduction is the special case
p = 2. The general result relies on techniques of
Carl and Pajor [3], [4].

for p = oc.

Theorem 3.2. (a) For each p with 1 < p <
00, the relative error in deterministic polynomial-
time approzimation of the l, circumradius, diam-
eter, and norm-mazimum of bodies in R" is at

least
Q <n1/2>
logn
n \1/2
Q((logn) ) forl<p<2
n /P
Q (logn> for 2 <p < oo.

forp=1




(b) For each p with 1 < p < oo, the relative er-
ror in deterministic polynomial-time approrima-
tion of the l, inradius and width of bodies in R"
1s at least

n -3
Q(( ) p) forl<p<2
logn

n \1/2
Q(( ) ) for2 <p<oo
logn

0 <n1/2 )
logn

3.2. Euclidean space. In all that follows, m(K)
will denote the euclidean circumradius, the diam-
eter, the inradius or the width of K, or the norm-
maximum maXgex ||z]|2 over K in E".

The following result extends that of Theorem
3.1 for p = 2 by describing a tradeoff between the
number of oracle calls and the relative error.

Let 0 < r < 1 and H be a hyperplane in R" at
distance r from the origin. Then the set of points
on the unit sphere separated from the origin by
H is called an r-cap.

for p = cc.

Theorem 3.3. For each 0 < r < 1, there is a
deterministic algorithm A that finds, for every
body K C R", a value my(K) with rm(K) <
ma(K) < m(K). A does this by using an ora-
cle call for each of the O(;lgeurzn) vectors that
determine a cover of the sphere with r-caps that
can be constructed with 0(7—2261272") operations.

While randomized approximation of volume is
superior, in terms of complexity estimates, to de-
terministic approximation, the following main re-
sult shows that randomization does not decrease
the relative error made in polynomial-time ap-
proximation of radii and norm-maxima. In fact,
the bound is the same as the lower bound of
Barany and Firedi [1] for the deterministic case.

Theorem 3.4. If A is a randomized algorithm
that uses polynomially many oracle calls to com-
pute an approzimation m4(K) for each body K C
E", then there is a ¢ > 0 such that in every di-
mension n there exists a body Koy C E® with

prob(m(Ko) < m(Ky) < ¢, /%m A(Ko)) < %

The proof of this theorem uses techniques and

that no randomized polynomial-time algorithm
can approximate the euclidean diameter by a fac-
tor of O(n'/%). In fact, the following more general
tradeoff between approximation and the number
of oracle calls can be shown:

Theorem 3.5. Suppose X is a real number in the
interval (2,4/n). If a randomized algorithm A
computes an approzimation mA(K) of m(K) for
each body K C E*, and A is such that

3
prob (mA(K) <m(K) < @WA(KO >
for each K, then A must make at least A2X°/2
calls on the oracle.

Let us remark that a similar statement is true
if the bound 3/4 for the probability is replaced
by any constant greater than 1/2.

Choosing A = y/2hlogn, Theorem 3.5 yields,
the following relation between the quality of ap-
proximation and the degree of polynomiality of
the algorithm:

Corollary 3.6. Let h > 0 and let A be a ran-
domized polynomial-time algorithm which for each
body K C R™ uses O(n"*1) oracle calls to com-
pute two values m 4(K) and mA(K) such that

>3

prob (m 4 (K) < m < miy(K)) 1

Then for some Ko C E",
ma(Ko) n
~V2hlogn’

m 4(Ko)

On the other side:
Theorem 3.7. There is a ky € N and a random-
ized algorithm A which, given a body K C E" and
k € N with kg < k < 2", uses a random choice of

less than k vectors of B" to compute an estimate
ma(K) of m(K) such that m4(K) < m(K) and

prob (m(K) < ”ljg?kmA(K)> > g

Note that standard techiques can be used to
boost the lower bound for the probability arbi-
trarily close to 1.

4. Algorithms and geometric parameters

For simplicity attention in this section is re-

ideas from Lovész and Simonovits [15], who showed stricted to the euclidean case.



Let 0 < r < 1 and let 7(n,r) denote the mini-
mum number of r-caps covering the unit sphere.
Equivalently, 7(n,r) is the minimum number of
facets of an H-approximation P of the unit ball
B" with B* C P C 1/rB".

The following theorem shows that the oracle
complexity of deterministic algorithms for radii
and norm-maximum computation is mainly de-
termined by the function 7.

Theorem 4.1. (a) For each 0 < r < 1 there
is a deterministic algorithm A that is based on
a covering on the sphere with T(n,r) spherical
r-caps which, for every body K C E" given by
an optimization oracle, uses 27(n,r) oracle calls
to compute a value m4(K) such that rm(K) <
mu(K) < m(K).

(b) If0 < r <1 and A is a deterministic algo-
rithm that computes, for every body K C R", an
estimate mA(K) of m(K) such that

rm(K) < ma(K) < m(K),

then A must make at least T(n,r)/2 oracle calls
in the worst case.

Proof. (a) Let k = 7(n,r) and let P denote an
‘H-approximation of B" with B C P C 1/rB"
with outer facet normals uy,...,+u; such that
P = {r: +ulz < lfori=1,...,k}. To ap-
proximate the circumradius of K, use the opti-
mzation oracle for K to compute the 2k numbers
Jz?t = maXg,ck :I:uiTa:. Then the circumradius of
K with respect to the polytopal norm induced by
P is given as the solution of the linear program

minp s. th. p:l:uiTaZ(SijE fori=1,...,k,

cf. [10]. (Note that a is a center of K’s circum-
radius with respect to the polytopal norm.) Of
course, this is the desired approximation for K’s
euclidean circumradius. (Note that we could ac-
tually save a factor 2 by just working with
u1,...,ug. This factor is however needed for the
diameter.)

The results for the other radii and the norm-
maximum follow readily with the aid of suitable
geometric transformations and polarity; see [9].

(b) We will give the argument in detail again
for the circumradius. The results for the other
radii and the norm-maximum follow similarly.

Suppose that A makes at most ¢ calls on the
optimization oracle, where ¢t < 7(n,r)/2. Apply
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A first when K = B", thus obtaining ¢ points
U1,...,us of the unit sphere. Since t < 7(n,r)/2,
there is a point v on the unit sphere such that
neither v nor —wv is covered by the r-caps centered
at uq,...,u;. Equivalently, the r-caps centered
at v and at —v do not contain any of the points
Uty oy Ut

This means that A cannot distinguish between
conv{ug,...,u;}, B* and conv(B" U {v, —Lv}:
the optimization oracle will always return the same
hyperplanes. Hence the (asymmetric) relative er-
ror is at least 1/r. O

We can prove a similar result for randomized
algorithms, showing that the complexity of the
algorithm depends on the area of r-caps. Let
v(n,r) denote the ((n — 1)-dimensional) measure
of an r-cap, divided by the total measure of the
lo unit sphere in R®. It is also convenient to
introduce 7*(n,r) = 1/y(n,r), which could be
viewed as the “fractional covering number” of
the sphere by r-caps. Clearly 7*(n,0) = 2 and
™*(n,r) < 7(n,r).

Theorem 4.2. (a) For each 0 < r < 1 there is
a randomized algorithm that is based on a “ran-
domized covering” on the sphere with 2[7*(n,r)]
spherical r-caps which, for every body K C R"
given by an optimization oracle, computes an ap-
prozimation mA(K) of m(K) such that m4(K) <
m(K) and

6

>?.

(b) Let 0 < r < 1, and let A be a randomized
algorithm that computes, for every body K C R”,
an estimate m4(K) of m(K) such that

prob(rm(K) < mA(K))

3
> —.
— 4
Then A must make at least 7*(n,r)/4 oracle calls

in the worst case.

prob(rm(K) <my(K) < m(K))

Proof. This time we concentrate on the proof
for the diameter diam(K). Similar ideas work for
the other radii and for the norm-maximum.

(a) Let N = 2[7*(n,r)] and let uq,...,un
be independently, uniformly distributed random
points on the unit sphere S~ !. Compute the
maxima

max{u. z: r € K} —min{ulz: z € K}
z,y € K},

w; =

= max{u] (¢ —y):
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and define D(K) = m4(K) = max; wj.

It is obvious that D(K) < diam(K). To prove
that the probabilistic condition in (a) is satisfied,
suppose that D(K) < rdiam(K). Let p,q € K
have ||p —ql|2 = diam(K), let v be the unit vector
pointing in the direction ¢ —p, and let C' and —C
denote the r-caps centered at v and —v, respec-
tively. Then C' contains no u;, because if u; € C
then

max uj (z—y) > uj (¢ —p)

= diam(K)u! v > rdiam(K)

and hence D(K) > w; > rdiam(K), contrary to
the supposition. Now, the probability that no u;

belongs to C is
(1_ vol, 1(C) )N (1_ 1 )N
vol,_1(S"1) T*(n,r)
< e ()
P )

1
7

< e ?<

(b) Suppose that A makes at most ¢ oracle
calls, where t < 7*(n,r)/2. Choose 7’ < r so
that t < 7*(n,r')/2. Run two copies of the al-
gorithm simultaneously. In one, the input is the
unit ball B”. In the other, an input body K is
constructed at random as follows: we choose a
random unit vector v uniformly, and let K be the
convex hull of the set B" U {(1/r)v, —(1/r")v}.
The algorithm has internal coin flips, and we use
the same coin flips in both copies. Let D and D’
be the outputs of the two algorithms (these are
random variables, depending on the internal coin
flips of the algorithms as well as on the random
choice of v).

Let uq,...,u; be the unit vectors for which the
optimization oracle is called with input B", let
C1,...,C; be the r-caps centered at uq,...,us,
and let Q = C7U---UC};. Then

VOlnfl(Q)
VO]nfl (S"fl)

Z VO]n_l(Ci)
=1 VOlnfl (Sn_l)
t 1

T*(n,r") 2

prob(v € Q)

Whenever v ¢ @), the two copies of the algorithm
run in the same way and produce the same out-
put. Thus prob(D # D') < 1.

By the assumptions on the performance of A

we also know that
prob(D' <2) = prob(D’' < r'diam(K))

< prob(D’ < rdiam(K)) <

B~ =

and

prob(2 < D) = prob(diam(B") < D) <

] =

But this means that the three events
D<2 2<D', and D=D'

occur with positive probablity. Hence we reach
the contradictory conclusion that 2 < 2. O

5. Estimates and proofs

We will again begin by dealing with the eu-
clidean case. At the end of this section we will
sketch how the results can be extended to arbi-
trary £, spaces.

The previous results reduce the problem of an-
alyzing the error of the algorithms to estimating
7(n,r) and 7*(n, ). The latter (corresponding to
the case of randomized algorithms) is easier and
a fairly complete answer is well known. Denoting
by

/2

“n =T +n/2)
the volume of the n-dimensional euclidean unit
ball, one has

1 (n - 1)wn—1 /1 2y =3
= =Tl 2y gy
™*(n,r) v(n,7) nwy, r ( )T dt,

whence, using the fact that

n <wn_1< In+1
V 2r Wr, 2

the following estimates can be derived:

Lemma 5.1. For2/\/n<r <1,
1
10rv/n

Proof. Define
1
T (r) = / (1 — £2)™/2 gy

T

1
2ry/n

n—1

(1—-r%)"7 .

(1- r2)nT_1 <7(n,r) <



Then we may apply partial integration with u(t) =

(1—12)™" /(m +2) and v(t) = —t~PL:
1
]_—t2 m+2
(m+2)7,(7) [(tT)]
T
—(h+1 / th2(1 — 2)"3 dt
= (=) DI
Hence
(m +2)Jh(r) < (1 -5
and
1 m
(m+2)Jh(r) > (1 -5
(h+1) 1 2y Mot
_(m+4)rh+3( —r)e
We need this for h = 0:
1 9\ m+t2 1 1 9, mt4
(1 ) (m+4)r3(1 )
1 m
< (m+ 2T < (1 -1

The above is true for all 7. Now for r > 2/v/m + 4,
we obtain

1 m 1 m
(1= )" < (m+2)J5(r) < S(1-r)"F,
2r T
which proves the lemma. O

Theorems 3.5 and 3.7 follow from the above
estimates in conjunction with Theorem 4.2 and
the fact that 7*(n,r) = 1/y(n,r).

In the case of deterministic algorithms, one has
to estimate 7(n,r). In fact, more is needed: it is
not enough to know the existence of a “small”
covering of the sphere by r-caps, one needs a
polynomial-time algorithm to construct one. The
following result is essentially due to Kochol [14].

Lemma 5.2. For the covering number 7(n,r) of
the euclidean sphere by r-caps, the following esti-
mates are valid when r > 2//n:

1
27-\/7; 6(1/2)7'2(7171) S 7'(7’),, ']") S (4_2 + 1) 127"271'
The lower bound follows easily from Lemma
5.1, and we invoke a result of Kochol [14] for
the upper bound. For every n and 0 < r < 1,
he constructs a covering of the n-sphere by at

7

most T(n,7) = O(e% " /r2) r-caps. It is impor-
tant that the construction can be carried out in
O(n?T(n,r)) time. This means that counting
only oracle calls, the number of other operations
that are ignored is only a polynomial factor larger.

Kochol’s construction. Let R = ‘f . Take all
integer vectors z with ||z||2 < R, and normahze
them so that they have unit length. Let A, be
the resulting set of unit vectors.

Lemma 5.3. The set A, has the following prop-
erties:

(a) the r-caps about the points in A, cover the
sphere;

() 14| < (%)

Proof. (a) Since A, is invariant under changes of
signs of coordinates, it suffices to show that each
non-negative vector v = (vq,...,v,)T € S*~! be-
longs to the r-cap about some point of A,. With
2z = |Rvi], z = (21,...,22)" and u = (1/]|z]|2)z,
it is clear that u € A,, and since

T 1 -

Uy = i ZLRWJW

=1
1%(}21} 1)v
) i i
Ri:l
1 & NG
= ].—R;’UZZ].—?:T,

Y

v belongs to the r-cap about u.

(b) The ball 57"~ \/_ B" contains all cubes a+
(1/2)[-1,1]" w1th a € Z™N RB".
from Stirling’s formula that

(2(3_1—_% \/ﬁ)nﬂn/2

So it follows

4l < I'(1+n/2)
: (272)—; (2(1—30) <<%) |

The set A, is good if r is large (say r > 1/2),
but not if r is small; in particular, it is never of
polynomial size. For r = 1/2 it yields at most 12"
points, and this fact is needed below. However,
we can use A, to construct a better covering Ay
when r < 1/2.



Let d = [4r’n]. Subdivide the interval
{1,...,n} into segments of length d. More ex-
actly, let ¢ = |n/d], and set I; := {m : [m/d| =
j} for j = 0,...,t. (Although the length of I
may be less than d, we assume for simplicity that
it is equal to d.)

For each interval I, consider the d-dimensional
euclidean unit ball IB%? in the coordinate subspace
of E" of those coordintes belonging to I;, and fix
in it a set A; so that the (1/2)-caps centered at
the points in A; cover the unit d-sphere. Con-
sider each A; as a proper subset of E", and let
A% be their union. By Lemma 5.3(b), we can
choose the A; so that A7 is a set of at most
[2712% < (g + 1)12%7*+1 ynit vectors. Note
that for r = O(
n.

(logm)/n), this is polynomial in

Lemma 5.4. The r-caps centered at the points
contained in A} cover the unit n-sphere.

Proof. If v € R" is an arbitrary unit vector,
then for some j we have > ;c . v? > d/n. The
projection w of v onto the corresponding subspace

is of length at least \/% > 2r. Hence by Lemma

5.3(a), there is a vector u € A; such that v’y =

wlu > r. O

Lemmas 5.3 and 5.4 prove Lemma 5.2. Com-
bining this with Theorem 4.1, we get Theorem
3.3.

To prove Theorem 3.1, we need to generalize
the deterministic construction in lp-spaces to [,
spaces. This is facilitated with the aid of the fact
that for 1 <p < g < o0,

||I||q < ||5E||p < nl/p_l/q||x||q for each z € R"™.

(Here 1/00 = 0.) This yields polynomial-size H-
approximations P of the unit ball with B} C
P C O((n/logn)'/P)B", and these turn out to
be asymptotically optimal for p > 2. When 1 <
p < 2, we need to apply suitable rotations by
Hadamard matrices.

For the proof of Theorem 3.2, note that lower
bounds for the relative error can be obtained again
from lower bounds for suitable polynomial-size H-
or V-approximation of the /, unit ball, and these
can be obtained by applying results of [3] and [4].
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