EXTREMAL GRAPH PROBLEMS

M. Simonovits

Budapest, Hungary

Notations. v(G), e(G), $\chi(G)$ denote the number of vertices, edges and the chromatic number of the graph G. Here the graphs have no directed, d multiple or loop edges. $\underset{i=1}{\times} G_i$ denotes the product of graphs G_i , i.e. the graph, obtained by joining vertices of G_i to the vertices of the other G_i -s.

Generalizing a well-known theorem of Turán [1] Erdös and I have proved independently [3], [4] that for any given graph $M_1, \ldots, M_{\tilde{K}}$ and fixed n if K^n has maximum number of edges among graphs of n vertices, not containing any $M_{\tilde{L}}$ as a subgraph, then

Theorem A. There exist graphs N_1, \ldots, N_d , $(d+1 = \min_{\chi(M_i)})$ such that $\frac{d}{\chi^n} \text{ can be obtained from } \underset{i=1}{\times} N_i \text{ omitting } 0 \text{ (n}) \text{ edges from it. Here is an integer depending only on } M_1, \ldots, M_n \text{ and }$

is an integer depending only on
$$M_1, \ldots, M_{\mu}$$
 and
$$(1) \quad v(N_i) = \frac{n}{d} + 0(n), \quad e(N_i) = 0(n)$$

- (2) any vertex of N_i has valence $\geq \frac{n}{d} (d-1) + O(n^{1-\frac{1}{p}})$
- (3) the number of vertices of N $_i$ joined to at least ϵn vertices of the same N $_i$ is 0 $_\epsilon(1)$.

The graph K^n is called the *extremal graph* for M_1, \ldots, M_{μ} . Theorem A shows that the extremal graphs for M_1, \ldots, M_{μ} are fairly well determined by min $\chi(M_i)$, they depend loosely on the structure of M_i -s.

How the structure of M_i -s influence the structure of the extremal graphs? Erdös and I have proved [5] that the extremal graphs for $K(3,r_1,\ldots,r_d)$ are products: $K^{\alpha} = \underset{i=1}{\times} N_i$ where $3 \leq r_1 \leq r_d$ and i=1

- (1) $v(N_1) = \frac{n}{d} + 0(n^2/3)$
- (2) N_{1} is an extremal graph for $K(3,r_{1})$.
- (3) N_2, \ldots, N_d are extremal graphs for $(1, r_2)$.

Here 3 can be replaced by 2 or 1 as well.

I have found the following generalization of this latest theorem: $\label{eq:constraint} \text{Notation.}$

- (1) $f(n, M_1, ..., M_k)$ denotes the number of edges of the extremal graphs for $M_1, ..., M_k$.
- (2) Let $\chi(M)=2$ and colour both M and K(n,n) by two colours: red and blue. We consider subgraphs G^{2n} of K(n,n) such that if M is the subgraph of G^{2n} , then the class of blue vertices of M is not contained by the class of blue vertices of K(n,n). The maximum of $e(G^{2n})$ will be denoted by $h(n,G^{2n})$.

<u>Definition</u>. $x \in M_1$ is a weak point for M_1, \ldots, M_{μ} if $\chi(M_1) = 2$ and $h(n; M_1 - x) = o(f(n; M_1, \ldots, M_{\mu}))$.

<u>Remark.</u> If there exists an automorphism of M_1 - x changing the colours, then our condition with $f(n; M_1 - x) = o(f(n; M_1, \ldots, M_n))$.

Examples.

- (1) $K(r_0,\ldots,r_d)$ has weak points if either $r_0\leqslant 3$, or if $r_0^2-3r_0+3>r_1$. [5] Probably it always has.
- (2) If M is not a tree, but M x is, $\chi(M)$ = 2 then $x \in M$ is a weak point of it.
- (3) Let C(2l) be a circuit of 2l vertices, $x \notin C(2l)$ and let x be joined to 5 or more vertices of C(2l) so that the obtained graph M be two-chromatic. Then $x \in M$ is a weak point of it.
- (4) Let M be a graph, obtained from two C(21) or from two K(r,r) by joining them by a path of length 2. Then M has no weak point.

Theorem 1. Let M be a d+1 chromatic graph and let us colour it by $1,2,\ldots,d+1$. $L_{i,j}$ denotes the subgraph of M spanned by the vertices of the ith and jth colours. If $x \in L_{i,j}$ is a weak point of $\{L_{i,j}\}$ and K^n is an extremal graph for M, then K^n can be obtained from a suitable product $N^n = \underset{i=1}{\overset{d}{\times}} N_i$ omitting o(n) edges from it. Here i=1

- (2) N_i is almost an extremal graph for $\{L_{ij}\}$ it has $f(n; \dots, L_{ij}, \dots) + O(n)$ edges, but it does not contain any L_{ij} .
- (3) The vertices of N_i (i=2,...,d) are joined to less than s other vertices of N_i , if x is joined to s vertices of the 3rd colour.

Theorem 2. If in Theorem 1. $r \le 3$, then o(n) can be replaced by o(1). If $r \le 2$, then there exists an extremal graph K^n such that $K^n = \underset{i=1}{\overset{d}{\times}} N_i \text{ whenever } n \text{ is large enough.}$

Remarks.

- (1) Similar theorems hold if M is replaced by M_1, \ldots, M_{μ} . The only change is that L_{ij} -s must be replaced by those subgraphs of M_1, \ldots, M_{μ} , for which $\chi(M_j L_t) = \min \chi(M_j) 2$ if $L_t \subseteq M_j$.
- (2) Theorem 1 has "assymptotic" character, but it has many corollaries of "exact" character. One of them is the theorem of Erdös and mine about the extremal graphs for $K(3,r_1,\ldots,r_d)$. Another one is

Theorem 3. Let $\Gamma(3k)$ be the graph, having the vertices x_1, \ldots, x_k ; y_1, \ldots, y_k ; z_1, \ldots, z_k and defined by

- (i) $x_i \rightarrow y_i \rightarrow z_i \rightarrow x_i$ is an automorphism of $\Gamma(3k)$.
- (ii) $x_1, \ldots, x_k, y_1, \ldots, y_k$ determine a C(21).

Then for $n > n_0$ any extremal graph K^n for $\Gamma(3k)$ is a product: $K^n = k_1 \times k_2$ where $v(K_i) = \frac{n}{2}$, $e(K_2) = 0$ and K_1 is an extremal graph for $\{\dots, C(2l), \dots\}$ $\frac{k}{2} \le l \le k$.

References

- 2. Turán, P., Matematikai Lapik, 48 (1941), 436-452. (in Hungarian).
- Erdös, P., On some new inequalities concerning extremal properties of graphs. Theory of Graphs, Proc. Coll. held at Tihany, Hungary, 1966.
- 4. Simonovits, M., A method for solving extremal problems. Stability problems. Theory of Graphs, Proc. Coll. held at Tihany, Hungary, 1966.
- 5. Erdös, P. and Simonovits, M., An extremal graph problem. Acta Math. Acad., Sci. Hungar. (forthcoming).