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In this paper G denotes a graph having » vertices, without loops and
multiple edges.

I. Introducltion

In 1941 the following problem was proved by P. TurRAN [1]: Determine
the maximum number of edges which a graph G” can haveifit doesnot contain
complete p-graphs. The complete p-graph will be denoted by K,. Denote
by T4 the following graph: n vertices are divided into d classes each of

which contains almost the same number of vertices: they contain [%] or

[%]—}— 1 vertices. Join two vertices by an edge if and only if they belong

to different classes. The graph obtained thus is denoted by 7™¢, and it is
of great importance in our problems.

The answer to the problem of TURAN is (as he proved in [1]), that 7"P—1
does not contain K, and has more edges than any G" not containing K.

Many similar problems have been solved since that. A possible generali-
zation of this question is the following

General problem [2]. Let F, ..., F, be given graphs. Determine the maxi-
mum number of edges a graph G can have if it does not contain an F,.
Determine the extremal graphs for F,, ..., F,, ie., the graphs having
the maximum number of edges.

(A) I have conjectured that in the general case the extremal graphs are
very similar to the extremal graphs of K ,: they are very similar to 79,

where d depends only on F, ..., F;: ERDOS proved [2] that if d +- 1 is the
minimal chromatic number of ¥, . .., F; and K" is the extremal graph for
K=o F,-then

¢(K") = e(T™?) + O(n*~*),

where e(G") denotes the number of edges of G" and ¢ is a positive constant
depending on the F;-s. This result states that the extremal graph has asymp-
totically as many edges as 79, |

Later it was proved by ErRDOs and myself independently, that the extrem-
al graphs can be obtained from a 7"¢ omitting from it and adding to it
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O(n*~€) edges. Moreover, all the graphs not containing an F; and having
almost as many edges as K” can also be obtained from 7 by small number
changing few edges in them: Let & > 0 be arbitrary constant. There
exists a constant § > 0 such that if @" does not contain an F; and e(G")
> e(T™?) — 6n> then G" can be obtained from 79" by omitting at most
[e n?] edges from it and adding at most [e n2] new edges to it. The last
part of this paper contains a proof of this and a sharpening of the state-
ment concerning the structure of the extremal graphs.

This sharpening states:

Let F,, ..., F; be given graphs, K" be the extremal graph for them. If
each F,; is at least d 4 1 chromatic and e.g. F, is d + 1 chromatic and it
has a colouring by the colours “1”, ..., “d” so that only » vertices of F,

are coloured by ‘1”’, then:
I

o(K7) = e(T™9) + O(n' ~ T)

and K" has almost the same structure as 779: its vertices can be divided into
d disjoint classes A,, ..., 4; so that the folloving conditios are fulfilled.

(a) The classes contain almost the same number of vertices: A; contains
1

% +- O(n1 ~ 7) vertices.

(b) The classes contain few edges: the number of edges joining two ver-
1

tices of A, is O(nz—?).
x

(c) Each vertex of K" has the valence % - (d—1) + O(n] y 7Y
: 1
(d) All but 0(7@2# r) edges of form (z,y), where @ € 4, y € A Pt
are contained in K"1 :
The first part of this paper deals with some special problems. All our
problems are strongly connected with the results of P. ERDGs.

(B) Consider a 74 and let be s<C % Add s edges to T4 so that the

endpoints of our s edges are 2s different vertices of the same class of 74
(i.e. the edges are independent and are in the same class). The graph
obtained is denoted by 7'(n, d, s).

ProBLEM 1. Determine the maximum number of edges of the graphs har-
ing n vertices and not containing T(n, d, s) as a subgraph.

This problem was posed by ErDOs and solved only in the special cases
d = 2, s = 1, 2 (unpublished). In this paper it will be solved for any d > 2,
s > 1 (for d = 1 it is very easy to solve it if » is large enough).

! Remark. The paper of ErRDGs, which is published also in this volume, states essen-
tially the same results, which I have mentioned in this sharpening. Knowing the gener-
al structural theorem we wanted to get a sharpening of it and thus we have proved
independently the same theorem by very similar methods. Alas, we have noticed it
too late; because of thi: weo publish them here, independently.
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Consider a K,_; and a 7" st1¢ (without common vertices) and join
each vertex of 7"—5114 to each vertex of K,_,. Denote the obtained graph
by H(n, d, s). Then, if n is large enough, H(n, d, s) is the (only) extremal
graph for the problem of 7'(n, d, s).

This result is the generalization of a result of Moon [3] and also of a result
of Erpbs and GArrAl [4], [5]: H(n, p — 1, s) does not contain s vertex-
independent K ,. If n is large enough and G” does not contain s independent
K, then e(G") < e(H(n, p — 1, s)) and the equality holds if and only if
G= Hm, p— 1, 8)

(C) Investigating a four-dimensional geometrical problem ErDOs has
found the following extremal problem:

Denote by Q(r, d) the graph obtained from 7"%¢ by joining each vertex
of it to 2z, where x is a vertex not contained in 7"%¢. (Clearly Q(r, d) =
=H(rd + 1, d, 1).)

ProBLEM 2. Consider the graphs of n vertices, not containing Q(r, d). Deter-
mine the maximum number of edges of these graphs. Determine the extremal
graphs. :

ErpGbs solved this problem for @(3, 2). I have a method for solving such
problems and when Erp&s asked me, whether my method worked in the
case of Q(3, 2), I solved this problem for every » > 2, d > 2 using this
method.

(D) We have seen a special case, when 774 was the extremal graph.
There are also many other cases when 7"¢ is the extremal graph.

ProBLEM 3. Characterize the graph-sets Fy, . .., F,such that if n s large
enough, T4 is the extremal graph for ¥, . .., F,.

We solve this problem by completely proving the following result.

Let F,, ..., F; be given graphs. 7 is extremal graph for F,, ..., F;
for sufficiently large values of » if and only if each F';. has chromatic num-
ber > d + 1 but there is an F; and an edge e in it so that F; — {e} is
d-chromatic. Further, if each F'; has less than m vertices and there is a
k > md such that T4 is extremal graph for F,, . . ., F, then for sufficiently
large values of » 79 will be the only extremal graph.

(E) Some of our problems will be called stability-problems. First we for-
mulate which problems are called stability-problems, then we try to explain,
why they are called so and lastly we give a list of the concrete stability-
problems, investigated in this paper.

Let F,, . .., F, be given graphs and K" be an extremal graph of the prob-
lem of ¥,, ..., F,. Let A be a property defined for graphs. It will be said
that the extremal graphs are stabil for the property A4 if:

(a) None of the graphs G" having the property 4 contains any F;

(b) The extremal graphs {K”} have the property A4;

(c) There is a function f(n) tending to infinity such that if a graph G”"
does not contain any F; and has at least e(K™) — f(n) edges, then it has also
the property A.

This definition can be motivated by the following heuristic argument:
We notice a property A of the extremal graphs and pose the question,
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whether it is essential in our problem or not. Suppose, 4 is a property such
that a graph having 4 cannot contain any F,. Then K" is a graph, having
maximal number of edges among graphs hawng the property A. We say
(heuristically) that this property has important role in our problem and K"
is extremal graph just because it has maximum number of edges among
graphs having the property 4, if not only the extremal graphs, but all the
graphs having almost as many edges as K" has and not containing an F,
possess the property A. This is expressed by (c).

This problem may have a positive answer and then it may be asked:
what is the greatest f(n) in condition (c¢). Thus there arises a new problem:
the stability problem of F, . . ., ¥}, that is: Let S" be a graph having maxi-
mal number of edges among graphs not containing any F; and not having
the property A4, and set f(n) = e(K")—e(S"). What is the order of magnitude
of f(n)? Determine S".

Trivially, if 4 is the following property: G does not contain any F;,
then we obtain a trivial and not interesting stability theorem. Because of
this example we restrict the considered properties 4. We are interested only
in the global properties of @, i.e., in properties, which cannot be verified
knowing only the small subgraphs of G. Above all, we are interested in
stability theorems, where 4 concerns the chromatic number of G” or similar
properties.

We mentioned already a stability theorem of the general case, (se€ (4))
where 4 is the following property:

We may omit less than en? edges from G" so that the obtained graph
be d-chromatic.

Some other stability theorems

(a) IfG"is p — 1-chromatic, it does not contain K ,. It will be proved that
there is a constant M such that if

n

»p—1

e(G") > (Tmp-1) — M

and G" does not contain K, then G" is d-chromatic.*

(b) Let Fy, ..., F; be given graphs such'that for sufﬁclently large n
Tmd is the extremal graph. Then the statement of (a) remains valid if K,
is replaced by F,, ol in: it

(c) Let 4, be the follomng property:

It is possﬂole to delete s — 1 vertices of G" so that the remaining
graph is d-chromatic. Then a graph G” having the property 4, does not
contain 7'(n, d, s). The extremal graph for 7'(n, d, s) is H(n, d, 3) Whlch clearly

- has the property 4,. A graph having at least e(H(n, d,s)) — E— + M edges

* Here the property 4 is that G is d-chromatic.
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(where M is a suitable constant) and not containing 7'(n, d, s) has the prop-
erty 4,. The same is true for the problem of s independent K;,, = K.

The results (a)—(c) are essentially the best possible. In the following part
we determine also the extremal graphs of these stability theorems.

II. Definitions, notations

As we have mentioned already, we consider graphs without loops and
multiple edges. If @ is a graph »(@), e(@) and y(G) denote the number of
vertices, edges and the chromatic number of @ respectively. (The chromatic
number of G is the smallest integer £ such that the vertices of G can be divid-
ed into % classes so that two vertices of the same class are not joined.)
If z is a vertex of G, o(x) denotes the valence of 2 i.e. the number of vertices
joined to .

If G, is a subgraph of G or, in general, an arbitrary set of vertices and
edges of @, then @ — @, denotes the graph which remains after having
omitted the vertices and edges of G, and all those edges, at least one end-
point of which belongs to @,. If 4 is a set, |4| denotes the number of
elements of 4. If G is a graph and @, . . ., G,, are some subgraphs of it,
they are independent if no two of them have vertices in common. G"
always denotes a graph of n vertices.

In this paper a method will be presented which can be applied to solve
many extremal problems. It consists of two parts, one of which is:

ITII. The progressive induction

In this paper there will be considered problems which are wanted to be
solved only for large values of n because either the general statement
does not hold for small values of » or it is very complicated to verify it.
Because of this our problems will be investigated only for large values of n.
On the other hand our problems are such that if we had them for certain
consecutive values of n,say for ng, ..., n,+ M, then it would be easy to
prove them for all » > n, using mathematical induction: the inductional
step can be carried out easily, but the inductional base makes difficulties,
since n, is unknown, or n, is so large that it is the same to prove the state-
ment for n, or to prove it for all n > n,. It seems that the mathematical
induction breaks down. However, sometimes we can eliminate this difficulty,
using a modified form of the mathematical induction. It will be called the
progressive induction. It is similar to the mathematical induction and 1s
similar to the Euclidean algorithm; it is the combination of them in a cer-
tain sense. First it will be motivated by a heuristic argument, then it will
be formulated in a lemma.

Let Fy, ..., Fyand K™, ..., K",. .. be given graphs. Assume that we have
the conjecture that K™, ..., K" ... are the only extremal graphs for F,,

.., F, if n > n, Denote by H" a real extremal graph for F,, ..., F|
(n = ny, ...) which is unknown yet. It is wanted to be proved that there
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exists an n, such that if » > n,, then H” = K". We conjecture not only
this last statement, but the following “‘sharpening” of it as well.

If n, is the smallest integer such that if n > n,, then H" — K", vhen if
n < n, though H" = K" but H" has “‘similar structure’” and almost as many
edges as K" and this similarity “increases” as » increases. We try to express
the structural difference between K" and H" with the help of a function
(norm) A(n) having great or small values according to the fact that A" and
K" differs essentially or not. Then we try to prove that A(n) behaves simi-
larly as if it were strictly decreasing. And if A(n) has good properties, then we
will obtain just the wanted result. Precisely: '

LemMA oF THE PROGRESSIVE INDUCTION. Let 9 = |J 9, be a set of given

I
elements, such that 9, are disjoint finite subsets of 9. Let B be a condition
or property defined on U (i.e. the elements of ¥ may satisfy or not satisfy
B). It is wanted to be shown that there exists an n, such that if n > n, and
a € U, then a satisfies 9.

Let 4(n) be a function defined also on 9 such that A(n) is a non-negative
integer and

(a) if @ satisfies B, then A(a) vanishes.

(b) There is an M, such that if » > M, and a € 9, then either a satisfies
B or there exist an n’ and an @’ such that

(1) -?23 <n' <n a€¥Y, and Ad(a)<A(@).

(This is the condition replacing the inductional step.)
Then there exists an n, such that if n > n,, from @ ¢ 9, follows that &
satisfies B.

PrOOF. Uy, . . ., Ay, are finite classes, A(a) is a finite-valued function thus
S=max {A@a):n< M, ac¢c U} is a finite non-negative integer. A trivial
application of mathematical induction on # shows that A(a) < S for every
(LEQI.PutMI-:TMD?:::l,...,S-{—I.

Then B is satisfied by every a € 9, if n > M. -

To show this notice that A(a) < S — 4 if n >M;and ae U, (1 =1,

. ., ). This can be proved by induction. For ¢ — 0 we know it already.

Assume that it holds for 7 — 1. From n > M » @€Y, it follows that either
a satisfies B (and then 4(a) = 0) or there exist an #’” and an &’ satisfying (1).
Therefore A(a) < A(a’) and from the inductional hypothesis we have

Al@) < M — (2 —1).

Since A(a) is an integer, A(a) < M — i, which proves our statement.
Write s = S, then: if n > M, and a € ¥, then 4 (a) = 0. Now we have to
prove only that from A(a) = 0 if » is sufficiently large, it follows, that a
satisfies B. Let now be n > M, ,, a € A, Apply (b) on a. If there were an
n’ and an @’ satisfying (1) then A(a) < A(a’) and consequently A(a) < 0
would hold but 4(a) cannot be negative. Thus the other alternative holds
in (b): a satisfies B.
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REMARK . %can be replaced by any function tending to infinity (and less

than ») in the condition i =%’ =< min (b).
2

IV. Some further remarks on the method used in our proofs

Generally we shall use progressive induction in our proofs or certain modi-
fication of it. A theorem of Erpés and STONE states that if M and d are
given integers then there exists a ¢ > 0 such that if e(G"?) > e(T"™%) + n2-°,
then G" contains a 7'M@+.d+1(16] [3]). Generally, it will be considered an
extremal graph K" and a T™%? will be selected in it by using the theorem of
ErpGs and StoNE. Then we classify the vertices of K" with the help of this
TMad (here M is a great but fixed integer) and estimate e(K") — e(K" Md),
This makes possible to use progressive induction giving an estimation on
A(n) — A(n — Md) if H" is the conjectured extremal graph and 4(n) =
= e(K") — e(H"). _

- V. A characterization of the problems, for which 74 is the extremal graph

ProBrLEM. Characterize the sets of graphs F,, ..., F, such that 774
is an extremal graph for ¥\, ..., F, if n is sufficiently large.

It will be seen that a condition, which is trivially necessary for that 74
to be an extremal graph is also sufficient for this. More exactly:

TrEOREM 1. (a) Let F,, . . ., F, be given graphs, such that 3(F;) > d + 1

(6=1,...,]) but there are an ¥; and an edge e in it such that
2 (Fi;, — {e}) = d. Then there exists an n, such that if » > n, then 74 is
the only extremal graph for F,, ... F,.

(b) The converse statement is also true. Moreover if £ = max »(F))
and there is at least one 7™¢ with m > kd which is extremal graph for ¥,
..., F, then for n > ny(F,, ..., F,) T™? is the only extremal graph for
Fi ..., Frand g(F)) >d + 1, (1,2,...,1), but there are an F; and an
edge e in it such that y(F;, — {e}) =d.

Instead of giving direct proof of Theorem 1 (which was given in an un-
published paper of ours) we reduce Theorem 1 to a special case of it:

We recall that 7'(rd, d, 1) is the graph obtained from 77%4 adding a new
edge to it. Trivially y(7"%9) = d + 1 but if e is the extra edge of it then
W T(rd, d, 1) — {e}) = y(T"%?%) =d. Thus Theorem 1(a) can be applied on
M= Tlrd g 1),

THEOREM 1.* There exists an ny(r, d) such that if n > n, then T is the
only extremal graph for T(rd, d, 1).

‘We know that Theorem 1* follows from Theorem 1. Now it will be shown
how Theorem 1 follows from Theorem 1%,
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Suppose that Theorem 1* holds. Let F,, . . ., F, be given graphs satisfying
‘the conditions of Theorem 1(a). From y(F;, — {e}) =d we have that if
r > o(F;), then F; C T(rd, d, 1). There is an n, such that if n > n, 7™%is
the only extremal graph for T'(rd, d, 1). 1t will be proved that if m > R
T™4 is the only extremal graph for F,, ..., F, as well. Since y(F;) > d,
T4 does not contain any F;. On the other hand, if e(G") > e(7™%) and
G" % T4, @" contains a T(rd d, 1) (according to Theorem 1*) and thus G*

conta.ins an F; . Therefore T™? is the only extremal graph for F,, ..., F,
(if n > n,).
- Thus Theorem 1(a) is the consequence of Theorem 1%,
Suppose now that F,, ..., F, satisfy the conditions of Theorem 1(b)
Since 7'™4 contains all the graphs G* such that y(@*) < d and 7"™¢ does not
contain any F; consequently y(F;) >d +1 (2 = 1, l). Since e (T'(m, d, 1))

= e¢(T™4%) 4+ 1 and T™¢ is extremal graph, 7'(m, d 1) must contain an F;,
Notice tha,t it is possible to omit from 7'(m, d, 1) an edge so that the remaln
ing graph is d-chromatic. From F; C T(m, d 1) follows that F; has also
this property. Thus we have proved a part of Theorem 1(a) shomng that
{F,, ..., F} satisfies the conditions of Theorem 1(a). Apply Theorem 1(a),
thus we obtain the other part of Theorem 1(b): if » is sufficiently large, 7'¢
is the only extremal graph for #,, ..., F,.

Therefore, instead of Theorem 1 it is enough to prove Theorem 1*. Theo-
rem 1* was conjectured by ErnGs. ERDGs proved it if d = 2 and then I
proved Theorem 1, generalizing ERDOS’s result but only later noticing, that
it contains Theorem 1%, '

Later a theorem will be proved containing Theorem 1* as a very special

case. However Theorem 1* will be proved here in a direct way because this
is the most beautiful and the simplest, but characteristic case of my method
and the other proofs are the variants of this one.

Proor. Let K" be an extremal graph (for T(rd, d, 1)). It will be shown that,
if n is sufficiently large then K" = T4,
Since 74 does not contain 7'(rd, d, 1).

o(Tm4) < e(K™).

Hence A(n) = e(K") — e(17™9) is a non-negative integer (not depending on
the choice of K" if there are different extremal graphs of n vertices). Select

a I'Mdd C K" applying Theorem ErDpOs—STONE on K” where M = 3r.

The theorem will be proved by progressive induction, where %, is the set
of extremal graphs having n vertices, B states that K" = 74 zmd A(n) is
defined already. According to the Lemma of the Progressive Induction, it is
enough to show that if K" = 74 then A(n — Md) > A(n) (if » is large
enough). Since K" does not contain 7'(rd, d, 1), TM%4 ig a spanned subgraph
of K" (i.e. two vertices of T'M%4 gre joined by an edge of K" if and only if

they are joined by an edge of 7M%4, Denote by K the graph K" — TMdd,
by ey the number of edges joining K and 7"M%4. Clearly

(@) o) = e(TMd) 4 e, + e(E) .
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Similarly, select a M4 in T4, then T™¢ -- TMdd — Tn-Mdd holds and if e;
denotes the number of edges of 7™ joining 7M%4 with 7"~ then we have

®) o(T™4) = e(TM%9) + er 4 e(Tn=M4).
From this it follows that
An) = e(K)" — e(T%4) = (ex — ;) — {e(Kn—MdJ o5 e(Tn—Md)} s
— {e(En—Md) — o(K)} < ex — er + A(n — Md) .

(Since K does not contain T'(rd, d, 1) and »(K) = n — Md thus we have
e(Kn—Mdy _ o(K) > 0.)

Since from e, << e, follows A(n) < A(n — Md), it is enough to show that
either e, < e or K" = T"¢, Clearly e; = (n — Md)(d — 1)- M, since each
vertex of 7"~M%4 jg joined to (d — 1)M vertices of TM4, Let us estimate
ex now. In order of this, split the vertices of K into the following classes:

If By, ..., B; denotes the classes of TM%4 then any « € K is joined to
a suitably By, only by » — 1 edges, otherwise K" would contain a Q(r, d)
and consequently a 7'(rd, d, 1), too. _ _

Let 2 ¢ D if 2 € K is joined to TM%4 by less than (d — 1)M edges.
Further, if z € K — D, there is a By such that x is joined to less than
r — 1 vertices of By, and since x € D, i(x) is uniquely determined, more-
over, if j >14(), 2is joined to B;by more than (d — 1) - M — r — (d — 2) M =
— 2r edges. But trivially, « is not joined to the vertices of Bj, at all,
otherwise 7 — 1 vertices of By (at least one of which is joined to z), z and
r vertices from each other B; joined to « would determine a7'(rd, d, 1) & K".
Thus 2 is not joined to By, but since it is joined to the (d — 1) - M ver-
tices of 7Ma4d it is joined to all the other vertices of 7'M®4, In this case let
x € Gi(_-if i(x)).

Thus K is the disjoint union of C, . . ., Uy, D. Clearly

ex < (n— Md)-(d —1) M — | D| = ez — | D|.

We know that to show that either A(n) < A(n — Md) or K? =T™? it
would be sufficient to prove that from e, > e, follows K" = 74, Thus it
will be enough to show that if D is empty, then K* = 7T™9. But it is true,
since if |D| = 0, K is the disjoint union of C,, . . ., C;. Two arbitrary ver-
tices of B; |J C; must not be joined, since if z, y € B;|J C; were joined,
z, y, and r — 2 other vertices of B; and r vertices of each Bj(j # ¢) (which
clearly are joined to z and y) would determine a 7'(rd, d, 1) < K". Thus
B; U C; does not contain edges. Hence y(K") = d. Easy to see that 7™? can
be characterized also with the following property: y(7™9) = d and it has
more edges than any other d-chromatic graph. Thus e(K") <C e(T™¢) and
the equality holds only if K" = 7™¢, But from the extremality of K" we
have e(K") > e(T™%) and thus K" = T™¢. Qu.e.d.

This proof shows that it is a rather important property of 7 that it is
d-chromatic, and that ¢ has more edges than the other d-chromatic graphs.
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The problem arises naturally, whether all the graphs not containing
T(rd, d, 1) and having almost e(7"%) edges, are d-chromatic, or not.

An unpublished paper of mine proves that if 7¢(n > n,) are the extremal
graphs for F,, . .., F,;, then there exists a constant ¢ > 0 such that all the
graphs not containing any F;, and having more than e(7™?) — cn edges are
d-chromatic graphs. KrRpGs determined the greatest possible value of ¢ in the
case of 7’(2r, 2, 1). He proved the existence of a constant M such that if G”

does not contain 7'(2r, 2, 1) and e(G?) > e(T™?) — % + M, then %(G") = 2.

It was also given a graph by ErpOs showing that his result cannot be essen-
tially improved, and generally the conjecture, that if G” does not contain

T(rd,d, 1) and e(G?) >e(:T™9) — de— + M, then y(G") =d cannot be improved.

Consider a 7% and- let  and y be two vertices in the first class of it,

* n
By ety 2 (k — [E}

the edges (x, z;) if 1 <17 <k, << k and (y, 2;) if by + 1 < ¢ < k, where k,
is a fixed integer. The obtained graph I is clearly d-chromatic and it does
not, contain 7'(rd, d, 1). Since K,,; € T'(rd, d, 1) it is enough to show that
I™ does not contain K, ;. Suppose the contrary: Omitting all the edges
(x,2;), or all the edges (v, 2;), we obtain d-chromatic graphs not containing
K, Hence K,;,, contains at least one edge of form (z,z;) and an edge
(y, 2;). But since (z,z;) is an edge of K;,,, ¢ > K, and thus y€ K,,, can-
not be joined to z;. Thus K, contains two vertices which are not joined.
This contradiction proves our statement. /™ is not determined uniquely, it
has the parameter £k,. '

Clear].y e(P") — e(T”: d) il [%i| + 1
Thus we have a d 4 1 chromatic graph of e(7™4) — [%J + 1 edges not con-

be the vertices of the second one. Join z to ¥ and omit

s = [%] what can be assumed).

taining 7'(rd, d, 1) which shows, that optimal ¢ equals at mosté.
I proved that the conjecture of Erpds is also true in the general case:

Cannr— % , and I determined]the graphs attaining the maximum number of

edges amongst the graphs not containing 7'(rd, d, 1) and having chromatic
numbers greater than d.

Later I generalized these results and these generalizations will be proved
in the next two paragraphs.

VI. The problem of 7'(rd, d, s)

The problem of 7'(rd,d, s) will be investigated in this and in the next
paragraphs. First of all recall, that 7'(rd, d, s) denotes the graph obtained
from 7794 by putting s independent new edges into a class of it.
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ProerEM. Consider the graphs not containing T (rd, d, s) and having n ver-
tices. Determine the maximum nwmber of edges of these graphs and determine
also the graphs attaining the maximum.

In the following part r >2,d >2,1<s g% will be fixed.

DEFINITION. A graph G” will be called a “good” graph if it has s — 1
vertices such that the graph G"—S*! remaining after the deleting of this
s — 1 vertices is d-chromatic. (In other words: G" contains a d-chromatic
spanned subgraph G"—s*1). The other graphs will be called ‘“bad” graphs.
Clearly, if G" is good, it does not contain s independent K,., (otherwise
G"—+1 would contain a Ky, but x(G"5t1) < 4(K444))- Since I'(rd, d, 8)
contains s independent K,,,, a “good” graph does not contain 7'(rd, d, s)
either.

Denote by H(n, d, s) that very graph which is “good” and has more edges
than any other “good” graph. There exists sach a H(n, d, s) and it has the
following structure.

Join each vertex of a K,_, to each vertex of a 7"5+14, Thus we obtain
H(n, d, s). (The maximality property of H(n, d, s) is a trivial consequence of
the fact that 777—5%14 has more edges than any other d-chromatic G"*~5+1).

THEOREM 2. There exists an n, such that if n > n,, then H (n, d, s) is the
only extremal graph for the problem of T'(rd, d, s).

Moreover, there is a stability theorem on the 7'(rd, d, s) similar to the
stability theorem of 7'(rd, d, 1).

THEOREM 3. There is a constant M such that if G" does not contain T (rd, d, s)
and e(G") > e(H(n,d, s)) — % + M then G is “‘good’” graph i.e:: it contains
a d-chromatic spanned subgraph of n—s - 1 vertices.

Theorem 2 can be proved in a direct way by progressive induction, but
it follows also from Theorem 3.

Suppose that Theorem 3 is proved already. If L, is the extremal graph for
the problem of 7'(rd, d, s) then e(L") > e(H(n, d, s)) since H(n, d, s) does
not contain 7'(rd, d, s). If L" were a bad graph, then from Theorem 3 we
should have

e(L") < e(H(n,d,s)) — %—{— M <e(H(n,d,s))

if » > Md. Thus L" is a “‘good” graph for large values of n.

But then, from the maximality property of H(n, d, s) (among the good
graphs) and from e(L") < e(H(n, d, s)) we have L" = H(n, d, s) what is
wanted to be proved. Thus it will be proved only in Theorem 3.

REMARK. The proof of Theorem 3 is much longer and much more difficult,
than the proof of Theorem 2, since it contains colouring problems. Just
because of this the following lemmas will be needed in its proof.

19 Graph
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DerintrIoN. If 4,, . . ., A, are d classes of vertices and we join each pair
of vertices of different classes, the obtained graph is called a complete d-par-
tite graph. A complete d-partite graph determines its classes uniquely.

Levma 1. If y(@%) =d and A,, .. ., A,; are the sels of vertices having the
t-th colour at a fixed colouring of G* with d colours and m; denotes the number

of vertices of the i-th class of T™¢ [i. e. m; = [%] or m; = [%J + land XZm; =n
further |A;| = m; + s;, then

e(G“) ge(T”’d) - ([Z:]] ?

Proor. It is enough to prove the lemma with the assumption that if
vt #j,x € A;, y € A;then xand y are joined, i.e. G" is a complete d-partite
graph. For the sake of simplicity compare e(G") and e(7™9), where G* and
T4 are the complementary graphs of G" and T™¢ respectively. G and T™¢

are the disjoint unions of Kn,’s and of K, ’s, respectively. Hence

m; + 8

m%=2[2]=2[]+ >3 (@m =1+ 3.

Since }'s; = 0and J [ﬂ;‘] = ¢(7™?) thus

(@) = o(T™%) +— 3 3+ Sy
Here \mfsf|£~;-2'|s,-| .

d
Indeed X |s;|= 23 |s]+ L) |8;| . Without loss of generality
i=1 n

m= |5 m; = [%] +1
it may be assumed that the second sum of the right hand side is the

greater one, then Z‘ Is | < - 2'[81] Therefore, and since
sty i

E

et

Thus

e(@") <C e(T™9) — 2'82—|s[ = e(T"9) — Z[[Sfll.
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LeMMA 2. If ¢ w8 a given positive constant, there exists an n, such that if
n > ng, (G = d and e(G") > e(T™?) — cn then G" contains a T**?, where

v > [6 1 n] = C’n (C>01sa constant).

cd?

Proor. Colour the vertices of G with d colours and let 4; denote the set
of vertices of the i-th colour. For the sake of simplicity  and y will be
said to be joined by a red edge if they are of different colours and they are
not joined in G*. If |A;| = m; + s; and the number of red edges is Z, then
clearly ' '

£
2

(4) e(G") <e(T) — % =

e(@) > e (T™%) — cn therefore s; = O(Jn) and ¢ < cn. Consider those
vertices of " which are joined to more than 2cd vertices by red edges. The

number of these vertices is less than 5% Omit these vertices. The remaining
graph G* will be also d-chromatic, it will have the classes 4%, ..., 4% and
every « € A¥is joined at most with 2cd other vertices by red edges. Further
n
4p] > 2.
3d
Now the desired 7"%¢ can be constructed in G* as follows. Select recur-
sively a sequence of vertices @y, « .., 143 Taq, «« o Logs e = o o5 Lyps = Lo
so that @; € 4; and ;; be joined to all the x;; (k1) selected already. It

531,...,[ L ]:v,j=l,...,d

is possible to select d - » vertices x;; o
: ¢

in this way, since the number of vertices of A joined by a red edge to at
least oneof the vertices selected out before selecting ;;is less than d - v - 2ed<<

: n : :
< 2d%:- — " and because of this A¥ contains at least one vertex

6d3c 3d
joined to all the vertices w;; (k #=17) selected already.

n
. Qu.e.d.
6 cd3] ?

These vertices a;; form a 7% where v = [

Now we prove Theorem 3.

Proor. It will be useful to recall the statement which we want to prove.
It states the existence of a constant M such that if G" does not contain

T(rd, d, s) and e(@") > ¢(H(n, d, 8)) — % + M then G"is “‘good” graph:

we may omit s — 1 vertices of it in such a way that the obtained graph
would be d-chromatic.

1
(A) Let Fi > ¢ > 0 be a constant, small enough and M, > 0 be an integer,
sufficiently large. The conditions on ¢ and M, will not be explicitly stated

19*
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here, but later it becomes clear, which conditions must ¢ and M, satisfy.
However, it must be remarked, that ¢ is fixed first and the conditions on
M, may depend on c.

Denote by 8" an extremal graph of the considered stability problem, i.e.
let 8" be a ““bad” graph not containing 7'(rd, d, s) and having the maxi-
mum number of edges among bad graphs not containing 7'(rd, d, s).

Write

(5) A(n) = e(8") — e(H(n, d,s)) + [%] :

As it will be seen later, 4(n) is a bounded functon of n. Theorem 3 states
only that A(n) is bounded from above. To show this it will be enough to
prove that there is an 7, such that if » > n,, then either 4(n) < 0 or there
is an »” such that A(n') > A(n) and »" < n.

Suppose that 4(n) > 0. Then according to the theorem of Erpds and
STONE 8" contains a 7'Me+29d,d if 5 > 5, (M ). In each class of it there are
maximally s independent edges. Hence we may omit 2s vertices of each
class of T'Ms+29d4.d g0 that the remaining 7M.44 ig a spanned subgraph of S,

(B) Suppose that 794 is a spanned subgraph of S” satisfying the follow-
ing conditions:

Write § = 8" — 7”44 and denote by B;, ..., B; the classes of 7T*dd
Suppose that the vertices of S can be partitioned into d + 2 classes C,, . . .,
Cy, D, E where

(i) every x € K is joined with every vertex of 744,

(if) if « € C; then z is joined to at least (1 — c)» vertices of B;(j # %)

and at most—;-cv vertices of B;;
(i) if # € D, then there are two different classes of 7%%?: B;, and B, such
that x is joined to less than (1 — ¢)» vertices of Bj, and less than ~2~ cy

vertices of By, . Further if D is not empty then it contains at least one z, €.D
which is not joined with two suitable classes B; and B; of 7"%¢ at all.

(iv) S is a “bad” graph;
(v)%2v>c3sMO>r.

If we know the existence of such a 7"%4, we can finish the proof in the
following way:
From (5) we have

A(n —vd) — A(n) = {e(S" ") —e(8")} + {e(H(n, d, 5)) —e(H(n —vd, d, 5))} +

=[]

(6) > {e(S) —e(S")} +e(H(n, d,s) —e(Hn —vd,d, s)) — v
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since § is a bad graph not containing 7'(rd, d, s) and thus
e(8"~*%) > e(S) .
If eg denotes the number of e&ges joining § and 744 in S” then
(7) e(8") = e(8) + es + (T %) .
Select a 77%% < H(n, d, s) not containing the vertices of valence n — 1
of H(n, d, s), then clearly '
H(n, d,8) —T"%%=H(n —vd,d,s).

Denote by e;; the number of vertices joining 77%¢ and H(n — v d, d, s)
in H(n, d, s). Since the vertices of - H(n — vd, d, s) are joined to (d— 1)
vertices of 7"4:4, except the vertices of K,_,

(8) eg=m—vd)-v-(d—1)+ris—1).
Further .

(9) - e(H(n,d, s)) = e(H(n —vd, d, s)) Ly ik g (T2,
We have from (6), (7) and (9)

(10) An —vd) — A(n) > (ey — v) — es -

Distinguish the following two cases:
(a) |B| <s — 2. Theneg <ey—v=(n—vd)-v-(d—1)+»r-(s—2).
Indeed, the vertices of £ are joined to »d vertices of 744, the vertices

d
of | C,; to at most (d — 1)» vertices of 7744 and the vertices of D are joined
1

to less than (d — 1)-» — —;—cv vertices of T4, - Thus

es < (n—vd — |E|—|D|)v-(d—1) —[~E-d‘v+]D|-(d—l)w—|D|-~;—cv <<

<(m—vd)v(d—1)F(s—2)v=e—w.
In this case we have from (10): A(n — vd) > A(n), which was to be
proved. _ :

REMARK A. Equality holds (i.e. A(n — vd) = A(n))only if D is empty and
|E| = s — 1, further, all the vertices of C; are joined to all the vertices of B,
(¢ # 7).

(b) If |E| > s — 1 then |E| = s— 1 otherwise s vertices of B and rd — s
suitable vertices of 7744 would determine a 7'(»d, d, s) in §".

In this case B; |JC; does not contain edges, otherwise a T'(rd, d, s)
would be contained by 8”: » — s — 1 vertices of B, the vertices of £ and the
endpoints of the considered edge (z, ¥) would form the first class of it and r
- vertices of each B, (j # i) would form the other class of our 7'(rd, ad 8. 3"
(where these 7(d — 1) vertices must be joined with the endpoints of the con-
sidered edge). Thus B; |J C; does not contain edges. From the fact that S"is
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“bad” and from |E| < s — 1 follows that D is not empty. According to
(iii) the number of edges joining D and 7%%4 is at most [D|-(d — 1)-p — p —

~—écv(]DJ — 1). Thus
egs < (m—v-d)v-(d—1) 4+ (s-1)v—v—(|D;'—1)-%cvgeH—v

and thus A(n — vd) > A(n) in this case, too.
Therefore if we construct a 7*%? having the properties (1)=(v), the proof
of Theorem 3 will be completed.

REMARK B. In the case (b) A(n) = A(n — vd) only if |E| =s — 1, |D| =1
and the vertices of C; are joined to all the vertices of B; (¢ # j) and xy € D is
Joined to all the vertices of T%%4 except the 2v vertices of the two considered
classes B, Bju.

(C) First a 7% which will be constructed which may not satisfy (iv), i.e.
may be § = 8" — T*4d ig “good”.

Let T'y = 7% be a spanned subgraph of 8" such that M, < h < 3—7;- As

we have seen in (A), there exists such a 7™d1,

Notation. Let ¢ be a real number, then {¢} denotes the “upper entier” of
¢, ie.: {{} = min (n: n is integer, n > ¢).

(Cy) 1f there is an 2; € 8" joined to all the classes of 744 — 7', by more
than ¢” vertices, then 7' contains a 7T'; = T{¢}-4d each vertex of which is

joined to z;; . . . If there is an a; joined to at least ¢2% vertices of each class
of T';_,, then there is a 7'; = T'{¢*h}-dd T, each vertex of which is joined
to all the vertices @y, . . ., 2;. Thus we may define recursively a sequence of

graphs. However, this process stops at last after the construction of 7_,,
since if we could find a 7'y < 8" then rd — s suitable vertices of it and the
vertices @y, . . ., ¥, would determine a 7'(rd, d, s) in S". If this process stops
after the j-th step, consider whether there is anyvertex« € S™ for which besides
the fact that it is joined to a class of 7; by less than {c¥+2h} edges, is

joined to another class of T; by less than [l — %c] c®h edges, or not. If

there is no such wu, the algorithm stops. If there is such a u, then 7' ; con-
tains a T} = T{c™*hydd two suitable classes of which are not joined by
edges to u at all.

Now continue the original algorithm with 7. When this algorithm stops,
we obtain a 7'} = 744 guch that

() each vertex of T'% is joined to each vertex of {x,, ..., ,} where
O k< &—1.
(B) %>$>2M1:2c25-M.

(7) No vertex of 8" is joined to more than ¢2» vertices of each class of 7744

~

(C,) Denote by B, thei-th class of 7744, and write § = S* — 774,
Bi= da, . v x,}. If x € Sis joined to a B; by less than ¢ edges, to another
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B’j by less than 1——;0 7 vertices, then let « € D, If xz ¢ § — D —FK

then there is an i = i(z) such that By, is joined to z by less than ¢
edges but to every other B; by more than [1 = -12—0} 7 edges. Thus i(z) is

uniquely determined by x. Let € C; in this case.

(C;) Now, it_will be proved that there are at most s — 1 independent
edges in B; |J C;. Suppose the contrary: let (z;, ;) be independent edges in
B, UC,1=1,...,s Then the vertices z;, ¥, and » — 2s other vertices of
B, together with r suitable vertices of each B; determine a T'(rd, d, s) in S".
(The expression “‘suitable’” means that the 7 selected vertices of B; must be
joined to each ; and y;. But they actually can be selected in this way,
since B i contains at least ¥ — dcv vertices joined to each z; and y,
and if ¢ is small enough, and M is large enough, then » — dcy > r. Thus
B; | C, does not contain s independent edges.

(C,) Consider the edges joining B; and C; and select a maximal set of
independent edges among them: (z;, ¥), I=1, ..., 2, %€ B, y, € C;.
Clearly if € B;is joined to y € C;, then there is an / such that either = ;
or Yy = Y- =

The number of vertices of B; joined to at least one of ¥, . .., ¥, is less
than ¢Zi(s — 1). Omit from B; [¢% s] vertices and let be among them all
the vertices joined to at least one ;. Trivially ~ ¢2v vertices of B; were
selected arbitrarily, what will be useful later. Add these vertices to C;, thus
we obtain B; € B; and C; 2 C;. Easy to see that B; and C; are not joined
by edges. Suppose the contrary: € B; is joined to y € C;. Then z € B;
and y ¢ B,, since B; does not contain edges. Thus y € C;, hence (z,%)
connects B;and C;: either x = z;or y = ¥, and thus « is joined to an y,,, so
was -omitted from B, :x ¢ B;. This contradicts the original condition.

(C;) The classes B; determine a T+44 having the following properties:
If §'= 8" — 77dd then the vertices of S can be divided into the classes
sy Gy D T g0 -that
(i)* If z € E then x is joined to all the vertices of 7744 (since 7T*%4 C
C Ty, | -

(ii)* Let z € C,. Then xis not joined to less than '/, c» vertices of B;soit is

Q

not joined to less than % CYRLY*s — edges of B; thus z is joined to

2(1— c?)

at least [1 — E : 2} » vertices of Bj(j#t). Similarly « is joined to
—c
c? :
at most v vertices of B;.
1 —c? .

(iii)* Let x € D. Then there are B;and B;such that z is joined to
less than c2 7 vertices of B; and to less than {1 — %c] v vertices of B;. There-
62

fore, « is joined to B; by less than ¢?y ~~ 21—2—); v edges and to B; by less
—¢
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than [1 — —;—c) VAL (1 — uc) . - v edges. Further, if |D| 0 then there
— 3
are x € D and two classes B; and B; such that z is not joined to any
vertices of B; U B;. Thus we Obtamed a graph 7744 and the classes (|,
y Oy D, H Whlch satlsfy the conditions (i), (ii), (iii) 4nd (v) not in thelr
orlgmal form but in a little bit modified form: the constants are others in it.
However, if ¢ is small, these differences make no change in our proof, thus
we need not notice this difference. )
The only problem is that generally S does not satisfy (iv), i.e. S is
“good”. Now it will be shown that if 744 is selected in a suitable way,
S will be “bad”. If we knew this, we would have proved the Theorem.
We will find our 744 in three steps.
Heuristically:
First we select a T"%4 in S" with v, = O(1). If §; = S* — T"d4d is “bad”,
we are ready with our proof. If it is “good” then 3ust because of this S; con-
tains a 7":44 where v, > c,n and ¢ > 0 is a constant. Denote by D, the class
D corresponding to S, = S* — T"44, If |D,| is great, then egis small and,
since A(n) > 0, we obtain e(S,) > e (H(n — vzd d, s). SlnoeH(n— v d,d,s)
has more edges, than any other “good” @Qn—4 has, thus S, is “bad” and
this completes the proof. If |D,| is small, then we try to find another
graph 7"%4 for which |Ds| is great, but if we cannot do it, then we
can modify (C,) in the method (C) so that though |D,| is small, S, =
= S" —T"44 jg “bad”. In details: s
Select a TMdd < S7 and construct a 744 from it using (C). If §;, = S* —
— Tmdd jg “bad”, then we can apply (B) which completes the proof If it
is not, then by omitting s — 1 suitable verticesof S; we obtain a G™ (n,=
=n—v,d—s-+1) with %G") =d. Since e( ")>e(S”)—O()
=e(T"44)4-0O(n,) we may apply Lemma 2: G™ contains a 744 where
h > c¢n (and ¢, > 0 is a constant). Construct a 7%:%4from 744 ysing (C).

Then #; = c¥®e;n=cn, (¢ > 0). Put M, = 2d . If D, is the class D
CCy
corresponding to 7%:4¢ and it has more than M, vertices, then S, is ‘“bad”.
It will be proved indirectly:
Suppose that S, is *‘good”. Then e(S,) < e(H(n — v,d, d, s) since H(n, d, s)
has the maximum number of edges among the “good” graphs. Thus

(1) A(n) = e(8") — e(H(n. 4, 5)) + [%] = €(3,) + €5 + e(T"49) —

—e(H(n,d, s)) + [-g] < [g] + e(T49) — e(H(n, d, 5)) —
— e(H(n — v,d, d, 5)) + es.
From (9) and (11) it follows that

(12 4 < [2] = ten — es).
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On the other ha,nd.
1 1
(13) es < (d — 1) vy (n — v,d) —E|D2[cv2=eH— E|D2\cv2.

Since 4(n) > 0 we have from (12) and (13) that

n 1 n |
0 —|— =D, c¥ — — —|D,|ccon .
g[d] S(Dyen < 2 ——|Dy) e
Thus |D,| g_u% _ M,, which gives a contradiction.
cCy

Suppose now that |D,| < M,. Apply (C) to T4 slightly modifying it in
(Cy):

Applying (Cy), (Cy), (C5) to T4, we obtain a T%4d and the classes K,
D,, Cy, B,; i =1, ..., d). Now we omit first only [(s — 1)c?¥,] vertices
from B,; and put them into 0.

Thus we obtain the classes B} and CF. We do it so that the vertices of B}

> ) : By
are not joined to C¥*. Now omit from B} and put into C} —é-c% other ver-

tices. The obtained classes are denoted by Bf* and C§*. Now we define
the classes R;: _

Let z € R; if x € Cf* and there is a j(x) such that z is joined to less
than s vertices of B(x) Blan=0Cr%—Chy.

The following two cases will be distinguished:

Either [UR\/gvgoﬂUR[g-—vz
If |UR;| > 8_ iiz then we forget 7"%4 and construct a new graph as follows :
[ §

1
The classes B} — B}* determine a _’Z’[2 ] . Apply (C) to this graph.
The obtained 7744 will satisfy our conditions: S, is ““bad”. Since v, > ¢,

if we knew |Dg| >
is “bad”.
To show |D,| >

: as we have seen above, we should know that S;
ccs

5]

notice that U R; € D, and | U R;| > gizz
ccs d 8s

> Cgn. U R; € Dycan be proved as follows: Let B3y, .. By be the classes of

T*%4, Tt may be supposed that By, € OF* — CF. If € B then z is not
joined to C%* — Cf and it is joined to less than s vertices of Clé — Ol

Thus x € D,, therefore |Dy| > csn >
s “bad”.
£ 2 -
Lastly we must investigate the case | U R;| < e s In this case we
8s

2_ and from this we have that S,
¢Cs

apply the following trick:
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IHaoe B= UR;)U £ U D and z is joined to less than s vertices of Bi*

t
then let us put all these vertices from B¥* into O¥*. If it is joined to more than s
vertices of Bff* then put s arbitrary vertices, joined to z from B** into C;**.

Do this for every x€ R. Since | R| > —g—ﬁz - —2—d + 8, it can be done. After
s CCy

this put some other vertices of B¥* into O¥* so that if B,;, Cy; denote the

obtained classes, then |B,; — B,;|= |0y; — Cyi|= [¢27 s]. These classes

determine a 7™4¢ and it will be shown that S, = S® — 7™d4d ig “bad”.

This will be shown by an indirect proof:

Suppose that (S, — {u,,_. .., us_,}) = d where u,, . . ., u,_, are suitable
vertices of S,. Then colour S, — {uy, .. ., u,_,} by “1”, ..., “d” so that the
colour of the vertices of OF* — C,: be “¢”. Notice that if z € 0,; — R;
its colour is also ¢. Indeed,  is joined to at least s vertices of S,, thus it is
Joined to at least one vertex of Of* — C% — {u,, ..., Us_,} having the
colour “4”. Thus its colour differs from “%”. This is true whenever £ > i,
thus x has the colour “4”’. Colour now the vertices of B,; by “”. Thus each

vertex of S" — {u, ..., us_;} has a uniquely determined colour. It will
be shown that this colouring is good colouring of 8" — {u,, ..., us_,}.
If we knew this, the proof should be complete: we should obtain that
1(S"—{uy, . . ., us_y}) = d, thus 8" is “good”’, which contradiction should
prove that S, is ‘‘bad”. This is just the statement to be proved.

Thus we show now that the considered colouring of S — Py oo Doy}
is a good colouring. Let z and y be two vertices in S" — AN B
It must be shown, that if both x and y have the colour “s”’, then they are
not joined. Since 7*%4 and S, — {u,, .. ., u,_} are well-coloured, we may

assume that x € T"44and y€S, — {uy,...,us_,}. Ify ¢ R, theny € Cs; — R,
since its colour is ‘. Thus z and y are not joined (a vertex of C,,; can not
be joined to a vertex of B, ;). The other case is, when y € R. In this case
according to the modification of (C,) if ¥ were joined to x then it were joined
to at least s vertices of C¥* — (¥ and, consequently, to at least one vertex of
Of* — Of — {u,, ..., us_,} which is also of the i-th colour. Since S, — {uy,
- « - Us_ 1 } is well-coloured, this would be a contradiction, from which follows,
that z and y are not joined. As we have remarked already, from this follows
that 8" — {u,, ..., u,_,} is well-coloured by S" colours, thus it is a “good”
graph and this contradiction gives the desired result: S, is ““bad’”. Qn. e. d.

The structure of S in Theorem 3

Proving Theorem 3 we have eliminated all the difficulties of the stability

problem of 7'(rd, d, s). Our next purpose is to determine the structure of

S". First we investigate some candidates for it.
Let I'(n, d, s, 7) be the following graph. Join each vertex of a K,_, to
each vertex of a Tm—$+1.4, Thus we obtain an H(n, d, s). Let . IRl . 7

be the classes of 7"~s+1.7, We may suppose that | 4, | = [E%H] . Let now

Zy, ..., %, x be the vertices of 4,, y,, . . ., y,_; the vertices of 4, and join

[
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Z 1O &y, . . ., &_, further omit the edges joining x and vertices of 4,, except
the edges (z, ;) ¢ =1, ..., r — 1. The graph obtained will be denoted by
L(n, d, s, r) orifd, s, r are fixed, denote it shortly by I, Clearly e(I™) =
—e(H(n,d, s)) — [’3%] + 2r — 2.

It is easy to see that y(I™ — K,_,) = d + 1, therefore y(I™) =d -} s and
consequently I™ is a “bad”’ graph.

Now it will be shown that I'" does not contain T(rd, d, s). Suppose, it does.
Omit K,_, and « from it, then the remaining graph G* is d-chromatic. Since
T(rd, d, s) is not contained by G*, we omitted s vertices of T'(rd, d, s) such
that the graph T'* obtained from 7'(rd, d, s) is d-chromatic. This fact deter-
mines 7"*: we had to omit s endpoints of the s (different) extra edges. The
remaining grapb is-a complete d-partite graph, having d — 1 classes of »
vertices and one class, containing »—3 vertices. Each class of G* contains just
one class of 7*. Thus either A4, or 4, contains a class of 7'* having r vertices.
These two cases do not differ essentially. Consider e.g. when the class of x
contains a class of T'* containing 7 vertices. Since x is contained in 7'(rd,
d, s), x must be joined to this r vertices of 7'*. This is impossible, since x
is joined only to » — 1 vertices of 4,. This proves that I™ does not contain
T(rd, d, s). =

Since I'* is a “bad” graph not containing T(rd, d, s), therefore e(S") >
> e( ') and. consequently A(n) > 0. (This completes the proof of the statement
that A(n) = O(1). Thus Theorem 3 cannot be improved essentially.)
After having this construction, one may conjecture that I'(n, d, s, r) is an
extremal graph. But generally it is not true and this follows immediately
from the properties of the graph X(n, d, s, r) = 2" defined as follows:

Consider an H(n, d, s — 1) obtained from a 7"—S+2¢ and a K, ,. Let
x;; be r vertices in the i-th classof: = 1,...,d j =1, .. .,r and join z;; to %ia;
..., ;. Denote by 2™ the obtained graph. :

Trivially, e(X") = e(H(n, d, s — 1)) +d. (r—1). Here d > 2_and thus
2 gs “bad”’. This statement can be proved easily. It is a little more difficult
to show that X" does not contain T(rd, d, s). If d + s — 2 < r, the method
used to prove that I™ does not contain 7'(rd, d, s) works also, but it
breaks down if d s — 2 > r.

This statement can be proved in the general case in the following indirect
way. Suppose that T'(rd, d, s) € X" Let be A, ..., A; the classes of the
Tn—s+2d of X", A; may contain at most r vertices of 7'(rd, d, s): either a
whole class B;, or a vertex of B; which coincide with z;, and less than r
vertices from another B,. This statement is the trivial consequence of the
fact that all the edges joining two vertices of 4; contain x; as endpoint,
and that if « € B;, y € By, then « and y are joined. (4; cannot contain
vertices from 3 different B;-s, since it does not contain any triangle.)

Hence we may restrict our investigation to the case of 274+$=1ie. when
|4;| = r. Denote by E the class consisting of the vertices of K;_, and of
the vertices z;; (¢ = 1, . . ., d). It will be shown that by our hypothesis each
B; contains at least one vertex of £ and if B, is the class containing the
extraedges of T'(rd,d, s), then | B, (| K| > s. Thus we shall have |E| >d — 1 +
-+ s and this contradiction will prove our assertion.
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Suppose that B, contains ¢ vertices of K s—2 ((>0). Then B, —
(Ks_,[) B;) must contain at least s — ¢ > 2 independent edges.

(x) Suppose, that there exist A4; and A j each of which contains at
least 2 vertices of B;. Then both 4, and 4 j contain at most one vertex from
the other B,’s. Thus 4; |J 4; contains at most 2 other vertices of T(rd,d,s)
and from this follows that (s — 2) 4+ (d — 2)r - 2 vertices of 2'rd+s—1
must contain > r (d — 1) other vertices of 7'(rd, d, s). Clearly this is impos-

: . %
sible since s < = <r.

() Now it may be supposed that there is only one A4; containing at least
two vertices of B,. Moreover, it may be supposed that the other vertices of
B, are certain z;-s, otherwise we should have the same contradiction as in
(). We obtain from this, that B, contains at least s vertices of & sinco it
contains s independent edges. _

Consider now another B, (j > 2). If there is an 4 i containing B;, then
A; = Bj and thus B; contains just one vertex of Z. If there is not such an
4;, then it can be shown by the method used in () that there is an 4, con-
taining just one vertex of B;, moreover 4,  B; = a;, € E. Thus we have
proved that each B; contains at least one vertex of £ and B, contains at
least s vertices of K. As we have seen already this is a contradiction which
completes the proof of our statement.

Thus we obtained a second counter-example showing that A(n) = ¢(8") —

— ¢(H(n, d, s)) + [%} is bounded from below. Sometimes e(X") > e(I™).

The following modification of X will also be needed in the special case
§i= 80y

Instead of putting 3 edges (z;,, z;) I = 2, 3, 4 into B; put a triangle (x;,,
iy ¥33) in it (for certain values of ). It is easy to verify that the graph obtained
2" 45 “bad” and the method used above gives that ¢ does not contain
T(4d, d, 2). The only new idea of this proof is that three classes may exist
e.g. By, B,, B, such that 4; contains vertices from each of them. But then,
clearly, these vertices must be the vertices of a triangle in A;. Thus A;
does not contain other vertices from 7'(rd, d, ). From this we have the fol-

lowing contradiction: 4d — 4 vertices of 2" contain 4d — 3 vertices of
7(4d, d, 2).

Now we have seen, all the candidates for 8" and it will be proved that 8"
is really one of them (where in the case of I™ 87 may differ from I™ having

classes which contain more than gi] -+ 1 or less than [%] vertices.)

In the proof of Theorem 3 we used mathematical induction to show
that A(n) is bounded from above. It is known already that A(n) is also
bounded from below, moreover, that in the proof of Theorem 3 A(n) >0
always holds. Thus the proof gives us the existence of an n’ such that

—:~ <n' <mand A(n’) 2 A(n). Clearly, if n is sufficiently large, A(n') = A(n)
must hold just because of A(n’) > A(n) and 4 (r) = O(1). This means
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that " have either the property described in Remark A or the property
described in Remark B: If 7744 is a suitable subgraph of §" and Cj, .. .,
0y, D, E are the well-known classes of S = §” — 7744 then each vertex of
C; is joined to each vertex of B ;» Whenever 4  j and either

(A) |BE| =5 — 2 and D is empty, or :
(B) |B] =s — 1 and D = {z,}, where x, is not joined to B; and B, but
1t is joined to all the other vertices of 7744,

Consider first (B) and prove that in this case 87 has the same structure as ™.

When we proved that if |E| = s — 1, then D was not empty, we also
_ saw that in this case B, C; did not contain edges. Since S” is “bad”,
- @ must be joined to each C}, otherwise 8" — E would be d-chromatic. Denote
by @, . .., 2; the vertices of €y, by y,, .. ., y, the vertices of C, joined to z,
respectively. :

If we B;UC; V€ B;|JC;, but v does not coincide with any =, or Yies
and u # %o, then w and v are jorned. In order to show this suppose the contrary
and join them. The new graph §* must contain a 7'(rd, d, s) and this T'(d, d, s)
is not contained by S™. Thus it contains the edge (u, v). But change » on
a v* € B;, Since v* is joined to all the vertices which are joined to v, we
obtain a new subgraph G™ < 8" which contains a 7'(rd, d, 8). This contra-
diction shows that » and » are joined in 8”. Similarly, « ¢ E is joined to all
the vertices of S except may be to z,. Easy to see now that ¥, is joined at
most o r — 1 x;: if y; were joined to @y, . . ., , then z,, ¥, and the vertices
of B with » — s — 1 arbitrary vertices of B, and the vertices Yo ot M
from C, and finally r arbitrary vertices of B;j =3, ..., dwould determine
al(rd,d,s)C 8" Similarly: an x, is joined ai most to r — 1 y,. A short com-
putation shows that S” has a maximum number of edges if x, is joined
Just to r — 1 vertices of By and r — 1 vertices of B, and all the vertices of E
are joined to z,. Thus we have proved that S" has the same structure as ™.
In the case of the original problem, when s = 1 then |B| = s — 2 is impos-
sible. Thus S" has really the structure of I™. In general it is also a possible
version that |[E| = s — 2 and |D| = 1.

Then by the method used in the proof of Theorem 3 it can be proved that
B;|J C; does not contain two independent edges. It is known from Remark A
that each vertex of C; is joined to each vertex of. B (2 #7).

(i) First suppose, that only one class B; U C; contains edges. Since D is
empty and S is “bad”, these edges cannot have a common endpoint. This
fact and the fact that B; J C; does not contain 2 independent edges, give
that the edges in B; U C; form a triangle. '

Thus 8" has less edges than X" what disproves that S" is an extremal
graph. This is a contradiction. '

(ii) Therefore we may assume that B, U €, and B, U C, contain edges.
Denote by @; the class of the vertices of B; (J C; joined to another vertex
of B; U C;. Then all the vertices of C; ) B; are joined to all the vertices of
C; U B;)) — @, (j # 4). To show this suppose the contrary: suppose that
u€ ;U B)— Qandv ¢ C; U B; are not joined. Join them. The obtained
S* contains a T(rd, d, s) since 8” is extremal graph and S* trivially “bad”.
- This T'(rd, d, s) contains (u, v). Change u on a w* ¢ B; in T(rd, d, s). Since
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u* is joined to all the vertices joined to % thus we obtain a T(rd, d, s) c S,
This contradiction shows that 4 and v are joined in 8", Similarly, if v € E,
w € (C; U B) — @y, then w and v are also Jjoined.

(iii) Now we prove that e(S7) < e(Z7).

Suppose the contrary. From e(87) > ¢ (27) easily follows that there are
an ¢ <_ d and r 4 1 vertices, v, Vy « - o U € B |J €y, such that » is joined to
Yy, . . ., V. According to (ii) thereisa B 7 U O which contains an edge (u,, u,).
If both w, and u, were joined to all the »,’s then Uy, Uy, ¥, Handr — s — 1
vertices of B;, vy, ..., v, and r vertices of Bk # 2, k % j) would deter-
mine 7'(rd, d, s) € S". Therefore it can be assumed that %y, and v; are not
joined. Omit (v,, v) from S™ and join u, to v,. The argument used in (ii) shows
also that the obtained 8" does not contain T(rd, d, s). Since §" — (v, )
does not contain T'(rd, d, s) clearly 87 is <bad”. Since e(ST) > (8™) > e(Z™)
we may construct an S; from S} repeating the argument (iii), and then the
graphs 83, . . ., 8% such that e(8}) > e (X"). This process does not stop. But
on the other hand the sum of edges contained in B, UC =1 ;.. 0
is greater in the case of 8% than in the case of S%+1, which gives that the
sequence of ST, . . ., S% must be finite. This contradiction shows that e(8™) <
< e(27). Thus if |[B| = s — 2 then 2" is an extremal graph for the stability
problem of 7T'(rd, d, s). '

Now we must only decide, whether £” of I has more edges. If d > 3,
e(2") > e(I™) but in the case d = 2 e(I™) = e(2"). An easy discussion
of our proof shows that if d >3, » > 5, 3" is the only extremal graph
8" If d > 8 but » = 4 (and consequently s = 2), the X7 is also an extremal
graph, but there are no other extremal graphs. If d = 2, there are also
many other extremal graphs.

The problem of s independent K =

ProBLEM. What is the maximum number of edges a graph can have if it
does not contain s independent K ,?

Put d = p — 1. We have seen, that the “good” graphs do not contain s
independent K, ;. J. W. Moox has proved [3], generalizing some results
of P. ERDGs and T. GALLAT, [4], [5], that H (n, p — 1, 8) is the extremal graph
for the problem of s independent K a+1 ¢ n is large enough.

This result is an easy consequence of Theorem 3, moreover:

THEOREM 4. Suppose that » is sufficiently large. Bach graph having more
thaon e(I'*(n, d, s, t)) 4 2 edges, and not containing s independent K, | is
a ‘‘good” graph, where I'*(n, d, s, ) is the following graph.:

Consider an H(n, d, s) and let x, y be two vertices in its Tn=s+1 2 belonging
to the same class and be zy, . . ., 2 the vertices of another (minimal) class of it.
Omit the edges joining z,, . . ., 2, to x and Zi41s + - o 240 B0 Y, lastly join x and y.

REMARKS. 1. This graph I'™* (n, d, s, ) is the generalization of the graph
I introduced in the last part of the third paragraph, about which it is known
that it is d 1-chromatic but does not contain Kiia
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2. Since e(I*(n,d, s,1)) = e(H(n,d, s)) — w—ass L

+ 1, trivially, it

follows from Theorem 4 that if G" does not contain s independent Kynss
then e(G") < e(H(n, d, s)).

Proor. (A) Clearly y(I™(n, d, s, 8)) = y(I'*(n,d,s,t) — Ks_) + 5 — 1 =
=d -+ s. Thus I'* is a “bad” graph. If it contained s ,independent K, 1, then
I'* — K_, would contain at least one K, but it does not contain, thus
I'* does not contain s independent K, ,. Thus I'* shows that Theorem 4 is
sharply apart from the constant 2. Now we prove Theorem 4. Notice, that
in the proof of Theorem 2 we used only that S” is an extremal graph of a
given problem, and that it does not contain 7'(rd, d, s). Let 8" denote now
the extremal graph for the problem of s independent K. ,, then 8" does not
contain 7'(rd, d, s) either. Therefore the proof of Theorem 2 remains also
valid in this case. (It remains also valid in every case when F, ..., F,
are such that I'(rd, d, s) contains at least one of them, but H(n, d, s) does not
contain any F;. However, in this case A(n) may tend to —oo, i.e. generally
this result will not be the best possible.)

Since the proof of Theorem 2 remains valid for s independent K, , and

I'* proves that A(n) = ¢(8") — e(H (n,d, 8))-—|— [g > 0, we may determine

the extremal graphs in the stability-problem of s independent K,,, by
the same method, as we did in the case of T'(rd, d, s).

Using the well-known notations:

(a) Suppose that [D| = 0, [E| = s — 2 and each vertex of B, is joined to
each vertex of C}, (¢ # j).

In this case B;JC; does not contain two independent edges. This has
been proved already (see the case of 7T'(rd, d, s)). However, here we know
much more. If B;|J C; contains an edge, and j 3 i, then B;|JC; does not
contain edges, otherwise 8" would contain s independent K, ;. Since S" is
“bad”, there is just one class B; |J C,, containing edges. We cannot omit
any vertex « of B; |JO;, such that x is the endpoint of all the edges con-
tained in B; JC;. Thus B; |JC; contains 3 edges forming a triangle.
It is easy to see that in this case S” can be obtained from an H(n, d, s — 1)
by putting a K, into a class of its T"~5+24 This graph X* has e(I™) + 2 ed-
ges, thus in this case Theorem 4 is true and is best possible.

(b) The other case which must be investigated is when |E| =s — 1, D =
= {z,} and 2, is joined to all the vertices of 7"%¢ — B, — B, but it is not

‘joined to B; |J B,. Further, each vertex of C, is joined to each vertex
of B

Denote by x,, . .., 2, the vertices of B, by v, . . ., y,, the vertices of B,
joined to x,, respectively. Then a;, and y, are not joined. An easy argument
shows that this graph 8" has at most as many edges as a I™ and the equality
holds only if 8" = I™(n, d, s, t) for a suitable ¢ or it has the same structure

as I'*(n, d, s, t) only, maybe, 8" — K s—has also classes of more than % +1

and less than [%] vertices. This proves completely our statement. ~
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REMARK. It can be asked that if e(I™) = e(2*) — 2, why is ¢(I™) + 2 in
Theorem 4 stated instead of e(L*). The answer is that in one of the most
important cases, i.e. in the case s = 1 2* does not exist.

The problem of Q(r, d)

This paragraph contains the solution of an extremal graph problem similar
to the problem of 7'(rd, d, s).

Q(r, d) denotes the graph of rd + 1 vertices such that omitting a suitable vertex
of it having valency rd there remains a graph T7% The omitted vertex is
uniquely determined by Q(r, d). It will be called the extra vertex.

ProrLEM. Determine the maximum number of edges a graph G" can have if
it does not contain Q(r, d).

‘This problem was posed by P. ERDSs in connection with a geometrical
problem of the four-dimensional Euclidean space. To solve this geometrical
problem ErD3Js needed the problem above in the special case r = 3, d = 2.
~ An unpublished result of ErpGs states that the extremal graph for Q(3, 2)
can be obtained from 774¢ adding edges to it so that each vertex is joined
with 2 other vertices of its class.

In connection with my method Erpds asked me whether it works in
the case of @(8, 2). I solved this problem and not only in this special case
but in the general case too.

For the sake of simplicity this paper contains only the solution of the case
when 7 is odd. The case when 7 is even makes non-essential difficulties only
because there do not exist regular graphs of order » — 1 of n = 2k + 1 ver-
tices. (In the case, when r is even, the regular graphs of order r — 1 must
sometimes be replaced by graphs ha,vmg vertices of valence r — 1 except
one vertex which has valency r — 2. Then all our results remain valid.)

Let » be a given odd integer, d arbitrary and denote by U" = U(n, d)
the following graph.

Put edges into each class of a 7" @ go that any vertex of 7' 4 be joined
just to r — 1 other vertices of the same class. The graph U™ obtained thus
is not uniquely determined. %/, denotes the class of these graphs U". If the
edges are put into 7" 4 so that no class of 7 ¢ contains a triangle, then let
U" e Ut

THEOREM 5. Let n be large enough. Then (% is not empty and all the graphs
of U* are extremal gmpks of the problem of Q(r, d). On the other hand, all the
extremal graphs of Q d) (having n vertices) belong to Z,.

PrOOF. (A)Letmbelarge enough, and let » be an odd positive integer. There
exist regular graphs of order » — 1 without triangle and having m vertices.
(A) If m =2k let =y, ..., %, Y1, - - » Yi be 2k different vertices. Join
x; with y;, ¥i41, + .., Yiyr— (here y;., =y,). The resulting graph is 2-
chromatic regular graph of order r — 1 and trivially, without triangles.
(A,) If m = 2k + 3, consider the graph of (A,). Denote it by G%. It con-
tains 3/2(r — 1) independent edges such that the endpoints of these edges
are independent vertices of G2, Split these edges into 1/2 (r — 1) disjoint
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classes each of which contains just 3 edges: e;;, €5, €;5. Let u, v, w be 3 new
vertices. Join « to an endpoint of e;; and to an endpoint of ¢;, (2 =1 2,.. .,
1/2 (r — 1). Then do the same with v, e, ¢;; and with w, e;5, e;;. Thus we
obtain a regular graph of order » — 1 and it does not contain any triangles.
Indeed, if (z, ¥, z) were a triangle in it, then omitting %, » and w we would
obtain a 2-chromatic graph G* (without triangles). Thus {u, » w} must
contain at least one of z, ¥ and z. It may be supposed that # = z. Then ¥
and z are vertices joined to « but all the vertices joined to % are indepen-
dent: y and z are independent. Hence (z, ¥, z) is not a triangle. This contra-
diction proves (A). Thus %/} is not empty.

(B) It will be proved now that the graphs of % do not contain Q(r, d).
Apply mathematical induction on d. If d = 1, (B) is trivial. (Here d =1
is allowed, in other partsitis prohibited.) It will be shown that if the state-
ment is not true for d, then it is not true for d — 1, either. Suppose that
U, € %% contains a (7, d). It may be supposed that the extra vertex
x* € Q(r, d) is in the first class 4, of the 7™ ¢ C U™ Because of the definition
of U, z is joined to » — 1 other vertices of its class. Denote them by «,, . . .,
%,_ ;. These are independent vertices since the classes of 7 4 do not contain
any triangle. Thus they belong to the same class B; of 7744 C @(r, d) (Maybe
not all of them belong to @(r, d).) At least one vertex of this class B; is not
contained in A4,. Thus the other classes 4,, ..., 4; of U" contain d — 1
classes B; (j # ¢) of Q(r,d) — {x*} and a vertex 2’ ¢ B; — A, joined to
each vertex of these B;-s. But this proves just the existence of an U’ which

j
contains a Q(r,d — 1) where U’ = U'|n — [%}, d—1, r]. Thus the lem-

ma is not true for d — 1 either. This proves our statement (B).

1
(C) Let ¢ =—, M = 1072 Denote by V" an extremal graph of n ver-
5r =

tices. We want to prove that if » is sufficiently large, then V" ¢ ¢/,. This
will complete the proof, since all the graphs of %, have the same number
of edges, thus the graphs of 7/} are all extremal graphs, indeed.

This statement will be proved by progressive induection.

Let U™ be a special graph of 2% the classes of which contain disconnected
regular graphs of order » — 1, each of which has a component of M vertices.
Thus U" € 9} contains a Un-Md ¢ 9% _,., such that U" — Un-Md —
= UM ¢ 9¢%,. (Since M is even, there are regular graphs of order r — 1
having M vertices. Thus U" exists if » is large enough.)

Clearly the subgraphs UM¢ and Un—Md are joined by

(16) ey=(n—Md)-@—1)-M

edges in U" and

(17) e(U") = e(UM) + e, + e(U"~M).

Since ¢(V?) > e(U™) > e(T™ 9) thus V7 contains a T'Md, d if n is large enough.

Put V =V, —TM&hd and divide the vertices of V into the following
classes:

20 Graph
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B; denotes the i-th class of 7M4,2, If 2 ¢ V then there is a B,y such that
x 18 joined to less than r vertices of By,,. Indeed, if 2 were joined to at least
r vertices of gach B; then @« and rd vertices of B;-s joined to 2 would form
a Q(r, d) in V" This contradicts the definition of V. If the considered z is
joined by more than (1 — ¢)M edges to B; whenever j = i(z), then let
2 € Cp. (In this case ¢ = i(x) is uniquely determined by «). In the other
cases, when there is at least one B}, (j = #(x)) such that z is joined to at most
(L — ¢) M vertices of B; then let be « € D. Hence V is the disjoint union
of 0y, ..., Oy, D. Denote by c, the number of edges joining ¥ and 7'M4.4,
If V* is the subgraph of V" spanned by the vertices of 7Md d then e(V*) >

e(TMEdyiand _
(18) e(V") = e(V*) + e, e(V) = e(V) + ¢, + e(TM*9) .

Put A(n) = A(V") — A(T"). A(n) depends only on 7 and it is a non-nega-
tive integer. If V" € U, then 4(n) = 0. From (17) and (18) it follows that

A(n) — A(n — Md) = (e(V)" — e(T™)) — (e(V"~M?) — o(T*~M4)) =
= (e(V") — e(V-M)) — (¢(T") — e(U"~M4)) =

= (e(P) — e(V"=M9)) + e, + (e(V*) — e(UMH) —e,.
Thus

(19) A(n) —A(n— Md) = (e(V) — e(V"=M9)) + (e(V*) — e(UM)) + + (e,—e,)
There is an M, such that

(20) le(V*) — e(VM) | < M, .
Further, since ¥ does not contain Q(r, d)
(21) e(V) — e(Vi—Md) < 0.

It will be proved that if z is large enough

(a) either A(n) < A(n — 1),
(b) or An) < Ad(n — Md),
(e) or Vite'gl-

This will complete our progressive induction.

(a) If there is a vertex x € V" having valency less than%(d — 1), then
An) < d(n — 1):

Let V** = V" — {x}. It does not contain @(r,d), thus e(V") —
— o(x) = e(V**) <e(V" 1) and from this

(V1) — e(V"—1) < o(x) < % (@ — 1) < e(T™) — e(U™Y)

This inequality gives just the required result.
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Suppose now that neither (a) nor (b) hold: each x € V" has valency at
least % (d — 1) and A(n) > A(n — Md). From this and from (19), (20), (21)

it follows that
(22) 0<d(n — Md) — An) < (e, —e,) + M, .

We shall prove in five steps that V" € 7%,.

(i) (22) gives possibility to estimate |D|. First we remark that B; | C;
does not contain such a vertex which is joined to r other vertices of it. 1f B;|J C;
contained an z and z,, . . ., , such that z is joined to each w;, then these
vertices and r suitable vertices each of B, (j ¢) would determine a Q(r, d) =
C V. (“Suitable” means that it is joined to each z; and to z, too.) Thus
the number of edges joining B; and C; less than M- (r — 1) and

(23) 0o <(m—d-M)-@—1)-M+M-(r —1)d—|D|-r=
—=e,+M:-(r—1)-d—|D|-r

since a vertex of D is joined to less than (d — 2)M +r + (1 — )M =
= (d — 1) M — r vertices of - TMid, With the help of (23) and (22) we
obtain -

(24) |D|< ~91_—(ev—eu-|—M(r_ 1)-d)g—:7(M1+M(r —1)d)=M,.

Thus |D| 2s bounded.
(ii) We have also proved that a vertex belonging to B;|JC; is joined at
most to r other vertices of B; |J C,.

(iii) |B; U 0;|:§+0(V§). In order to show this omit the edges

joining two vertices of the same B;|JC; (i =1, ..., d) and the edges of D.
Thus there remains a G"—1P! which is d-chromatic and has e(7™¢) — O(n)
edges. Applying Lemma 1 to G"~2| we obtain the required result. Thus there
is a constant M4 such that '

|[BUCi| == | <My V.

(iv) There is a constant M, such that every « € B;|J C; is joined to all

the vertices of V" — (B;|JC,) except less than M, [n vertices. This
follows immediately from the fact that a is not joined at least to

dﬁ — M, n — r vertices of B;|JC; but % (@ —1) < o(@) <n (o(x) denotes
the valency of z).

(v) Now we prove that V" ¢ %, (which was to be shown). The
vertices of V" will be partitioned into d classes such that each vertex will be
joined to less than r other vertices of its class. Suppose, it has been done
already. Then trivially e(V") < e(U") and e(V") = e(U") if and only if
V" € Up. But e(V") > e(U") since V" is an extremal graph for Q(r, d) and
U" does not contain @(r, @). Thus V" € %,.

20*
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Let us see now the partition mentioned above.
The classes B; |J C; are not good for our purpose only because
U(B; U C,), maybe, does not contain all vertices of V. Therefore we classify

only the vertices belonging to D. Let D; be the class of those vertices, which
are joined to B;|J C; by less than r edges.

First it will be shown that D is the disjoint union of Dy, o8 il

() D; D; is empty since from z € D; D; would follow o(z) =

= (d — 2)d3+0(V5) < (d— 1)5’—.
() D =UD;. Indeed, let ¢ D and n, be the number of vertices of

; i
B; U C; joined to a. It may be supposed that n, < n,. Under this assump-
tion it will be proved that x€ D, . Suppose the contrary. Then %, > r. From

o(z) > dﬁ (d — 1) tollows that n; >é g if ©#1 otherwise o(z) ~ 3 n; <

< (@d—2) ;3 + 0(Vn) 4 —glg— would hold. Now we select rd + 1 vertices

from V" determining a Q(r, d) in it: 2 be the extra vertex of it, and select
vertices of B, (] C, joined to x. Then select » vertices in B, |J C, joined to
@ and to the r vertices considered in B, J C,. Let us continue this selection
and lastly select » vertices of B,JC, joined to z and all the rd — 1)
vertices selected from B, O, ..., By_; UCyy. (It is always possible
to do this since each vertex selected from B,UC,, ..., B;UC,; is joined

to at Ieastg — O()n) vertices of B;11UC;y,; and z is joined to at least
1:in .

3d
V™ contradicting the definition of V" Thus, indeed, D is the disjoint union
of D,, ... D,. Consequently V" is the disjoint union of the classes K; =

= B;JC;U D,. The only thing needed to be shown is that if 2 € E,, then
a is joined to less than r other vertices of E;. But it is known that z € D;is

joined to less than r + M, vertices of B; () C; and o(z) >—(d — 1), thus

vertices of B;, () O;4,). These rd + 1 vertices determine a Q(r, d) in

n
d
xis joined to all except maybe to O(Jn) vertices of V" — B; J C,;. Therefore
supposing that a vertex z € E, is joined to  other vertices of FE; it is easy to
construct a €(r, d) in V™. This contradiction proves that every x € K, is
joined to at most » — 1 other vertices of E;. As we have remarked already,
it follows from this result that V"¢ U I

The stucture of the extremal graphs in the gemeral case.
The stability theorem of the general problem

Let us consider the following problem: F,, ... F, are given graphs.
Determine the maximum number of edges a graph can have if G" which
does not contain an F,.
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We have solved this problem for some special F;-s and many other prob-
lems of this type have also been solved in other papers. The cases, when the
extremal graphs are known are such that the extremal graphs can be ob-
tained from a 7¢ omitting some edges from it and adding some new
edges to it where the number of the omitted and added edges is small.
According to this I posed the following conjecture:

If Fy, ..., F,are given graphs and K" is the extremal graph for them, then
K" can be obtained from a T4 adding less than o(n?) edges fo it.

Since that I have known that this conjecture is not true in such a general
form. However, it is almost true:

THEOREM 6. If Fy, ..., F; are given graphs and K" is the extremal graph
for them then there is a constant ¢ > 0 such that K" can be obtained from a
T4 omitting less than n®=¢ edges from it and adding less than n2= edges fo it,
where d = min y(F,) — 1.

Moreover, the following general stability theorem also holds:

TaEOoREM 7. Using the notations of Theorem 6: There is a constant C such
that iof e > 0 is arbitrary, n > n, (&) and e(G") > e(K") — C & n? and G" does
not contain any F; then we may omit less than en? edges of K" so that the ob-
tawned graph be d-chromatic.

Clearly, if G" is d-chromatic, since d = min y (F;) — 1, G" does not con-
tain any F; and according to Theorem 6 we may omit n2~¢ edges from
the extremal graphs so that the new graph is d-chromatic. Thus Theorem 6
is a general stability theorem.

REMARK. The first result in connection with my conjecture is due to
ErDES, who has noticed that there follows a part of the conjecture from
theorem of ERD&s—STONE [6]: |e(K") — e(T™4)| << n2~¢, where cis a suitable
positive constant. In the proof of this assertion there was used theorem
ERDSs—STONE in the following form: If 7, d are given integers, there is a
¢ > 0 such that from e(7™4) — n2~¢ < ¢(G") follows that G" contains a
Tr@+h.dtl To obtain Theorem 6 we needed the following sharpening of
the ErRpDOs—SToNE theorem.

If e(Tm2) < e(G™) and G does not contain Tr@+D.4+1  then it 4s possible
to omit n*=¢ edges from it so that the resulling graph is d-chromatic.

Looking for such a theorem Erp8s and I proved Theorem 6 indepen-
dently (where my statement coniained instead of C en® only 6n?, where
0 18 a suitable positive constant depending on ¢. However, this is not an
essential difference).

ErpGs mentioned this result in [7] but without proof, thus I give
here a complete proof of it. :

First we consider only the problem of 77@+Dd+1 je. we generalize the
theorem of ErDOS—STONE. '

THEOREM 8. (a) If r > 2, d > 2 are given positive integers, & is a positive
constant, then there exists a 6 > 0 and an n, such that if n > n, and G" does
not contarn Tr@+DA+1 | further if e(G") > e(T™?) — 6 n2, then we may omit
[e n?] edges of G" so that the resulting graph is d-chromatic.
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(b) Denote by K" an extremal graph for the problem of 7"@+Dd+1 We
may omit o(n?) edges of K" so that the resulting graph is d-chromatic.

ReMARkS. 1. ErDOs and independently T. K&vArr, T. V. S6s and P.
TUrRAN have proved [8] that if e(G") > Cn? — i (whereC > 0is a suitable con-
r

stant), then G contains a 7'2~2 which shows that Theorem 8 remains also
valid for d = 1. -

2. Apply Theorem 8 (a) on the extremal graph K". Since K"does not
contain 7r@d+1D,d+1 and e(K") > (I'™9), Theorem 8 (a) gives just Theorem
8 (b). Thus it is enough to prove Theorem 8 (a).

We need the fo]lowing

Lemma 3. If Fy, ..., F; are given graphs and K" is the extremal graph

o(K")
n

of their problems, then converges.

2

(This lemma is contained in [9] and in [2] also. [2] proves it in a more
general form using the theorem of Erpds—SToNE. But this (trivial) lemma
is needed just to avoid the use of the original ERDOS—STONE theorem.)

e(K")
YRR
)
e(K™) g( K1)
n) — (B—1)
| %)
(n — 2)-e(K") < n-e(K"1).

Let G3—1, ..., G721 be the spanned subgraphs of K" having n — 1 vertices.
Clearly .

Proor. It is enough to show that i1s a strictly decreasing se-

quence:

This is equivalent to

(r — 2)e(K") = 3 @ < 3 (K1) = n-e(K"Y),

since (a) each edge of K" is contained just in » — 2 G#~* and since (b)
G7-1 does not contain any #;, from what follows e(G?~1) <e(K"1).Q.e.d.

PrOOF oF THEOREM 8. As we know from the mentioned result of ERDGS,
Kovari, S6s and TurAN, Theorem 8 is true for d = 1. Thus we use
mathematical. induction on d.

Let now & > 0 be fixed and put c-——i, ?f;ze-c-L further
107 10d

Vn > M > 2-(10r)"+1 = 20r- ¢~". Here M is also a constant, but it will
be fixed only later. Lastly, let G” be any graph of » vertices not containing
Tr@+1d+1 agnd such that

7?:2

e(G1 Tn,dl el
) eI

AP



A METHOD FOR SOLVING EXTREMAL PROBLEMS 311

According to the inductional hypothesis, if » is sufficiently large, G" contains
a TMdd Without loss of generality it may be supposed that 7'Mdd is a
spanned subgraph of G". (Apply for e.g. theorem of Ramsey to a 7'Kdd
where K >> M). If there is an z, joined to each class of 7'Md.d py more,
than c¢M edges, then 7M44 contains a T¢Mdd, each vertex of which is
joined to x;. Similarly there can be constructed recursively T, ...,T;:
if there is an z; joined to each class of 7;_, = T{¢*M}dd by more than
{c‘ﬂ[} edges, then T;_, contains a 7', =T ﬂM}dd each vertex of which
ig joined to each of #;, ..., z;. This procedure stops in less than 7 steps,
since if we obtained 7', by 113 then certain vertices of 7', and 2z, ..., 2,
would determine a Tr@+D,d+1 in @n. This contradicts our a,ssumptlon
that @ does not contain 7'7@+D.d+1,

Now let 7'; be the graph obtained in the last step. Let £ denote the class
consisting of €y, ...,%, 6 =G"—1T,; and let the classes of T'; = T'M%¢d
be denoted by B Bd We split the vertices of G" into classes a....
0, D, E.Dis the ‘class of those vertices of G, which are joined to less than
cM, vertices of a B; and to less than (1 — 2¢) M, vertices of another B;

(Where ¢ and j depend on z). Further, let z € C; if there is a -Bz(x) such

that « is joined to less than c¢M, vertices of Bz(x) but z is joined at least
to (1 — 2¢)M, vertices of B, if j # i(z). Since all the vertices of G —E
are joined by less than cM edées to at least one B; (just because of the
algorlthm used to select T) thus each vertex of @ belongs just to one
of €, ...0; D E.

Now we show that B, U C; does not contain 7' 2. Suppose the con-
trary: % 2 jg contamed in B, |J C,. (Without loss of generality may
be assumed that 2 = 1.) Now We may select r — r vertices in B,, ..., B,
so that the r considered vertices of B, are joined to each of the 2r vertices
of 72" 2, These r(d 4 1) vertices determine a Z'(@+1),d+1 C (" disproving
that G" does not contain 7"¢@+1)d+1 Hence B; |J C; does not contain
T'? 2 indeed.

Two cases will be distinguished:

(a) |D| < 8dnc~1. In this case we need not go further in our proof: omit
the vertices of D |J E and omit the edges in B; |J C; (i = 1, , d). The
remaining graph is d-chromatic and the number of the omitted edges is

):

1
less than 8dnc—n2 + |En + O (nl r

The other case is when

(b) |D|> 8dnc—n.

The dlfﬁculty is that B; and C,; are joined by many edges. This case
can be eliminated in the followmg way: Let ¢ be the number of those
vertices of B; which are joined at least to nn vertices of C;. Consider
r arbitrary vertlces of C,. It will be said, the multiplicity of this 7- tuple
ig A if there are just 2 vertices in B; each of which is joined to each vertex
of the considered r-tuple. Then the multiplicity of an r-tuple is less than
r, otherwise a B; ) C; would contain a 7'?"2. Thus the sum of the mul-

tiplicities of the r-tuples contained in C; is less than r [n] . On the other
7
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hand it is at least ¢ [[17 n]] . Hence
r

gyt

r r

From this it follows that ¢ < _?:F + o(1) i.e. there exists an M, such that

7
t < M, for every n. Now we fix M so that be M, > max {¢~2M,, 20r}.
Omit M, vertices from each B; so that the vertices joined to more than
nn_edges of C; be among them. Put them into C;. The obtained classes
will be denoted by B; and C,, respectively. Clearly |B;| = |B;| — M =

=M, and My, > M, — c* M, from what M, < Hs

1—e2
The classes By, ..., B; determine a 7'* — T'M:dd — Gn, Tet Qn-Md —
== (" — T*. Then the decomposition of Gn=M4 into C,...,C,, D, E has
essentially the same properties as G, C,, . .., C,, D, E had. We need only

the following properties of it:

(i) Each vertex of E is joined to all the vertices of 7'*.
(ii) The classes B; and C; are joined by less than 2nnM, edges.

(ii) If € D, then z is joined to a By by less than ; = : M, edges
—c
~and to a Bj(i# j) by less than 11- 2E~M2 edges.
—¢

The number of edges joining 7* and G"-M:! jn G" will be denoted by
eg. From (i), (ii) and (iii) follows that

@ < (n—Myd—|E|—|D|)-(d—1)My+ |E|-d-M,+ 2dnn M, +

1—2¢
1 —¢2

¢
1 — ¢

(25) +|D|-(d—2)-M,+ |D|- M, +|D| M,.

Here the terms of the sum on the right hand side estimate the number of
edges joining

(a) the vertices of B; to the vertices of B; (¢ #j),

(b) the vertices of E to the vertices of 7',

(¢) the vertices of B; to the vertices of C; and, finally

(d)—(e) estimate the number of edges joining an x € D toT* Bf(x) — B
to B, and to By, respectively.

By (25) we have

0 < (0 = Myd) (@ — 1) My |B|- M, + 2don M, — | D| M, S =% <
(26)

<(n— M,d)-(d — 1) My+ rM,+ 2dyn- M, — M,-8dn-c-1-

¢
1+¢

H
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since |E| < r and |D| > 8dnc~1n.
1 10

Clearly 1o S g = T thus from (26) we have
(27) eg > — M,d)(d—1) —5ynM,.

Put u = d- M,. Clearly, from G"#* = G" — T*¢ we have
(28) e(@") = e(G"*) 1 eg 1 e(T™9)
and
(29) e(T™?) = e(T"~*9) + ey 4 (™),
where
(30) er=(n—m-(d—1)- M.

Hence. if A4(G") = e(G") — e(T™?) then
A(G") — (@) = {e(G") — e(G"=*)} — {e(T™¢) — o(T"=H4)} =
= {eg + e(T"%)} — {er + e(T*%)} = eg — er.
Here we have used (28) and (29). From (27) and (30) it follows that
AG@Y) —AG" ") < — 5 unn.

Puat k= E -n. Since A(G" ") > A(G"), if n is sufficiently large,
G~ contains also a T'M44, Apply our method to it: either we may omit
less than en? edges from it so that the resulting graph is d-chromatic or
we obtain a G"~% such that A(G"*) — A(G"~%) < — 5un (n — p). Let
us continue this procedure, thus we obtain recursively the graphs
Gn=3¢ .., G-k If this procedure finishes in less than £ steps, then omit-
ting all the edges of G” at least one endpoint of which occurs in a G" — G

and omitting less than en? edges from, G"~/*, we obtain a d-chromatic
graph. The number of the omitted edges is less than

1
en?+kopu-n=cen:+nn:=cen?|l-+ ]
A 4 ( 100 7d |

(which is greater than en? but it does not matter.) In this case we are
ready with our proof.

If the procedure does not finish in %k, steps, we have the graphs Gn—i
(2 = 1,...,R,) such that

A(Gr=G=18) > A(Gr=it) + 5 un(n — ip).
From this we obtain
: ko1

AGn=Hky > A(G) +5u-y- 2= ip) > AG") 4 2unn - ky =
= A(G") + 272 n2.
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If we know the ErRDOS—STONE theorem, we can finish the proof in the
following way: Let be 6 = 52 Then from e(G"?) > e(T™%) — on? follows
that 4(G") > — on?, thus A(G"~k4) > 6n> and consequently e(Gn—kd) >
> e(T™4) 4- 6m®.  Apply theorem ErpSs—STONE: GQ7—kd contains a
Trd+hd+l  and therefore G" contains also this 77@+1).4+1 This con-
tradiction shows that if e(@") > e(T™¢) — én2 and G" does not contain
Tr@+d+l then the procedure finishes in less than %, steps. Hence it

: edges from G" so that the obtained
1007d

‘graph be d-chromatic. This is just the statement to be proved.

But we may prove our theorem avoiding the use of the ERD8s—STONE the-
orem More exactly: we may prove the ERn6s—STONE theorem easily using
our results above and apply it only thereafter. Let {K"} be thesequence of
e(K™)

nt
non-negative constant «. Applying our method to K" we obtain that if » is
large enough, then it is possible to omit 2en? edges from K” so that the
obtained graph be d-chromatic. This will be shown by an indirect proof:
Suppose that there are infinitely many %, such that it is impossible to
delete less than 2en} edges from it so that the obtained graph be d-chro-
matic. Then from these graphs construct by the method described above

is possible to omit &en? (1 +

extremal graphs for 77(@+1.d+1_ According to Lemma 3 converges to a

the graph K" where n* =n; — u (gn,J =n; (1 — 7).
Thus we have
A(Knt) > e(K™) + 29*n?. From e(K™) > e(K™)

we obtain
(31) A(K™) > A(K™) + 29202
n g n,d
Clearly ula, converges since AKY) and itk converge. But from
n2 : n2 n2
(31) we have
A ng n; Bs o n n
R S AEY) L omp io T AED Ly AEY
f)? () il -

This contradiction proves that if ¢ > 0 is an arbitrary given constant,
and n is large enough, then we may delete 2en? edges from K so that the
obtained graph be d-chromatic. Thus e(K") = e(T™4) + o (n?) what is
just the ERDOS—STONE theorem. Now we may use it already and thus
we have proved Theorem 8 completely.

The following sharpening of Theorem 8 (b) is also true:

TEEOREM 9. Let v > 2 and d > 2 given integers and denote by K" an
extremal graph of n wvertices for the problem of Tré+D.d+1 Then we may
i

2
omit O(n" ) vertices of K" so that the resulting graph is d-chromatic.

4)
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Remark. Denote by f(n) the number of edges of the extremal graph
1
in the problem of 722, We know that f(n) = O(nz_ r) and because of this
1

Ralic
we shall prove just that we may delete O(n ’) vertices from K" so that
the resulting graph is d-chromatic. As a matter of fact, our proof gives,
that it is possible to omit less than

@1 [+ o)

edges from K" so that the resulting graph is d-chroma,tlc This result is
the best possible apart from the factor d.

Let H" be the extremal graph for 7'%-2 and write a H" into a class of
T4, The resulting graph does not contain 77@+D.d+1 and it is impossible to

3]

Lemma 4. Let M be a given positive integer and ¢ > O be an arbitrary
constant. Then there exist an M’ and a ¢’ < O such that if a set A of n elements
contains M’ subsels, Ay, . . ., Ay each of which contains at least cn elements,
then there are M given subsets A, ..., A;, whose intersection coniains
more than c¢'n elements.

(This almost trivial lemma is contained in a lemma of ErDOs [10]).

Proor or LEmMMmA 4. It is enough to prove thislemma when M = 2™,
This will be proved by induction on m. If M = 2, it is almost trivial. It may

edges of it so that the obtained graph should be d-chromatic.

be supposed tha;t‘ = Ly , where £ is an integer. Consider the set 4 and 3

¢
subsets of it A4,,..., 3. Put B;=A4; — |J 4;. Then B;-s are dls]omt
J#i
sets and at least one of them has less than —- elements. If for e:g.
3¢
2. 2n
| B | g — then there is an A4; which contains at least - ? 3 — —

elements of A,. This proves the lemma in the case m = 1. If we knew
the lemma for M = 2™ we could prove it for 2m+! as follows: there are an
M, and a ¢; > 0 such that if A is a set of n elements and 4,,..., 4y,
are subsets of it such that |4;| > cn then there are 2™ subsets among them,
the intersection of which contains at least ¢,n elements. It may be supposed

1
that ¢, = Ewhere q is an integer.

Now let 4,,..., A3y, be given subsets of a set 4 and let [4| = n,
|4;] > cn. We make 3q groups of the subsets A4;:
{Al’--'! 3qM1}_{-Bij- =1,...,.M, j=1, "'!39}'
Applymg the inductional hypothesis for B;,, ..., B;y, we obtaun that

there is a subset C; C 4 contained by at least 2™ of B, 1y wtaiy By, and
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having at least c;n elements. Apply now our result concerning the case
M = 2 to the subsets O,,. .., U3, there is a D C A contained by two

C; and having at least = - elements.

Trivially D is contained in at least 2m+1 subsets A4;. This completes
the proof of our lemma. :

ProOF oF THEOREM 9. Let K" be an extremal graph for 7', = 7'r@+1),d+1
and let us colour its vertices with d colours so that the number of edges,
joining vertices of the same colour be minimal. According to Theorem 7 (b)
this number is o(n?). The set of vertices of the i-th colour will be de-
noted by 4. Clearly if & € 4;, then z is joined to less vertices of A ; than
of 4; (j # 4). This follows from the minimality-condition of the colouring.

For the sake of simplicity the edges joining two vertices of different
classes will be called black edges, the edges joining two vertices from the
same A; will be called green edges, finally if = € 4, y ¢ 4 7 are not joined
and ¢ # j, then 2 and y will be said to be joined by a red edge. The number
of green edges is o(n?. From this and from e(K") < e(T™9) it follows
that the number of red edges of K" is also o(n2). Now we prove an important
property of the green edges. Let ¢ > 0 be an arbitrary but fixed constant.
Then the number of those vertices of K", which are the endpoints of at
least cn green edges, is bounded. In order to show this let us determine
M, ..., M, and c,, ..., csrecursively so that if | B| < n, and BBy
are the subsets of B containing at least en elements of B, then there exist
M;_, subsets B such that |J B;, | > ¢m. According to Lemma 4, if we
put M,=r, then we may determine such constants M fywein S
Cl,...,0d>0.

Now it will be shown that the number of vertices of 4, joined at least
to cn other vertices of 4; (i.e. the number of those edges which are the
endpoints of at least cn green edges) is less than M.

Suppose the contrary: let @, ..., ap, be vertices of A, each of which
is joined to at least cn other vertices of 4,. Let us denote by B;; the ver-
tices of 4; joined to 2;. From Lemma 4 we have that there are M,y
vertices among x,,...,zy, and a set C, C A4, such that |0y > ¢
and each of the considered w;-s is joined to each vertex of C,. We may
assume that these z;-s are just z,,... , ZMa, Apply Lemma 4 to
By3y..., By,,, There are M, , x;-s and a subset C, of A4, such that
each considered z; is joined to each vertex of C,. Then we select M d—a
vertices from these M,_, vertices and a Cy C 4,, so that each considered
;. is joined to each vertex of A, and so on. Thus we obtain d subsets
Cy...,04 and r vertices z,,...,x, so that C; C A;, |C)| >e¢y4_1 7 and
each vertex of C; is joined to each x,. Put ¢’ = minec, and let C¥ be a
subset of C; containing [c'n] edges. G* denotes the subgraph of K" spanned
by the vertices of |J C¥. It contains o(n?) red edges and from this follows
that it contains a 7744, The vertices of this 7744 are joined to each xz,
thus z,...,x, and 7794 determine a 77@+Dd+1 contained in K”. This
contradiction shows that the number of the vertices of 4; joined to at
least cn other vertices of A, is less than M -

)
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A second interesting result (conjectured by ErpGs and me) is that if
e > 0 is arbitrary and n > n(e), then each vertex of K" has valency

greater tha,nﬁ(d — 1) — en. (This is also true in the general case when

Tr@+hd+1 js replaced by F,, ..., F;). This can be proved by the following
argument:
There are r(d 4 1) = ¢ vertices «;,...,%; in 4, each of which is the

1
endpoint of less than— - en green edges. Let now z* be a new vertex
¢

(i.e. a vertex not contained in K"). Join it to all the vertices of 4, ) 4,
U...4,; except to those which are not joined to all z; (£ = 1, 0
We assert that the resulting graph K"+! does not contain i+

Let us suppose the contrary: 7@+d+1 jg contained in K”. Then clearly
this 7'(d+D,d+1 contains 2*, otherwise 77@+1.d+1 would also be contained
in K". But it does not contain all the vertices z;, . . . , z;. It may be assumed
thatews ¢ PHE+Dadl . o 15 joined to all the vertices which are joined to
x*. Therefore changing z* on x, in T'@+D.d+1 we obtain an other 7'rd+1)d-+1
not containing «* and thus contalned in K". This contradiction shows

~ : : ; n :
that K"*! does not contain 77d+D.d+1 Hence if |4, < [—] which may
be assumed we have d

(32) e(K™+1) > e(Rn+1) > ¢(K™) +§- @—1)—en.

On the other hand let » ¢ K"+l then Kr = Kgn+1 — {x} does not
contain 7'"@+Dd+1 either, and thus

(33) e(K") > e(K") = e(KN+1) — o(x) .
(32) and (33) imply that o(x) zdﬁ(d ) —en.

Thus each vertex of K"*! is of valency greater than dg(d — 1) — en.

Replace n by = — 1: each vertex of K" is of valency greater than
=il

d

: :
Let now be ¢ = e . Omit those vertices of 4; which are joined to
r

at least cn other vertices of A;. The obtained class will be denoted by A¥.
Clearly |4%| > |4,| — M,. A% does not contain T2"2 as a subgraph. In order
to show thls suppose the contrary and fix a 7’2 in 4A;. (We may assume
¢ = 1.) The vertices of A¥ are joined to less than cn veruces of 4;, thus
if x € A¥ then 4, (k # 1) contains less than 2cn vertices joined to x by

red edges. Really, |4} = d'_+ O(Jn), o(x) >=—— -

‘(d — 1) — &(n — 1) which is essentially the desired result.

n — o(n) and 2 i8 joined

to less than cn vertices of 4,, from what follows the statement.
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Now we select r vertices of A% each of which is joined to all the vertices
of 7?2 & A%, then select r vertices of A% each of which is joined to all
the vertices of 722, and to all the vertices that have been selected from A%,
and so on. Thus we obtain » vertices in each A} £ = 2, . . . , d which together

with the vertices of 7722 determine a 7'"@+D.d+1 Thig selection is possible -

since c is small enough. Thus we obtained a contradiction which proves that
1

Pz
A¥ does not contain 7% Thus Af contains O(n r) edges. Since |4; — A¥|=
1 1

= 0(1), A; contains also 0(%2_‘7) edges. Thus we may omit O(nz_’ )
edges of K" so that the resulting graph is d-chromatic. This completes
the proof of Theorem 9.

1
REMARK. Applying our proof with e(K") = e(T™4) - O(nz_ r) we obtain
that -
. 1

n 1o
(8) [4i] =+ +0(n #).

1

(b) The number of the red and green edges is O(n 7).
I

(¢) Kach vertex of K" has valency greater than (’;_ d—1)+0 (n] )

Proor or THEOREM 6. Since d = min X(F;) + 1, we may assume that
X(F,) = d + 1. There is an r such that F, C 7r@+Dd+1  Thus, if a graph
does not contain any F;, then it does not contain 7"@+D.d+1 ejther. In
the proof of Theorem 8 we have used only the fact that K" is an extremal
graph for a TURAN type problem and that K" does not contain
Tr@+hd+1, But this remains valid in our case, too, thus the proof of
Theorem 9 remains valid for the general case, too. Moreover, if there is

an F; such that F; can be coloured by 1, «2”, ..., “d”, further the.

number of vertices of the colour “1” is at most », then, maybe 7'7@+1.d+1
1

does not contain F; however O n r) vertices of the extremal graph
K" can be omitted so that the resulting graph is d-chromatic. (From
1

this it follows that e(K") = e®® 4 O(n" " 7), t0o.)

Proor or THEOREM 7. We prove only the existence of a d(¢) such that
if e(G") > e(T™?) — 6(e):n? and it does not contain any 77@+Dd+1 then
we may omit [en?] vertices of G" so that the resulting graph is d-chro-
matic. :

Since there is an F; having the chromatic number d + 1 and there
is a 7r@+Dd+l which contains F; as a subgraph, if G" does not con-
tain any F; then it does not contain 7'"@+1.d+1 either. Thus Theorem 7
is the trivial consequence of Theorem 8.

Here we finish our investigation.

—



A METHOD FOR SOLVING EXTREMAL PROBLEMS 319

Summarq of our resulls concerning the general problem

Let F,, ..., F, be given graphs. Denote by K" an extremal graph of
i the problem of F,,..., F,.
i 1
i 1 e(K”):e'z(T’”"-")—I—O(n1 ir), where d = min X(F;) — 1 and r is a
- positive integer such that there is an F; and a suitable colouring of it
by d 4 1 colours so that at most » vertices of F; have the first colour.
2. We may colour K" by d colours so that the number of the edges
' 1

having endpoints of the same colour is O(n2— 7). The number of the “red
1

edges” is also O(n:’_F). =5 L
3. Bach vertex of K" has valency —(d—1) +0(n ) (ie. the

vertices of K" have essentially the same valency as the vertices of
Tmd), If ¢ > 0 is a positive constant, then the number of vertices

n :
having valency greater tha,ngz— (@ — 1) + en is bounded. :
4. Each of the given colouring of K" contains dﬁ—i— O(nl_F) vertices

(i.e. the classes have almost the same number of vertices).
1 . 1

5. We may omit 0(n2 2r) edges of K" and add O(n2 2r) new edges
to it so that the obtained graph is just 774. (This result follows from
the others trivially.)

6. All the graphs having almost as many edges as K" has, are almost
of the same structure:

If & >> 0 is arbitrary, there exist a 6 > 0 and an n, such that if n > n,
and e(@") > e(T™9) — én? then either G" contains an F;, or we may delete
[en?] edges of it so that the resulting graph is d-chromatic.
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