
Chapter 1

Paul Erdős’ Influence on
Extremal Graph Theory

Dedicated to Paul Erdős on the occasion of his 80th birthday
Summary. Paul Erdős is 801 and the mathematical community is cele-

brating him in various ways. Jarik Nešetřil also organized a small conference in
Prague in his honour, where we, combinatorists and number theorists attempted
to describe in a limited time the enourmous influence Paul Erdős made on the
mathematics of our surrounding (including our mathematics as well). Based on
my lecture given there, I shall to survey those parts of Extremal Graph Theory
that are connected most directly with Paul Erdős’s work.

In Turán type extremal problems we usually have some sample graphs L1, . . . , Lr,
and consider a graph Gn on n vertices not containing any Li, We ask for the
maximum number of edges such a Gn can have. We may ask similar questions
for hypergraphs, multigraphs and digraphs.

We may also ask, how many copies of forbidden subgraphs Li, must a graph
Gn contain with a given number of edges superseding the maximum in the cor-
responding extremal graph problems. These are the problems on Supersaturated
Graphs.

We can mix these questions with Ramsey type problems, (Ramsey-Turán
Theory). This topic is the subject of a survey by V. T. Sós [162].

These topics are definitely among the favourite areas in Paul Erdős’s graph
theory.

Keywords: graphs, extremal graphs, graph theory.

1.1 Introduction

Extremal graph theory is a wide and fast developing area of graph theory. Hav-
ing many ramifications, this area can be defined in a broader and in a more

1This refers to the time of the conference, not to when this volume appears.
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P. Erdős: On sequences of integers no one of which divides the product of
two others and related problems, Mitt. Forsch. Institut Mat. und Mech. Tomsk 2
(1938) 74-82.

restricted sense. In this survey we shall restrict our considerations primarily to
“Turán Type Extremal Graph Problems” and some closely related areas.

Extremal graph theory is one of the wider theories of graph theory and – in
some sense – one of those where Paul Erdős’s profound influence can really be
seen and appreciated.

What is a Turán Type Extremal Problem?

We shall call the Theory of Turán type extremal problems the area which
– though being much wider – still is originated from problems of the following
type:

Given a family L of sample graphs, what is the maximum number of edges
a graph Gn can have without containing subgraphs from L.

Here “subgraph” means “not necessarily induced”. In Section 1.11 we shall
also deal with the case of “excluded induced subgraphs”, as described by Prömel
and Steger.

Below Kt, Ct, and Pt will denote the complete graph, the cycle and the path
of t vertices and epGq will be the number of edges of a graph G. Gn will be a
graph of n vertices, GpX,Y q a bipartite graph with colour classes X and Y .

The first result in our field may be that of Mantel [130] back in 1907, asserting
that if a graph Gn contains no K3, then

epGnq ď

„

n2

4



.

Mantel’s result soon became forgotten. The next extremal problem was the
problem of C4.

The C4-Theorem and Number Theory

In 1938 Erdős published a paper [43]
In this paper Erdős investigated two problems:

(A) Assume that n1 ă . . . ă nk are positive integers such that ni does not
divide nhn`, except if either i “ h or i “ `. What is the maximum number
of such integers in r1, ns? Denote this maximum by Apnq.

Let πpxq denote the number of primes in r2, xs. Clearly, the primes in r2, ns
satisfy our condition, therefore Apnq ě πpnq. One could think that one can find
much larger sets of numbers satisfying this condition. Surprisingly enough, the
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contrary is true: Erdős has proved that Apnq « πpnq. More precisely,

πpnq `
n2{3

80 log2 n
ď Apnq ď πpnq `O

ˆ

n2{3

log2 n

˙

.

For us the other problem of [43] is more important:

(B) Assume that n1 ă . . . ă nk are positive integers such that ninj ‰ nhn`
unless i “ h and j “ ` or i “ ` and j “ h. What is the maximum number
of such integers in r1, ns? Denote this maximum by Bpnq.

Here Erdős proved that

πpnq `
cn3{4

plog nq3{2
ď Bpnq ď πpnq `Opn3{4q.

Later Erdős improved the upper bound to

Bpnq ď πpnq `O

ˆ

n3{4

log3{2 n

˙

,

see [55]. It is still open if, for some c ‰ 0,

Bpnq “ πpnq ` p1` op1qq
cn3{4

plog nq3{2

or not.
Solving this unusual type of number theoretical problem, Erdős (probably

first) applied Graph Theory to Number Theory. He did the following: Let D be
the set of integers in r1, n2{3s, IP be the set of primes in pn2{3, ns and B “ DYIP .

Lemma (Erdős). Every integer a P r1, ns can be written as

a “ bd : b P B, d P D.

Let A be a set satisfying the condition in (B). Let us represent each a P A as
described in the Lemma: ai “ bjpiqdjpiq. We may assume that bi ą di. Build a
bipartite graph GpB,Dq by joining bi to dj if a “ bidj P A. Thus we represent
each a P A by an edge of a bipartite graph GpB,Dq. Erdős observed that the
number theoretic condition in (B) implies that C4 Ę GpB,Dq.

Indeed, if we had a 4-cycle pb1d1b2d2q in our graph, then a1 “ b1d1, a2 “
d1b2, a3 “ b2d2 and a4 “ d2b1 all would belong to A and a1a3 “ a2a4 would
hold, contradicting our assumption. So the graph problem Erdős formulated
was the following:

Given a bipartite graph GpX,Y q with m and n vertices in its colour classes.
What is the maximum number of edges such a graph can have without contain-
ing a C4?

Erdős proved the following theorem:
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Theorem 1. If C4 Ę GpX,Y q, |X| “ |Y | “ k, then

epGpX,Y qq ď 3k3{2.

Here the constant 3 is not sharp (see Section 1.4). Basically this theorem implied
the upper bound on Bpnq. To get the lower bound Erdős used finite geometries.
Erdős writes:

“. . . Now we prove that the error term cannot be better than O
´

cn3{4

plognq3{2

¯

.

First I prove the following lemma communicated to me by Miss E. Klein.2

Lemma. Given ppp` 1q ` 1 elements, (for some prime p) we can construct
ppp ` 1q ` 1 combinations, taken pp ` 1q at a time3 having no two elements in
common.”

Clearly, this is a finite geometry, and this seems to be the first application of
Finite Geometrical Constructions in proving lower bounds in Extremal Graph
Theory. Yet, Erdős does not speak here of finite geometries, neither of lower
bounds for the maximum of epGpX,Y qq in Theorem 1.

In the last years Erdős, András Sárközy and V. T. Sós started applying
similar methods in similar number theoretical problems, which, again, led to
new extremal graph problems, [80]. I mention just one of them:

Let FkpNq be the maximum number of integers a1 ă a2 ă . . . ă at in r1, N s
with the property that the product of k different ones is never a square.

Theorem 2. (Erdős-A. Sárközy-T. Sós, [80]). There exists a positive ab-
solute constant c ą 0 and for every ε ą 0 an N0pεq such that for N ą N0pεq we
have

p
?

2´ εqN2{3

log4{3N
ă F6pNq ´ πpNq ´ πpN{2q ă cN 7{9 logN. (1.1)

Taking all the primes of r2, N s and all the numbers 2p where p is a prime in
r1, N{2s we get πpNq ` πpN{2q such numbers and the above theorem suggests
that this construction is almost the best.

The solution of this problem depends on extremal graph theorems connected
to excluding C6. Analogous theorems hold for the even values of k, and some-
what different ones for odd values of k. The question which was asked is:

What is the maximum number of edges a bipartite graph GpU, V q with u
RED and v BLUE vertices can have if GpU, V q contains no C6 and uv ď N?

In [80] the following conjecture was formulated:

Conjecture 3. If GpU, V q is a bipartite graph with u “ |U | RED vertices and
v “ |V | BLUE ones, and GpU, V q contains no C6, and v ď u ď v2, then
epGpU, V qq ď cpuvq2{3.

The above upper bound of [80] has been improved first by Gábor Sárközy
[146]. Then E. Győri proved the above conjecture, which in turn brought down
the upper bound of (1.1) to the lower bound, apart from some log-powers.

2Eszter Klein, later Mrs. Szekeres.
3Meaning: p` 1-tupes . . . . The text here does not tell us if the role of Mrs. Szekeres was

important here or not, but somewhere else Erős writes: “Mrs. Szekeres and I proved . . . ”
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As related references, [80], [32], [146], [122], [123] should be mentioned.

Theorem 4. (Győri). If C2k Ę Gpm,nq, then epGpm,nqq ď pk´1qn`Opm2q.

Conjecture 5. (Győri). There exists a c ą a for which, if C2k Ę Gpm,nq,
then epGpm,nqq ě pk ´ 1qn`Opm2´cq.

Perhaps even epGpm,nqq ď pk ´ 1qn`Opm3{2q could be proved for C6.

“How Did Crookes Miss to Invent the X-Ray?”

Erdős feels that he “should have invented” Extremal Graph Theory, back in
1938. He has failed to notice that his theorem was the root of an important and
beautiful theory. 2-3 years later Turán proved his famous theorem and right
after that he posed a few relevant questions, thus initiating a whole new branch
of graph theory. Erdős often explains his “blunder” by telling the following
story.

Crookes observed that leaving a photosensitive film near the cathod-ray-tube
causes damage to the film: it becomes exposed. He concluded that

“Nobody should leave films near the cathod-ray-tube.” Röntgen observed
the same phenomenon a few years later and concluded that this can be used for
filming the inside of various objects. His conclusion changed the whole Physics.4

“It is not enough to be in the right place at the right time. You should also
have an open mind at the right time,” Paul concludes his story.

Erdős’s influence on the field is so thorough that we do not even attempt
to describe it in its full depth and width. We shall neither try to give a very
balanced description of the whole, extremely wide area. Instead, we pick a few
topics to illustrate Erdős’s role in developing this subject, and his vast influence
on others.

Also, I shall concentrate more on the new results, since the book of Bollobás
[10], or the surveys of myself, [154], [156], [157], or the surveys of Füredi [99]
and Sidorenko [149] provide a lot of information on the topic and some problem-
papers of Erdős, e.g., [51] [59], [61], [62] are also highly recommended for the
reader wishing to learn about the topic. Also, wherever it was possible, I selected
newer results, or older but less known theorems (partly to avoid unnecessary
repetition compared to the earlier surveys).

“The Complete List of Theorems”

If one watches Erdős in work, beside of his great proving power and elegance, one
surprising feature is, how he poses his conjectures. This itself would deserve a
separate note. Sometimes one does not immediately understand the importance
of his questions. Slightly mockingly, once his friend, Hajnal told to him: “You

4When I asked Paul, why did he think that Röntgen’s discovery changed the whole Physics,
he answered that Röntgen’s findings had led to certain results of Curie and from that point
it was only a short step to the A-bomb.
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I had to leave out quite a few very interesting topics. Practically, I skipped
all the hypergraph theorems, [99], [149] the covering problems connected to the
Erdős–Goodman-Pósa theorem, applications of finite geometrical methods in extremal
graph theory, see, e.g. [161], [156], . . . application of Lazebnik-Ustimenko
type constructions, [122] and many more. . .Among others, I had to leave out that
part of Ramsey Theory, which is extremely near to Extremal Graph Theory, (see
[94]) . . .and for many other things see Bollobás [10], [13], [14] . . .

would like to have a Complete List of Theorems”. I think there is some truth
in this remark, still one modification should be made.

Erdős does not like to state his conjectures immediately in their most general
forms. Instead, he picks very special cases and attacks first these ones. Mostly
he picks his examples “very fortunately”. Therefore, having solved these special
cases he very often discovers whole new areas, and it is difficult for the sur-
rounding to understand how can he be so “fortunate”. So, the reader of Erdős
and the reader of this survey should keep in mind that Erdős’s method is to
attack always important special cases.

Notation

We shall primarily consider simple graphs: graphs without loops and multiple
edges but later there will be paragraphs where we shall consider digraph- and
hypergraph extremal problems.

Given a family L of – so called – excluded or forbidden subgraphs, expn,Lq
will denote the maximum number of edges a graph Gn can have without contain-
ing forbidden subgraphs. (Containment does not assume “induced subgraph” of
the given type.) The family of graphs attaining the maximum will be denoted
by EXpn,Lq. If L consists of a single L, we shall use the notation expn,Lq and
EXpn,Lq instead of expn, tLuq and EXpn, tLuq.

For a set Q, |Q| will denote its cardinality. Given a graph G, epGq will
denote the number of its edges, vpGq the number of its vertices, ξpGq and
apGq its chromatic and independence numbers, respectively. For graphs the
(first) subscript will mostly denote the number of vertices: Gn, Sn, Tn,p, . . .
denote graphs on n vertices. There will be one exception: speaking of excluded
graphs L1, . . . , Lr we use superscripts just to enumerate these graphs. Given
two disjoint vertex sets, X and Y , in a graph Gn, epX,Y q denotes the number
of edges joining X and Y . Given a graph G and a set X of vertices of G, the
number of edges in a subgraph spanned by a set X of vertices will be denoted
by epXq, the subgraph of G spanned by X is GpXq.

Special graphs. Kp will denote the complete graph on p vertices, Tn,p is
the so called Turán graph on n vertices and p classes: n vertices are partitioned
into p classes as uniformly as possible and two vertices are joined iff they belong
to different classes. This graph is the (unique) p-chromatic graph on n vertices
with the maximum number of edges among such graphs. Kppn1, . . . , npq (often
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abbreviated to Kpn1, . . . , npq) denotes the complete p-partite graph with ni
vertices in its ith class, i “ 1, 2, . . . , p.

We shall say that X is completely joined to Y if every vertex of X is
joined to every vertex of Y . Given two vertex-disjoint graphs, G and H, their
product GbH is the graph obtained by joining each vertex of G to each one
of H.

Quoting. Below sometimes I quote some paragraphs from other papers,
but the references and occasionally the notations too are changed to comply
with mines.

1.2 Turán’s Theorem

Perhaps Turán was the third to arrive at this field. In 1940 he proved the
following theorem, [173] (see also [174], [172]):

Theorem 1. (Thrán). (a) If Gn contains no Kp, then epGnq ď epTn,p´1q. In
case of equality Gn “ Tn,p´1.

Turán’s original paper contains much more than just this theorem. Still, the
main impact coming from Turán was that he asked the general question:

What happens if we replace Kp with some other forbidden graphs,
e.g., with the graphs coming from the Platonic polyhedra, or with a
path of length `, etc.

Turán’s theorem also could have sunk into oblivion. However, this time
Erdős was more open-minded. He started proving theorems, talked to people
about this topic and people started realizing the importance of the field.

Turán died in 1976. The first issue of Journal of Graph Theory came out
around that time. Both Paul [60] and I were asked to write about Turán’s graph
theory [154]. (In the introductory issue of the journal Turán himself wrote a Note
of Welcome, also mentioning some historical facts about his getting involved in
graph theory [176].) Let me quote here some parts of Paul Erdős’s paper [60].

“In this short note I will restrict myself to Turán’s work in graph
theory, even though his main work was in analytic number theory
and various other branches of real and complex analysis. Turán had
the remarkable ability to write perhaps only one paper in various
fields distant from his own; later others would pursue his idea and
new subjects would be born.

In this way Turán initiated the field of extremal graph theory. He
started this subject in [1941], (see [173], [174]) He posed and com-
pletely solved the following problem . . . ”

Here Erdős describes Turán Theorem and Turán’s hypergraph conjecture,
and a result of his own to which we shall return later. Then he continues:
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“Turán also formulated several other problems on graphs, some of
which were solved by Gallai and myself [66]. I began a systematic
study of extremal graph theory in 1958 on the boat from Athens to
Haifa and have worked on it since then. The subject has a very large
literature; Bollobás has written a comprehensive book on extremal
problems in graph theory which will appear soon.” (Paul meant
[10].)

One final remark should be made here. As I stated in other places, Paul
Turán’ s role was crucial in the development of Extremal Graph Theory. Still,
even here there is a point, where Erdős’s influence should be mentioned again.
More precisely, the influence of an Erdős–Szekeres paper. As today it is already
well known, Erdős and Szekeres tried to solve a problem in convex geometry and
rediscovered Ramsey Theorem [91]. They informed Turán about their theorem,
according to which either the graph or the complementary graph contains a large
complete graph. Turán regarded this result as a theorem where one ensures the
existence of a large complete subgraph in Gn by assuming something about the
complementary graph. So Turán wanted to change the condition and still arrive
at the same conclusion. This is why he supposed that a lower bound is given on
the number of edges and deduced the existence of a large complete subgraph of
Gn. Turán writes in [173]:

“Theorem I gives a condition to guarantee the existence of a com-
plete subgraph on k vertices in a graph on a finite number of ver-
tices. The only related theorem – as far as I know – can be found in
a joint paper of Pál Erdős and György Szekeres [91] and essentially
states that if a graph A on n vertices is such that its complement
Ā contains only complete subgraphs having “few” vertices, then the
graph A contains a complete subgraph on “many” vertices. Their
theorem contains only bounds in the place of the expressions “few”
and “many”, in fact it gives almost only the existence; the exact
solution seems to be very interesting but difficult . . .

Some (Further) Historical Remarks

(a) Turán’s paper contains an infinite Ramsey theorem. I quote:

Theorem II. Let us suppose that for the infinite graph A containing count-
ably many vertices P1, P2, . . . there is an integer d ą 1 such that if we choose
arbitrary d different vertices of A, there will be at least two among these vertices
joined by an edge in A. Then A has at least one complete subgraph of infinitely
many vertices.

This theorem is weaker than the one we usually teach in our courses, never-
theless, historically it is interesting to see this theorem in Turán’s paper.

(b) Turán’s theorem is connected to the Second World War in two ways. On
the one hand, Turán, sent to forced labour service and deprived of paper
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and pencil, started working on problems that were possible to follow with-
out writing them down. Also he made his famous hypergraph conjecture,
thinking that would he have paper and pencil, he could have easily proved
it.

On the other hand it is worth mentioning that Turán’s Theorem was later
rediscovered by A. A. Zykov [[181], 1949] who (because of the war) learned too
late that it had already been published.

(c) As to Mantel’s result, I quote the last 4 lines of [173]: “Added in proof.
. . . Further on, I learned from the kind communication of Mr. József
Krausz that the value of dkpnqp“ expn,K3qq is given on p438, for k “ 3
was found already in 1907 by W. Mantel, (Wiskundige Opgaven, vol. 10,
p60-61).

I know his paper only from the reference of Fortschritte d. Math., vol 38 p.270.”

(d) During the war Turán was trying to prove that either a graph Gn or its
complementary graph contains a complete graph of order r

?
ns. He writes

in [176]:

“I still have the copybook in which I wrote down various approaches by induc-
tion, all they started promisingly, but broke down at various points. I had no
other support for the truth of this conjecture, than the symmetry and some dim
feeling of beauty: . . . In one of my first letters to Erdős after the war I wrote of
this conjecture to him. In his answer he proved that my conjecture was utterly
false . . . ”

Of course, all we know today, what Erdös wrote to Turán: the truth is
around c log n. This was perhaps the first application of probability to Graph
Theory, though many would deny that Erdős’s elegant answer uses more than
crude counting. Probably this is where the Theory of Random Graphs started.
(To be quite precise, one should mention, that T. Szele had a similar proof for
Rédei’s theorem on directed Hamiltonian cycles in tournaments, [166], already
in 1943, however, Erdős’s proof was perhaps of more impact and it was the first
where no other approach could replace the counting argument. Another early
breakthrough of the Random Graph Method was when Erdős easily answered
the following problem of Schütte [49]: Is there a tournament where for every k
players there is a player which beats all of them?)

I would suggest the reader to read also the beautiful paper of Turán [176],
providing a lot of information on what I have described above shortly.

(e) For a longer account on the birth of the Erdős-Szekeres version of Ramsey
theorem see the account of Gy. Szekeres in the introduction of the Art of
Count ing, [57].

1.3 Erdős-Stone Theorem

Setting out from a problem in topology, Erdős and A. H. Stone proved the
following theorem in 1946 [90]:
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Theorem 1. (Erdős-Stone). For every fixed p and m

expn,Kp`1pm, . . . ,mqq “

ˆ

1´
1

p

˙ˆ

n
2

˙

` opn2q. (1.2)

Moreover, if p is fixed and m :“
a

`ppnq where `ppxq denotes the p times
iterated logarithm of x, (1.2) still holds.

Here m “
a

`ppnq is far from being the best possible. The sharp order
of magnitude is c log n. Let m “ mpn, εq be the largest integer such that,
if epGnq ą epTn,pq ` εn2, then Gn contains the regular pp ` 1q-partite graph
Kp`1pm,m, . . . ,mq. One can ask how large is m “ mpn, εq, defined above?
This was determined by Bollobás, Erdős, Simonovits, [15], [17] Chvátal and
Szemerédi [37].

The first breakthrough was that the p-times iterated log was replaced by
K log n, where K is a constant [15]. In the next two steps the dependence of
this constant on p and ε were determined.

Theorem 2. (Bollobás-Erdős-Simonovits [17]). There exists an absolute
constant c ą 0 such that every Gn with

epGnq ě

ˆ

1´
1

p
` ε

˙ˆ

n
2

˙

contains a Kp`1pm,m, . . . ,mq with

m ą
c log n

p logp1{εq
.

The next improvement, essentially settling the problem completely is the
result of Chvátal and Szemerédi, providing the exact dependence on all the
parameters, up to an absolute constant.

Theorem 3. (Chvátal-Szemerédi [37]).

log n

500 logp1{εq
ă mpn, εq ă

c log n

logp1{εq
.

One could have thought that the problem is settled but here is a nice result
of Bollobás and Kohayakawa, improving Theorem 3.

Conjecture 4. (Bollobás-Kohayakawa [18]). There exists an absolute con-
stant α ą 0 such that for all r ě 1 and 0 ď ε ď 1{r every Gn of sufficiently
large order satisfying

epGnq ě

ˆ

1´
1

r
` ε

˙ˆ

n
2

˙
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contains a Kr`1ps0,m0, . . . ,m0q, where

s0 “ s0pnq “

Z

α log n

logp1{εq

^

and m0 “ m0pnq “

Z

α log n

log r

^

.

Bollobás and Kohayakawa [18] succeded in proving that under the above condi-
tions, if 0 ă γ ă 1, then Gn contains a Kr`1ps1,m1, . . . ,m1, `q, where

s1 “

Z

αp1´ γq log n

r logp1{εq

^

, m1 “

Z

αp1´ γq log n

log r

^

, and ` “ tαε1`γ{2nγu.

Observe that this result is fairly near to proving Conjecture 4: the first class is
slightly smaller and the last class much larger than in the conjecture.

The Kővári-V. T. Sós-Turán Theorem

The Kővári-T. Sós-Turán theorem [121] solves the extremal graph problem of
K2pp, qq, at least, provides an upper bound, which in some cases proved to be
sharp.5 This theorem is on the one hand a generalization of the C4-problem,
since C4 “ Kp2, 2q, and, on the other hand, is a special case of the Erdős-Stone
theorem, apart from the fact that we get sharper estimates.6,7

Theorem 5. (Kővári-T. Sós-Turán). Let 2 ď p ď q be fixed integers. Then

expn,Kpp, qqq ď
1

2
p
a

q ´ 1n2´1{p `Opnq.

The exponent 2´p1{pq is conjectured to be sharp but this is known only for
p “ 2 and p “ 3, (see Erdős, Rényi, V. T. Sós, [78] and independently W. G.
Brown [25]). Random graph methods [89] show that

expn,Kpp, pqq ą cpn
2´ 2

p`1 .

Recently Füredi [101] improved the constant in the upper bound, showing that

expn,Kp2, t` 1qq “
1

2

?
tn3{2 `Opn4{3q.

and that the constant provided by Brown’s construction is sharp. While one
conjectures that expn,Kp4, 4qq{n7{4 converges to a positive limit, we know only,
by the Brown construction, that expn,Kp4, 4qq ą expn,Kp3, 3qq ą cn5{3. It is
unknown if

expn,Kp4, 4qq

n5{3
Ñ8.

5A footnote of [121] tells us that the authors have received a letter from Erdős in which
Erdős informed them that he also had proved most of the results of [121].

6Estimates, sharper than in the original Erdős-Stone.
7Very recently J. Kollár, L. Rónyai and T. Szabó showed that if q ą p!, then

expn,K2pp, qqq ą cpn2´p1{pq. The paper: “Norm-graphs and Bipartite Turán numbers” will
appear in Combinatorica, 1996.
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The Matrix Form

The problem of Zarankiewicz is to determine the maximum integer kppnq such
that if An is a matrix with n rows and n columns consisting exclusively 0’s and
1’s, and the number of 1’s is at least kppnq, then An contains a minor Bp of p
rows and columns so that all the entries of Bp are 1’s.

One can easily see that this problem is equivalent with determining the max-
imum number of edges a bipartite graph Gpn, nq can have without containing
Kpp, pq.

In [121] the authors remark that the problem can be generalized to the case
of general matrices: when A has m rows and n columns and B has p rows and
q columns. Denote the maximum by kpm,n, p, qq. There are many results on
estimating this function but we shall not go here into details. Rather, we explain
the notion of symmetric and asymmetric bipartite graph problems.

As Erdős pointed out,

Theorem 6. Every graph Gn has a bipartite subgraph HpU, V q in which each
vertex has at least half of its original degree: dHpxq ě

1
2dGpxq, and therefore

epHpU, V qq ě 1
2epGnq.

One important consequence of this (almost trivial) fact is that (as to the
order of magnitude), it does not matter if we optimize epGnq over all graphs
or only over the bipartite graphs. Another important consequence is that some
matrix extremal problems are equivalent to graph extremal problems. Con-
versely, many extremal graph problems with bipartite excluded subgraphs have
equivalent matrix forms as well:

As usually, having a bipartite graph, GpU, V q we shall associate with it a
matrix A, where the rows correspond to U , the columns to V and aij “ 1 if the
ith element of U is joined to the jth element of V , otherwise aij “ 0.

Given a bipartite graph L “ LpX,Y q and another bipartite graph GpU, V q
|U | “ m and |V | “ n, take the mˆn adjacency matrix A of C and the adjacency
matrix B of L. Assume for a second that the colour-classes of L are symmetric
(in the sense that there is an automorphism of L exchanging the two colour-
classes). Then the condition that L Ę GpU, V q can be formulated by saying
that the matrix A has no submatrix equivalent to B, where equivalency means
that they are the same apart from some but same permutation of the rows and
columns. So Turán type problems lead to problems of the following forms:

Given an mˆ n 0´ 1 matrix, how many 1’s ensure a submatrix equivalent
to B?

If, on the other hand, the forbidden graph L “ LpX,Y q has no automorphism
exchanging X and Y , then the matrix-problem and the graph-problem may
slightly differ. Excluding the submatrices equivalent to B means that we exclude
that GpU, V q contains an L with X Ď U and Y Ď V , but we do not exclude
L Ď GpU, V q in the opposite position. Denote by ex˚pn,Lq the maximum in
this asymmetric case. Clearly, ex˚pn,Lq ě expn,Lq, and they are equal if L has
a colour-swapping automorphism.
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Conjecture 7. (Simonovits). If L is bipartite, then ex˚pn,Lq “ Opexpn,Lqq.

We do not know this even for Kp4, 5q. The difficulty in disproving such a
conjecture is partly that in all the proofs of upper bounds on degenerate extremal
graph problems, we use only “one-sided” exclusion. Therefore the upper bounds
we know are always upper bounds on ex˚pn,Lq.

Conjecture 8. (Erdős-Simonovits). For every L with a bipartite L P L
there is a bipartite L˚ P L for which expn,Lq “ Opexpn,L˚qq.

We close this part with a beautiful but probably difficult problem of Erdős.

Conjecture 9. expn, tC3, C4uq “
1

2
?
2
n3{2 ` opn3{2q.

The meaning of this conjecture is that excluding C3 beside C4 has the same
effect as if we excluded all the odd cycles. If we replace C3 by C5, then this is
true, see [84]. Erdős risks the even sharper conjecture that the exact equality
may hold:

expn, tC3, C4uq “ expn, tC3, C4, C5, C6, C7, C9, C11 . . .uq.

For some further information, see a survey paper of Richard Guy, [103] and
also a paper of Guy and Znam [104] on Kpp, qq and the results of Lazebnik,
Ustimenko and Woldar on cycles [122], [123].

Applications of Kővári-T. Sós-Turán Theorem

It is interesting to observe that the C4-theorem and its immediate generaliza-
tions (e.g. the Kővári-T. Sós–Turán theorem) have quite a few applications.
Some of them are in geometry. For example, as Erdős observed, if we have n
points in the plane, and join two of them if their distance is exactly 1, then the
resulting graph contains no Kp2, 3q. So the number of unit distances among
n points of the plane is Opn3{2q. Similarly, the unit-distance-graph of the 3-
dimensional space contains no Kp3, 3q, therefore the number of unit distances in
the 3-space is Opn5{3q. There are deeper and sharper estimates on this subject,
see Spencer, Szemerédi and Trotter [163] or Clarkson, Edelsbrunner, Guibas,
Sharir and Welzl [38].

Conjecture 10. (Erdős). For every ε ą 0, the number of unit distances
among n points of the plain is Opn1`εq.

We mention one further application: the chromatic number of the prod-
uct hyper-graph. Claude Berge was interested in calculating the chromatic num-
ber of the product of two graphs, H and H1. Generally there are various ways
to define the product of r-uniform hypergraphs. This product is defined as the
r2-uniform hypergraph whose vertex-set is the Cartesian product V pHqˆV pH1q
and the edgeset is

tH ˆH 1 : H P EpHq and H 1 P EpH1qu.
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The chromatic number of the graph is the least k such that the vertices can
be coloured in k colours without having monochromatic r2-tuples. Berge and I
[8] estimated the chromatic number of products of graphs (hypergraphs) using
Kövári-T. Sós-Turán theorem. The same time a student of Berge, F. Sterboul
[164], [165] have proved the same theorem and an earlier paper of V. Chvátal
[36] used the same technique to prove some assertions roughly equivalent with
this part of our paper [8].

1.4 Graph Theory and Probability

Erdős wrote two papers with the above title, one in 1959, [45], and the other
in 1961, [46]. These papers were of great importance. In the first one Erdős
proved the following theorem.

Theorem 1. For fixed k and sufficiently large `, n ą `1`1{p2kq, then there exist
(many) graphs Gn of girth k and independence number αpGnq ă `.

Clearly, the chromatic number of such a graph is at least vpGnq
αpGnq

. So, as Erdős

points out, a corollary of his theorem is that

Corollary 2. For every integer k for n ą n0pkq there exist graphs Gn of girth

ě k and chromatic number ě n
1

2k`1 .

This theorem seems to be a purely Ramsey theoretical result, fairly surpris-
ing in those days, but, it has many important consequences in Extremal Graph
Theory as well. The same holds for the next theorem, too:

Theorem 3. ([46]). Assume that n ą n0. Then there exist graphs Gn with
K3 Ę Gn and αpGnq “ Op

?
n log nq.

One important corollary of Theorem 1, more precisely, of its proof is that

Theorem 4. If L contains no trees, then expn,Lq ą c˚Ln
1`cL , for some con-

stants c˚L, cL ą 0.

On the other hand, it is easy to see that if L P L is a tree (or a forest), then
expn,Lq “ Opnq.

These theorems use random graph methods. They and some of their gener-
alizations play also important role, in obtaining lower bounds in Turán-Ramsey
Theorems. (See also Füredi-Seress, [102].) For general applications of the prob-
abilistic methods in graph theory see, e.g. Erdős-Spencer [89], Bollobás [13],
Alon-Spencer [6].

Of course, speaking of Graph Theory and Probability, one should also men-
tion the papers of Erdős and Rényi, perhaps above all, [77].

1.5 The General Theory

In this section, we present the asymptotic solution to the general extremal
problem.
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General Extremal Problem. Given a family L of forbidden subgraphs,
find those graphs Gn that contain no subgraph from L and have the maximum
number of edges.

The problem is considered to be “completely solved” if all the extremal
graphs have been found, at least for n ą n0pLq. Quite often this is too difficult,
and we must be content with finding expn,Lq, or at least good bounds for it.

It turns out that a parameter related to the chromatic number plays a deci-
sive role in many extremal graph theorems. The subchromatic number ppLq
of L is defined by

ppLq “ mintχpLq : L P Lu ´ 1.

The following result is an easy consequence of the Erdős-Storie theorem [90]:

Theorem 1. (The Erdős-Simonovits Theorem [81]). If L is a family of
graphs with subchromatic number p, then

expn,Lq “
ˆ

1´
1

p

˙ˆ

n
2

˙

` opn2q.

The meaning of this theorem is that expn,Lq depends only very loosely on
L; up to an error term of order opn2q, it is already determined by the minimum
chromatic number of the graphs in L.

Classification of Extremal Graph Problems

By the above theorem,
expn,Lq “ opn2q

if and only if ppLq “ 1, i.e. there exist bipartite graphs in L, From the Kövári-T.
Sós-Turán Theorem we get that here expn,Lq “ Opn2´cq for some c “ cpLq. We
shall call these cases degenerate extremal graph problems and find them
among the most interesting problems in extremal graph theory. One special
case is when contains a tree (or a forest). These cases could be called very
degenerate. Observe, that if a problem is non-degenerate, then Tn,2 contains

no excluded subgraphs. Therefore expn,Lq ě
”

n2

4

ı

.

Structural Results

The structure of the extremal graphs is also almost determined by ppLq, and is
very similar to that of Tn,p This is expressed by the following results of Erdős
and 8imonovits [52], [54], [150]:

Theorem 2. (The Asymptotic Structure Theorem). Let L be a family of
forbidden graphs with subchromatic number p. If Sn is any graph in EXpn,Lq,
then it can be obtained from Tn,p by deleting and adding opn2q edges. Further-
more, if L is finite, then the minimum degree

dminpSnq “

ˆ

1´
1

p

˙

n` opnq.
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The structure of extremal graphs is fairly stable, in the sense that the almost
extremal graphs have almost the same structure as the extremal graphs (for L
or for Kp`1). This is expressed in our next result:

Theorem 3. (The First Stability Theorem). Let L be a family of forbidden
graphs with subchromatic number p ě 2. For every ε ą 0, there exist a δ ą 0
and nε such that, if Gn contains no L P L, and if, for n ą nε,

epGnq ą expn,Lq ´ δn2,

then Gn can be obtained from Tn,p by changing at most εn2 edges.

These theorems are interesting on their own and also widely applicable.
In the remainder of this section we formulate a sharper variant of the stability

theorem.
One can ask whether further information on the structure of forbidden sub-

graphs yields better bounds on expn,Lq and further information on the structure
of extremal graphs. At this point, we need a definition.

Let L be a family of forbidden subgraphs, and let p “ ppLq be its subchro-
matic number. The decomposition M of L is the family of graphs M with
the property that, for some L P LL contains M as an induced subgraph and
L´ V pMq is pp´ 1q-colorable.

In other words, for r “ vpLq, L Ď M ˆ Kp´1pr, . . . , rq, and M is minimal
with this property. The following result is due to Simonovits [150], (see also
[54]). In case of L “ tKpu the family M consists of one graph K2.

Theorem 4. (The Decomposition Theorem, [150]). Let L be a forbidden
family of graphs with ppLq “ p and decomposition M. Then every extremal
graph Sn P EXpn,Lq can be obtained from a suitable Kppn1, . . . , npq by changing
Opexpn,Mq`nq edges. Furthermore, nj “ pn{pq`Opexpn,Mq{nq`Op1q, and

dminpSnq “

ˆ

1´
1

p

˙

n`Opexpn,Mq{nq `Op1q

It follows from this theorem that, with m “ rn{ps, expn,Lq “ epTn,pq `
Opexpm,Mq ` nq. If expn,Mq ą cn, then Opexpm,Mqq is sharp: put edges
into the first class of a Tn,p so that they form a Gm P EXpm,Mq; the resulting
graph contains no L, and has epTn,pq ` expm,Mq edges.

A second stability theorem can be established using the methods of [150]. To
formulate it, we introduce some new terms. Consider a partition S1, S2, . . . , Sp
of the vertex-set of Gn, and the complete p-partite graph Hn “ KpS1, . . . , Spq
corresponding to this partition of V pGnq, where si “ |Si|. An edge is called
an extra edge if it is in Gn but not in Hn, and is a missing edge if it is in
Hn but not in Gn. For given p and Gn, the partition S1, S2, . . . , Sp is called
optimal if the number of missing edges is minimum. Finally, for a given vertex
v, let apvq and bpvq denote the numbers of missing and extra edges at v.



1.5. THE GENERAL THEORY 17

Theorem 5. (The Second Stability Theorem). Let L be a forbidden family
of graphs with ppLq “ p and decomposition M, and let k ą 0. Suppose that Gn
contains no L P L,

epGnq ě expn,Lq ´ k ¨ expn,Mq,

and let S1, . . . , Sp be the optimal partition of Gn, Gi :“ GpSiq. Then

(i) Gn can be obtain ed from ˆGi by deleting Opexpn,Mq ` nq edges;

(ii) epGjq “ Opexpn,Mqq `Opnq, and vpGjq “ pn{pq `Op
a

expn,Mq `
?
nq;

(iii) for any constant c ą 0, the number of vertices v in Gi with apvq ą
cn is only Op1q, and the number of vertices with bpvq ą cn is only
Opexpn,Mq{nq `Op1q;

(iv) let L P L; with vpLq “ r, and let Ai be the set of vertices v in Si for
which bpvq ă pn{2prq; if M ˆKp´1pr1, . . . , rq Ď L, then the graph GpAiq
contains no M .

The constant k of the condition cannot be seen in (i)-(iv): it is hidden in the
constants of the Op.q’s This theorem is useful also in applications. The deepest
part is the first part of (iii). This implies (iv), which in turn implies all the
other statements. A proof is sketched in [77], where the theorem was needed.

We conclude this section with the theorem characterizing those cases where
Tn,p is the extremal graph.

Theorem 6. (Simonovits, [153]). The following statements are equivalent:

(a) The minimum chromatic number in L is p ` 1 but there exists (at least
one) L P L with an edge e such that χpL´ eq “ p. (Colour-critical edge.)

(b) There exists an n0 such that for n ą n0pLq, Tn,p is extremal.

(c) There exists an n0 such that for n ą n0pLq, Tn,p is the only extremal
graph.

The Product Conjecture

When I started working in extremal graph theory, I formulated (and later
slightly modified) a conjecture on the structure of extremal graphs in non-
degenerate cases. The meaning of this conjecture is that all the non-degenerate
extremal graph problems can be reduced to degenerate extremal graph prob-
lems.

Conjecture 7. (Product structure). Let L be a family of forbidden graphs
and M be the decomposition family of L, If no trees and forests occur in M,
then all the extremal graphs Sn for L have the following structure: V pSnq can
be partitioned into p “ ppLq subsets V1, . . . , Vp so that Vi is completely joined
to Vj for every 1 ď i ă j ď p.
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This implies that each Sn is the product of p graphs Gi, where each Gi is
extremal for some degenerate family Li,n. The meaning of this conjecture is
that (almost) all the non-degenerate extremal graph problems can be reduced
to degenerate extremal graph problems.

One non-trivial illustration of this conjecture is the Octahedron theorem:

Theorem 8. (Erdős-Simonovits [82]). Let O6 “ K3p2, 2, 2q (i.e. O6 is the
graph defined by the vertices and edges of the octahedron.) If Sn is an extremal
graph for O6 for n ą n0pO6q, then Sn “ Hm bHn´m for some m “ 1

2n` opnq.
Further, Hm is an extremal graph for C4 and Hn´m is extremal for P3.

Remark 9. The last sentence of this theorem is an easy consequence of that
Sn is the product of two other graphs of approximately the same size.

Remark 10. In [82] some generalizations of the above theorem can also be
found. Thus e.g., the analogous product result holds for all the forbidden graphs
L “ Kp`1p2, t2, . . . , tpq and L “ Kp`1p3, t2, . . . , tpq.

Probably the octahedron theorem can be extended to all graphs L “ Kp`1pt1, t2, . . . , tpq
and even to more general cases. On the other hand, in [155] counterexamples
are constructed to the product-conjecture if we allow trees or forests in the de-
composition family. In this case, when the decomposition contains trees, both
cases can occur: the extremal graphs may be non-products and also they may
be products. Turán’s theorem itself is a product-case, where the decomposition
family contains K2 “ P2.

Szemerédi Lemma on Regular Partitions of
Graphs

There are many important tools in Extremal Graph Theory that became quite
standard to use over the last 20 years. One of them is the Szemerédi Regularity
Lemma.

Let G be an arbitrary graph, X, Y Ă V pGq be two disjoint vertex-sets and
let dpX,Y q denote the edge-density between them:

dpX,Y q “
epX,Y q

|X| ¨ |W |
.

Regularity lemma. [168] For every ε ą 0, and every integer κ there exists a
k0pε, κq such that for every Gn V pGnq can be partitioned into sets V0, V1, . . . , Vk
- for some κ ă k ă k0pε, κq - so that |V0| ă εn, each |Vi| “ m for i ą 0 and for

all but at most ε ¨

ˆ

k
2

˙

pairs pi, jq, for every X Ď Vi and Y Ď Vj, satisfying

|X|, |Y | ą εm, we have

|dpX,Y q ´ dpVi, Vjq| ă ε.
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The applications of Szemerédi’s Regularity Lemma are plentiful and are
explained in details in [117], so here we shall describe it only very briefly.

One feature of the Regularity Lemma is that - in some sense - it allows us
to handle a deterministic graph as if it were a (generalized) random one. One
can easily prove for random graphs the existence of various subgraphs and the
Regularity Lemma often helps us to ensure the existence of the same subgraphs
when otherwise that would be far from trivial.

One example of this is the Erdős-Stone Theorem. Knowing Turán’s theo-
rem, the Szemerédi Lemma immediately implies the Erdős-Stene theorem. In
the previous section we have mentioned a few improvements of the original
Erdős-Stene theorem. The proof of the Chvátal-Szemerédi version also uses the
Regularity Lemma as its main tool. Joining the work of Thomason, [170] [171]
Fan Chung, Graham, Wilson, [35] [34] and others, V. T. Sós and I used the Reg-
ularity Lemma to give a transparent description of the so-called quasi-random
graph sequences, [158] that was generalized by Fan K. Chung to hypergraphs
[33].

The Regularity Lemma can be generalized in various ways. One of these
generalizations states that if the edges of Gn are r-coloured for some fixed r,
then we can partition the vertices of the graph so that the above Regularity
Lemma remains true in all the colours simultaneously. This is what we used
among others in proving some Turán-Ramsey type theorems [69], [70], [71] but
it has also many other applications.

Generalized Regularity Lemma. For every ε ą 0, and integers r, κ,
there exists a k0pε, κ, rq such that for every graph Gn the edges of which are
r-coloured, the vertex set V pGnq can be partitioned into sets V0, V1, . . . , Vk- for
some κ ă k ă k0pε, κ, rq- so that |V0| ă εn, |Vi| “ m (is the same) for every

i ą 0, and for all but at most ε

ˆ

k
2

˙

pairs pi, jq, for every X Ď Vi and Y Ď Vj

satisfying |X|, |Y | ą εm, we have

|dνpX,Y q ´ dνpVi, Vjq| ă ε simultaneously for ν “ 1, . . . , r,

where dνpX,Y q is the edge-density in colour ν.
As I mentioned, we describe the various applications of Szemerédi Lemma

in more details in some other place [117]. Here I mention only that it was
extended to hypergraphs by Frankl and Rödl [96], see also Chung, [33]. Prömel
and Steger also use a hypergraph version of the Regularity lemma in “induced
extremal graph problems” [141]. Algorithmic versions were found by Alon,
Duke, Leffman and Rödl, Yuster, [4], and in some sense it was extended to
sparse graphs by Rödl and independently, by Kohayakawa [116].

I should also mention some new variants due to Komlós, see, for example,
[117], [118].

1.6 Turán-Ramsey Problems

V. T. Sós has a survey [162] on
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- application of Turán type theorems to distance-distribution, initiated by
Erdős and Turán,

- Turán-Ramsey type theorems initiated by her,

- and the connection of these fields.

These fields belong to Extremal Graph Theory and are strongly influenced by
Paul Erdős. I will touch on these fields only very briefly.

These problems were partly motivated by applications of graph theory to
distance distribution. Turán theorem combined with some geometrical facts
can provide us with estimates on the number of short distances in various ge-
ometrical situations. Thus they can be applied in some estimates in analysis,
probability theory, and so on. It was Erdős who first pointed out this possibil-
ity of applying Graph Theory to distance distribution theorems [44] and later
Turán in [175] initiated investigating these problems more systematically. This
work culminated in 3 joint papers of Erdős, Meir, Sós and Turán [73], [74], [75].

The structure of the extremal graphs in Turán type theorems seems to be
too regular. So we arrive at the question: How do the upper bounds in extremal
graph theorems improve if we exclude graphs very similar to the Turán graphs?
Basically this was what motivated V. T. Sós [160] in initiating a new field of
investigation. Erdős joined her and they have proved quite a few nice results,
see e.g., [86], [87].

Let αpGq denote the maximum cardinality of vertices in G such that the
subgraph spanned by these vertices contains no Kp.

General Problem. Assume that L1, . . . , Lr are given graphs, and Gn is a
graph on n vertices the edges of which are coloured by r colours χ1, . . . , χr, and

#

for ν “ 1, . . . , r the subgraph of colour χv contains no Lv

and αppGnq ď m.

What is the maximum of epGnq under these conditions?
Originally the general problem was investigated only for p “ 2,8 and one

breakthrough was the Szemerédi-Bollobás-Erdős theorem:

Theorem 1. (Szemerédi [169]). If pGnq is a sequence of graphs not containing
K4 and the stability number αpGnq “ opnq, then

epGnq ď
1

8
n2 ` opn2q. (1.3)

Erdős asks if the opn2q error term is necessary: Is it true that in Theorem 1
the stronger

epGnq ď
n2

8

also holds?

8In all the papers quoted but in [71] we consider this special case.
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Theorem 2. (Bollobás-Erdős [16]). (1.3) is sharp.
Many estimates concerning general and various special cases of this field are

proved in [69], [70], [71]. Here we mention just one result:

Theorem 3. (Erdős-Hajnal-Simonovits-Sós-Szemerédi [71]). (a) For
any integers p ą 1 and q ą p if αppGnq “ opnq and Kq Ę Gn, then

epGnq ď
1

2

ˆ

1´
p

q ´ 1

˙ˆ

n

2

˙

` opn2q.

(b) For q “ pk ` 1 this upper bound is sharp.

One of the most intriguing open problems of the field is (among many other
very interesting questions)

Problem 4. Assume that pGnq is a sequence of graphs not containing the Oc-
tahedron graph Kp2, 2, 2q. If αpGnq “ opnq, does it follow that epGnq “ opn2q?

I conclude this section with a slightly different result of Ajtai, Erdős, Komlós
and Szemerédi. Let t be the average degree of Gn. Turán’s theorem guarantees
an independent set of size n

t`1 .

Theorem 5. ([1]). If the number of K3 Ď Gn is opn3q, then

αpGnq ą c
n

t
log t for t “

2epGnq

n
.

The nice feature of the above theorem is that it says: if the number of
triangles in Gn is opn3q, then the size of the maximum independent set jumps
by a log-factor. This is sharp: n

t log t is achieved for random graphs.
Theorem 5 can also be interpreted as follows: excluding the triangles (or

assuming that there are only few triangles in our graph) leads to randomlike
behaviour.

1.7 Cycles in Graphs

Cycles play central role in graph theory. Many results provide conditions to
ensure the existence of some cycles in graphs. Among others, the theory of
Hamiltonian cycles (and paths) constitute an important part of graph theory.
The Handbook of Combinatorics contains a chapter by A. Bondy [21] giving
a lot of information on ensuring cycles via various types of conditions. Also,
the book of Walther and Voss [178] and the book of Voss [177] contain many
relevant results. Below we shall approach the theory of degenerate extremal
graph problems (see Section 1.8) through extremal graph problems with forbid-
den cycles. Of course, one of the simplest extremal graph problems is when L
is the family of all cycles. If we exclude them, the considered graphs will be all
the trees and forests; the extremal graphs are the trees.
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Remark 1. Describing walks and cycles in graphs is perhaps one of those parts
of extremal graph theory, where algebraic methods may come in more often than
in other extremal problems. So here occasionally, and very superficially, I will
speak of Margulis graphs, Ramanujan graphs and Cayley graphs. I feel, these
topics are very important, not only because of expander graphs but also because
they provide new methods to construct nice graphs in extremal graph theory.
Hoping that the Handbook of Combinatorics will sooner or later appear, I warmly
recommend Noga Alons’ chapter: Tools from Higher Algebra [2], which provides
a lot of interesting and useful information - among others - on topics I had to
describe very shortly.

The Long Cycle Problem

One problem posed by Turán was the extremal problem of cycles of length m. If
we exclude all the odd cycles, the extremal graph will be the Turán graph Tn,2.
What are the extremal graphs if family Lm of excluded graphs is the family of
cycles of length at least m. The answer is given by the Erdős-Callai theorem:

Theorem 2. (Erdős and Gallai [66]). Let Lm “ tCk : k ě mu. Then

(i) m´1
2 n´ 1

2m
2 ă expn,Lmq ď m´1

2 n and

(ii) the connected graphs Gn whose 2-connected blocks are Km´1’s are ex-
tremal.

Graphs described in (ii) do not exist for all n, but we get asymptotically
extremal graphs for all n, by taking those graphs in which one 2-connected
component has size at most m´ 1 and all the other blocks are complete m´ 1-
graphs.

The following theorem is the twin of the previous one’s.

Theorem 3. (Erdős and Gallai [66]).

expn, Pmq ď
m´ 2

2
n.

The union of t 1
m´1 u vertex disjoint Km´1 (and one smaller Kq) shows that

this is sharp: expn, Pmq “
m´2
2 n`Opm2q.

This theorem has a sharper form, proved by Faudree and Schelp [92]. They
needed the sharper form to prove some Ramsey theorems on paths.

These theorems can also be used to deduce the existence of Hamilton paths
and cycles. Thus, for example, Theorem 2 implies Dirac’s famous result:

Theorem 4. (Dirac). If the minimum degree of G2k is at least k, then G2k is
Hamiltonian.

Erdős and T. Sós observed that the same estimates hold both for the path
Pm and the star K2p1,m´ 1q and these being two extremes among the trees of
m vertices, they conjectured that:



1.7. CYCLES IN GRAPHS 23

Conjecture 5. (Erdős-T. Sós). For any tree Tm,

expn, Tmq “
m´ 2

2
n`Op1q.

Some asymptotical approximations of this conjecture were proved by
Ajtai, Komlós and Szemerédi, (unpublished), also, the conjecture is proved

in its sharp form for some special families of trees, like caterpillars.

The Case of Excluded C2k

Since the odd cycles are 3-chromatic colour-critical, one can apply Theorem 6
to them to get

expn,C2k`1q “

„

n2

4



if n ą n0pkq.

The case of even cycles is much more fascinating. The upper bound would
become trivial if we assumed that Gn is (almost) regular and contains no cycles
of length ď 2k. The difficulty comes from that we exclude only C2k.

Theorem 6. (Erdős, Bondy-Simonovits [23]).

expn,C2kq ă ckn1`1{k
` opn1`1{kq,

Theorem 7. (Bondy-Simonovits [23]). If epGnq ą 100kn1`1{k, then

C2` Ď Gn for every integer ` P rk, kn1{k
s.

Erdős stated Theorem 6 in [51] without proof and conjectured Theorem 7,
which we proved. The upper bound on the cycle-length is sharp: take a Gn
which is the union of complete graphs.

Let us return to Theorem 6. Is it sharp? Finite geometrical (and other) con-
structions show that for k “ 2, 3, 5 YES. (Singleton, [159] Benson, [7] Wenger,
[179] . . . ). Unfortunately, nobody knows if this is sharp for C8, or for other
C2k’s.

Faudree and I sharpened Theorem 6 in another direction:

Definition 8. (Theta-graph). Θpk, pq is the graph consisting of p vertex-
independent paths of length k joining two vertices x and y.

Clearly, Θpk, pq is a generalization of C2k. We have proved

Theorem 9. (Faudree-Simonovits [93]). expn,Θpk, pqq ă ck,p ¨ n
1`1{k.

The Erdős-Rényi Theorem [77] shows that Theorem 9 is sharp in the sense
that

expn,Θpk, pqq ą c˚k,pn
1` 1

k`
1
kp as nÑ8.
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One could ask if there are other global ways to state that if a graph has many
edges then it has many cycles of different length. Erdős and Hajnal formulated
such a conjecture, which was proved by A. Gyárfás, J. Komlós and E. Szemerédi.
Among others, they proved

Theorem 10. (Gyárfás-Komlós-Szemerédi [105]). If dminpGq ě δ and
`1, . . . , `m are the cycle-lengths of G, then

ÿ 1

`i
ě c1 log δ.

The meaning of this is as follows: If we regard all the graphs with minimum
degree δ and try to minimize the sum of the reciprocals of the cycle-lengths,
two candidates should first be checked. One is the union of disjoint Kδ`1’s, the
other is the union of disjoint complete bipartite graphs Kpδ, δq’s. In the first
case we get log δ ` Op1q, in the second one 1

2 log δ ` Op1q. The above theorem
asserts that these cases minimize

ř

1
`i

.

Some graph theorists could be surprised by measuring the density of cycle
lengths this way. Yet, whenever we want to express that something is nearly
linear, then in number theory we tend to use this measure. Thus, e.g. the
famous $3000 problem of Erdős asks for the following sharpening of Szemerédi’s
theorem on Arithmetic Progressions [167]:

Conjecture 11. (Erdős). Prove that if A “ ta1 ă a2 ă ¨ ¨ ¨ u is an infinite
sequence of positive integers and

ÿ 1

ai
“ 8,

then for every k, A contains a k-term arithmetic progression.

Very Long Cycles

We know that a graph with minimum degree 3 contains a cycle of length at
most 2 log2 n. The other extreme is when (instead of short cycles) we wish to
ensure very long cycles. We may go much beyond the Erdős-Oallai theorem if
we increase the connectivity and put an upper bound on the maximum degree.

Theorem 12. (Bondy-Entringer [22]). Let fpn, dq be the largest integer k
such that every 2-connected Gn with maximum degree contains a cycle of length
at least k. Then

4 logd´1 n´ 4 logd´1 logd´1 n´ 20 ă fpn, dq ă 4 logd´1 n` 4.

9

9Here logd´1 x means log base d´ 1 and not the iterated log.
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Clearly, the connectivity is needed, otherwise - as we have seen - the Erdős-
Gallai theorem is sharp.

Increasing the connectivity to 3 we can ensure longer cycles:

Theorem 13. (Bondy-Simonovits [24]). If Gn is 3-connected and the min-
imum degree of Gn is d, the maximum degree is D, then Gn contains a cycle of
length at least ec

?
log n for some c “ cpd,Dq.

We conjectured that ec
?

log n can be improved to nc. Bill Jackson, Jackson
and Wormald succeded in proving this:

Theorem 14. (B. Jackson [109], [112]). If Gn is 3-connected and the min-
imum degree of Gn is d, the maximum degree is D, then Gn contains a cycle of
length at least nc for some c “ cpd,Dq.

Increasing the connectivity higher does not help in getting longer cycles:

Theorem 15. (Jackson, Parson [110]). For every d ą 0 there are infinitely
many d ` 2-regular d-connected graphs without cycles longer than nγ for some
γ “ γd ă 1.

We close this topic with an open problem:

Conjecture 16. (J. A. Bondy). There exists a constant c ą 0, such that
every cyclically 4-connected 3-regular graph Gn contains a cycle of length at
least cn.

Erdős-Pósa Theorem

The following question of Gallai is motivated partly by Menger Theorem. If G
is a graph

p˚qnot containing two independent cycles,

how many vertices are needed to represent all the cycles?
K5 satisfies p˚q and we need at least 3 vertices to represent all its cycles.

Bollobás [9] proved that in all the graphs satisfying p˚q there exist 3 vertices the
deletion of which results in a tree (or forest). More generally,

Let RC pkq denote the minimum t such that if a graph G contains no k ` 1
independent cycles, then one can delete t vertices of G ruining all the cycles of
the graph. Determine RC pkq!

Erdős and Pósa [76] proved the existence of two positive constants, c1 and
c2 such that

c1k log k ď RC pkq ď c2k log k. (1.4)

This theorem is strongly connected to the following extremal graph theoret-
ical question:

Assume that Gn is a graph in which the minimum degree is D. Find an
upper bound on the girth of the graph.
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Here the usual upper bound is

«
2 log n

logpD ´ 1q
. (1.5)

The proof is easy: Assume that the girth is g and let k “ t
g´1
2 u. Take a vertex

x and denote the set of vertices having distance t from x by Xt. Then for t ď k
we have |Xt| ě pD ´ 1q|Xt´1|. Therefore

n “ vpGnq ě 1`D `DpD ´ 1q `DpD ´ 1q2 ` . . .`DpD ´ 1qk.

This implies (1.5).
These things are connected to many other parts of Graph Theory, in some

sense even to the Robertson-Seymour theory. Below I shall try to convince the
reader that the Gallai problem is strongly connected to the girth problem.

In [151] I gave a short proof of the upper bound of (1.4). My proof goes as
follows (sketch!):

Let Gn be an arbitrary graph not containing k`1 independent circuits. Let
Hm be a maximal subgraph of Gn all whose degrees are 2,3 or 4. Then one can
immediately see that the ramification vertices of Hm, i.e. the vertices of degree
3 or 4 represent all the cycles of Gn.10 Let µ be the number of these vertices.
Replacing the hanging chains11 by single edges, we get an Hµ each degree of
which is 3 or 4. So one can easily find a cycle Cp1q of length ď c3 logµ in Hµ.
Applying this to Hµ ´C

p1q (but first cleaning up the resulting low degrees) we
get another short cycle Cp2q. This cleaning up is where we have to use that the
degrees are bounded from above. Iterating this (and using that the degrees are
bounded from above) one can find c4µ{ logµ vertex-independent cycles in Gn.
Since k ď c4µ{ logµ, therefore µ ď c5k log k.

The Erdős-Pósa theorem is strongly connected with the girth problem. If,
e.g. we had shorter circuits in graphs with degrees 3 and 4 then the above proof
would give better upper bound on RC pkq - but that is ruled out.

The Margulis Graphs and the
Lubotzky-Phillips-Sarnak Graphs

Sometimes we insist on finding constructions in certain cases when the random-
ized methods work easily. Often finding explicit constructions is very difficult.
A good example of this is the famous case of the Ramsey 2-colouring, where
Erdős offered $ . . . for finding a construction of a graph of n vertices not con-
taining complete graphs or independent sets of at least c log n vertices. (See
Frankl, Wilson [97])

Another similar case is the girth problem discussed above, with one excep-
tion. Namely, in the girth problem Margulis, [131], [132] and Lubotzky-Phillips-
Sarnak [126], [127], succeeded in constructing regular graphs Gn of (arbitrary

10The vertices of degree 4 are not really needed . . .
11paths all whose inner vertices have degree 2
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high) but fixed degree d and girth at least cd log n. The original random-graph
existence proof is due to Erdős and Sachs [79].

These graphs are Cayley graphs. Below (skipping many details)

(a) first we explain, why should one try Cayley graphs of non-commutative
groups,

(b) then we give a sketch of the description of the first, simpler Margulis graph
and

(c) finally we list the main features of the Lubotzky- Phillips-Sarnak graph.

(a) Often cyclic graphs are used in the constructions. Cyclic graphs are the
graphs where a set An Ď r1, ns is given, the vertices of our graphs are
the residue classes Zip mod nq, and Zi is joined to Zj if |i ´ j| P An
(or |n ` i ´ j| P An). One such well known graph is Qp (the Paley
graph) obtained by joining Zi to Zj if their difference is a quadratic non-
residue. The advantage of such graphs is that they have great deal of
fuzzy (randomlike) structure. From the point of view of the short cycles
they are not the best: they have many short even cycles.

(b) Given an arbitrary group G and some elements g1, . . . , gt P G, these el-
ements generate a Cayley graph on G: we join each a P G to the ele-
ments ag1, . . . , agt. This is a digraph. If we are interested in ordinary
graphs, we choose g1, . . . , gt so that whenever g is one of them, then also
g´1 P tg1, . . . , gtu. Thus we get an undirected graph. Still, if G is com-
mutative, then this Cayley graph will have many even cycles. For exam-
ple, a, ag1, ag1g2, ag1g2g

´1
1 , ag1g2g

´1
1 g´1

2 is (mostly) a C4 for commutative
groups and a P4 for non-commutative groups. So, if we wanted to obtain
Cayley graphs with large girth, we have better to start with non-Abelian
groups. This is what Margulis did in [131]:

Let X denote the set of all 2 ˆ 2 matrices with integer entries and with deter-
minant 1. Pick the following two matrices:

A “

ˆ

1 2
0 1

˙

and B “

ˆ

1 0
2 1

˙

.

It is known that they are independent in the sense that there is no non-trivial
multiplicative relation between them. So, if we take the 4 matrices A,B,A´1

and B´1, they generate an infinite Cayley graph which is a 4-regular tree. If
we take everything mod p, then it is easy to see that the tree collapses into a
graph of n « p3 vertices, in which the shortest cycle has length at least c log p for
some constant c ą 0. This yields a sequence of 4-regular graphs Xn with girth
« c˚ log n for some c˚ « 0.91 . . . Margulis also explains, how the above graphs
can be used in constructing certain (explicit) error-correcting codes. Margulis
has also generalized this construction (in the same paper) to arbitrary even
degrees.
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Theorem 17. (Margulis, [131]). For every ε ą 0 we have infinitely many
values of r, and for each of them an infinity of regular graphs Xj of degree 2r
with girth

gpXjq ą

ˆ

4

9
´ ε

˙

log vpXjq

log r
.

(c) The next breakthrough was due to Margulis [132] and to Lubotzky, Phillips
and Sarnak [126]. The graph of Lubotzky, Phillips and Sarnak was ob-
tained not for extremal graph purposes. The authors, investigating the
extremal spectral gap of d-regular graphs, constructed graphs where the
difference between the first and second eigenvalues is as large as possible.
Graphs with large spectral gaps are good expanders, and this was perhaps
the primary interest in [126] or in [132]. As the authors of [126] remarked,
Noga Alan turned their attention to the fact that their graphs can be
“used” also for many other, classical purposes.

Definition 18. Let X be a connected k-regular graph. Denote by λpXq the
second largest eigenvalue (in absolute value) of the adjacency matrix of X.

Definition 19. A k-regular graph on n vertices, X “ Xn,k, will be called a
Ramanujan graph, if λpXn,kq ď 2

?
k ´ 1.

I do not have the place here to go into details, but the basic idea is that
random graphs have roughly the spectral gap12 required above and vice versa:
if the graph has a large spectral gap, then it may be regarded in some sense, as
if it were a random graph. So the Ramanujan graphs provide near-extremum
in some problems, where random graphs are near-extremal. (See also [3], [35])

Let p, q be distinct primes congruent to 1 mod 4. The Ramanujan graph
Xp,q of [126] is a p ` 1-regular Cayley graph of PSLp2, ZZqq if the Legendre

symbol
´

p
q

¯

“ 1 and of PGLp2, ZZqq if
´

p
q

¯

“ ´1. (Here ZZq is the field of

integers mod q.)

Theorem 20. (Alon, quoted in [126]). Let Xn,k “ Xp,q be a non-bipartite

Ramanujan graph;
´

p
q

¯

“ 1, k “ p` 1, n “ qpq2 ´ 1q{2. Then the independence

number

αpXp,qq ď
2
?
k ´ 1

k
n.

Corollary 21. ([126]). If Xn,k is a non-bipartite Ramanujan graph, then

χpXn,kq ě
k

2
?
k ´ 1

.

Margulis, Lubotzky, Phillips and Sarnak have constructed Ramanujan graphs
which are p` 1-regular, and

12´ difference between the largest and second largest eigenvalues
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(a) bipartite with n “ qpq2 ´ 1q vertices, satisfying

girthpXn,p`1q ě
4

3

log n

log p
´Op1q and diampXn,p`1q ď

2

3

log n

log p
` 3.

Further, they constructed non-bipartite Ramanujan graphs with n “ qpq2´
1q{2 vertices, and with the same diameter estimate and with

girthpXn,p`1q ě
2

3

log n

log p
`Op1q, αpXn,p`1q ď

2
?
p

p` 1
n, χpXn,p`1q ě

p` 1

2
?
p
.

Putting p “ canst or p « nc we get constructions of graphs the existence of
which were known earlier only via random graph methods. As a matter of fact,
they are better than the known “random constructions”, showing that

expn,C2kq ą ckn
1` 4

3k`25 .

1.8 Further Degenerate Extremal Graph Prob-
lems

We have already seen the most important degenerate extremal graph problems.
Unfortunately we do not have as many results in this field as we would like to.
Here we mention just a few of them.

Topological Subgraphs

Given a graph L, we may associate with it all its topologically equivalent forms.
Slightly more generally, let T pLq be the set of graphs obtained by replacing
some edges of L by “hanging chains”, i.e., paths, all inner vertices of which are
of degree 2.

Problem 1. Find the maximum number of edges a graph Gn can have without
containing subgraphs from T pLq.

Denote the topological complete p-graphs by ă Kp ą. G. Dirac [39] have
proved that every Gn of 2n´ 2 edges contains a ă K4 ą. This is sharp: Dirac
gave a graph Gn of 2n ´ 3 edges and not containing ă K4 ą. Erdős and
Hajnal pointed out that there exist graphs Gn of cp2n edges and not containing
ă Kp ą. (This can be seen, e.g. by taking rn{qs vertex-disjoint union Kpq, qq’s

for q “

ˆ

p{2
2

˙

.) Mader [128] showed that

Theorem 2. For every integer p ą 0 there exists a D “ Dppq such that if the
minimum degree of G is at least Dppq, then G contains a ă Kp ą.

More precisely,
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Theorem 3. There exists a constant c ą 0 such that if epGq ą tn, then G
contains a ă Kp ą for p “ rc

?
log ts.

Corollary 4. For every L, expn, T pLqq “ Opnq.

Conjecture 5. (Erdős - Hajnal - Mader [68], [128]). If epGnq ą tn, then
Gn contains a ă Kp ą with p ě c

?
t.

Mader’s result was improved by Komlós and Szemerédi to almost the best:

Theorem 6. ([119]). There is a positive c1 such that if epGnq ą tn, then Gn
contains a ă Kp ą with

p ą c1

?
t

plog tq6
.

Very recently, improving some arguments of Alon and Seymour, Bollobás
and Thomason completely settled Mader’s problem:

Theorem 7. ([20]). There is a positive c1 such that if epGnq ą tn, then Gn
contains a ă Kp ą with

p ą c1
?
t.

Their proof-method was completely different from that of Komlós and Sze-
merédi. Komlós and Szemerédi slightly later also obtained a proof of Theorem 7
along their original lines [[120]].

Recursion Theorems

Recursion theorems could be defined for ordinary graphs and hypergraphs,
for ordinary degenerate extremal problems and non-degenerate extremal graph
problems, for supersaturated graph problems, . . . However, here we shall restrict
our considerations to ordinary degenerate extremal graph problems. In this case
we have a bipartite L and a procedure assigning an L1 to L. Then we wish to
deduce upper bounds on expn,L1q, using upper bounds on expn,Lq. To illustrate
this, we start with two trivial statements.

Claim. Let L be a bipartite graph and L1 be a graph obtained from L by
attaching a rooted tree T to L at one of its vertices.13 Then

expn,L1q “ expn,Lq `Opnq.

Claim. Let L be a bipartite graph and L1 be a graph obtained by taking two
vertex-disjoint copies of L. Then (again)

expn,L1q “ expn,Lq `Opnq.

The proofs are trivial.

13This means that we take vertex-disjoint copies of L and T , a vertex x P V pT q and a vertex
y P V pLq and identify x and y.
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One of the problems Turán asked in connection with his graph theorem was
to find the extremal numbers for the graphs of the regular (Platonic) polytopes.
For the tetrahedron the answer is given by Turán Theorem (applied to K4).
The question of the Octahedron graph is solved by Theorem 8, the problems of
the Icosahedron and Dodecahedron can be found in Section 1.12, ([152], [153]).
On the cube-graph we have

Theorem 8. (Cube Theorem, Erdős-Simonovits, [83]).

expn,Q8q “ Opn8{5q.

We conjecture that the exponent 8/5 is sharp. Unfortunately we do not have
any “reasonable” lower bound.

The above theorem and many others follow from a recursion theorem:

Theorem 9. (Recursion Theorem, [83]). Let L be a bipartite graph, coloured
in BLUE and RED and Kpt, tq be also coloured in BLUE and RED. Let L˚ be
the graph obtained from these two (vertex-disjoint) graphs by joining each vertex
of L to all the vertices of Kpt, tq of the other colour. If expn,Lq “ Opn2´αq and

1

β
´

1

α
“ t,

then expn,L˚q “ Opn2´βq.

Applying this recursion theorem with t “ 1 and L “ C6 we obtain the Cube
theorem. Another type of recursion theorem was proved by Faudree and me in
[93].

Regular subgraphs

Let Lr´reg denote the family of r-regular graphs. Erdős and Sauer posed the
following problem [61]:

What is the maximum number of edges in a graph Gn not containing any
k-regular subgraph?

SinceKp3, 3q is 3-regular, one immediately sees that expn,L3´regq “ Opn5{3q.
Using the Cube Theorem one gets a better upper bound, expn,L3´regq “

Opn8{5q. Erdős and Sauer conjectured that for every ε ą 0 there exists an
n0pk, εq such that for n ą n0pk, εq expn,Lk´regq ď n1`ε. Pyber proved the
following stronger theorem.

Theorem 10. (Pyber, [142]). For every k, expn,Lk´regq “ 50k2n log n.

The proof is based on a somewhat similar but much less general theorem of
Alon, Friedland and Kalai [5]. For further information, see e.g. Noga Alon, [2]
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One more theorem

We close this section with an old problem of Erdős solved not so long ago
by Füredi. Let F pk, tq be the bipartite graph with k vertices x1, . . . , xk and
ˆ

k
2

˙

t further vertices in groups Uij of size t, where all the vertices of YUij

are independent and the t vertices of Uij are joined to xi and xjp1 ď i ă j ď kq.
Erdős asked for the determination of expn, F pk, tqq for t “ 1. For t “ 1 and
k “ 2 this is just C4, so the extremal number is Opn3{2q. Erdős also proved
(and it follow s from [83] as well) that expn, F p3, 1qq “ Opn3{2q.

Theorem 11. (Füredi [100]). expn, F pk, tqq “ Opn3{2q.

1.9 Supersaturated Graphs

Rademacher Type Theorems

Almost immediately after Turán’s result, Rademacher proved the following nice
theorem (unpublished, see [47]):

Theorem 1. (Rademacher Theorem). If epGnq ą
”

n2

4

ı

then Gn contains

at least
“

n
2

‰

triangles.

This is sharp: adding an edge to (the smaller class of) Tn,2 we get
“

n
2

‰

K3’s.

Erdős generalized this result by proving the following two basic theorems
[47]:

Theorem 2. There exists a positive constant c1 ą 0 sucg that if epGnq ą
”

n2

4

ı

,

then Gn contains an edge e with at least c1n triangles on it.

Theorem 3. (Generalized Rademacher Theorem). There exists a positive

constant c2 ą 0 such that if 0 ă k ă c2n and epGnq ą
”

n2

4

ı

`k, then Gn contains

at least k
“

n
2

‰

copies of K3.

(Lovász and I proved that c2 “
1
2 [124]. For further results see Moser

and Moon [136], Bollobás, [11], [12], and [124], [125].) Erdős also proved the
following theorem, going into the other direction.

Theorem 4. (Erdős [58]). If epGnq “
”

n2

4

ı

´ ` and Gn contains at least one

triangle, then it contains at least
“

n
2

‰

´ `´ 1 triangles.

(Of course, we may assume that 0 ď ` ď
“

n
2

‰

´ 3.)
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The General Case

Working on multigraph and digraph extremal problems, Brown and I needed
some generalizations of some theorems of Erdős [50], [56].The results below are
direct generalizations of some theorems of Erdős. To avoid proving the theorems
in a setting narrower than what might be needed later, Brown and I formulated
our results in the “most general, still reasonable” form.

Definition 5. (Directed multi-hypergraphs [31]). A directed pr, qq-multi-
hypergraph has a set V of vertices, a set H of directed hyperedges, i.e. ordered
r-tuples, and a multiplicity function µpHq ď q (the multiplicity of the ordered
hyperedge) H P H.

We shall return to the multigraph and digraph problems later, here I formu-
late only some simpler facts. The extremal graph problems directly generalize
to directed multi-hypergraphs with bounded hyper-edge-multiplicity:

Given a family L of excluded directed pr, qq-multi-hypergraphs, we may ask
the maximum number of directed hyperedges (counted with multiplicity) a di-
rected pr, qq-multi-hypergraph Gn can have without containing forbidden sub-
multi-hypergraphs from L. The maximum is again denoted by expn,Lq.

Let L be a directed pr, qq-multi-hypergraph and Lrts be obtained from L by
replacing each vertex vi of L by a set Xi of t independent vertices, and forming
a directed multihyperedge py1, . . . , yrq of multiplicity µ if y1 P Xi1 , . . . , yr P Xir

and the corresponding pvi1 , . . . , vir q is a directed hyperedge of multiplicity µ in
L.

Theorem 6. (Brown-Simonovits, [31]).

expn,Lrtsq ´ expn,Lq “ opnrq.

Again, the influence of Erdős is very direct: the above theorem is a direct
generalization of his result in [56].

Theorem 7. (Brown-Simonovits, [31]). Let L be an arbitrary family of

pr, qq-hypergraphs, and γ “ lim expn,Lq
nr , as n Ñ 8. There exists a constant

c2 “ c2pL, εq such that, if
epGnq ě pγ ` εqn

r

and n is sufficiently large, then there exists some L P L for which Gn contains
at least c2n

vpLq copies of this L.

1.10 Typical Kp-Free Graphs: The Erdős-Kleitman-
Rothschild Theory

Erdős, Kleitman and Rothschild [72] started investigating the following problem:

How many labelled graphs not containing L exist on n vertices?
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Denote this number by Mpn,Lq. We have a trivial lower bound on Mpn,Lq:
take any fixed extremal graph Sn and take all the 2expn,Lq subgraphs of it:

Mpn,Lq ě 2expn,Lq.

In some sense it is irrelevant if we count labelled or unlabelled graphs. The
number of labelled graphs is at most n! times the number of unlabelled graphs

and expn,Lq ě
”

n2

4

ı

for all non-degenerate cases, (and expn,Lq ě cn1`α for all

the non-tree-non-forest cases). So, if we are satisfied with rough estimates, we
may say: counting only labelled graphs is not a real restriction here.

Strictly speaking, this problem is not an extremal graph problem, neither
a supersaturated graph problem. However, the answer to the question shows
that this problem is in surprisingly strong connection with the corresponding
extremal graph problem.

Theorem 1. (Erdős-Kleitman-Rothschild [72]). The number of Kp-free
graphs on n vertices and the number of p´1-chromatic graphs on n vertices are
in logarithm asymptotically equal: For every εpnq Ñ 0 there exists an ηpnq Ñ 0
such that if Mpn,Kp, εq denotes the number of graphs of n vertices and with at
most εnp subgraphs Kp, then

expn,Kpq ďMpn,Kp, εq ď expn,Kpq ` ηn
2.

In other word, we get “almost all of them” by simply taking all the pp´ 1q-
chromatic graphs.

More generally, Erdős, Frankl and Rödl [65] proved that if χpLq ą 2, then

Mpn,Lq “ 2expn,Lq`opexpn,Lqq.

The corresponding question for bipartite graphs is unsolved. Even for the
simplest non trivial case, i.e. for C4 the results are not satisfactory. This is not
so surprising. All these problems are connected with random graphs, where for
low edge-density the problems often become much more difficult. Kleitman and
Winston [115] showed that

Mpn,C4q ď 2cn
?
n,

but the best value of the constant c is unknown. Erdős conjectured that

Mpn,Lq “ 2p1`op1qqexpn,Lq.

Then the truth should be, of course

Mpn,C4q “ 2pp1{2q`op1qqn
?
n.

I finish with a recent problem of Erdős.

Problem 2. (Erdős). Determine or estimate the number of maximal triangle-
free graphs on n vertices.

Some explanation. In the Erdős-Kleitman-Rothschild case the number
of bipartite graphs was large enough to give a logarithmically sharp estimate.
Here Kpa, n ´ aq are the maximal bipartite graphs, their number is negligible.
This is why the situation becomes less transparent.
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1.11 Induced Subgraphs

One could ask, why do we always speak of not necessarily induced subgraphs.
What if we try to exclude induced copies of L? If we are careless, we immediately
run into a complete nonsense. If L is not a complete graph and we ask:

What is the maximum number of edges a Gn can have without having
an induced copy of L?

the answer is the trivial

ˆ

n
2

˙

and the only extremal graph is Kn. So let

us give up this question for a short while and try to at tack the corresponding
counting problem which turned out in the previous section to be in a strong
connection with the extremal problem.

How many labelled graphs not containing induced copies of L are on
n vertices’?

Denote this number by M˚pn,Lq. Prömel and Steger succeeded in describing
M˚pn,Lq. They started with the case of C4 and proved that almost all Gn not
containing an induced C4 have the following very specific structure. They are
split graphs, which means that they are obtained by taking a Kp and pn´ pq
further independent points and joining them to Kp arbitrarily. (Trivially, these
graphs contain no induced C4’s.)

Theorem 1. (Prömel-Steger, [139]). If S˚n is the family of split graphs, then

M˚pn,C4q

|S˚n |
Ñ 1 as nÑ8.

This implies - by a result of Prörnel [138] that

Corollary 2. There exist two constants, ceven ą 0 and codd ą 0, such that

M˚pn,C4q

2n2{4`n´p1{2qn logn
Ñ

#

ceven for even n,

codd for odd n.

Can one generalize this theorem to arbitrary excluded induced subgraphs?
To answer this question, first Prömel and Steger generalized the notion of chro-
matic number.

Definition 3. Let τpLq be the largest integer k for which there exists an integer
j P r0, k ´ 1s such that no k ´ 1-chromatic graph in which j colour-classes are
replaced by cliques contains L as an induced subgraph.

Clearly, if σpLq denotes the clique covering number, (“ the minimum number
of complete subgraphs of L to cover all the vertices of L) then

Lemma 4. (Prömel-Steger). χpLq, σpLq ď τpLq ď χpLq ` σpLq.
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Now, taking a Tn,p for p “ τpLq´ 1 and replacing j appropriate classes of it
(in the above definition) by complete graphs and then deleting arbitrary edges
of the Tn,p we get graphs not having induced L’s:

Theorem 5. (Prömel-Steger). Let H be a fixed nonempty subgraph with
τ ě 3. Then

M˚pn,Hq “ 2p1´
1
τ´1 qp

n
2q`opn

2
q.

Definition 6. Given a sample graph L, call Gn “good” if there exists a fixed
subgraph Un Ď Gn (= the complementary graph of Gn) such that whichever way
we add some edges of Gn to Un, the resulting U 1 contains no induced copies of
L. ex˚pn,Hq denotes the maximum number of edges such a Gn can have.

Example 1. In case of C4, any bipartite graph GpA,Bq is “good”, since taking
all the edges in A, no edges in B and some edges from GpA,Bq we get a Un not
containing C4 as an induced subgraph.

Theorem 7. (Prömel-Steger [140]).

ex˚pn,Lq “

ˆ

1´
1

τ ´ 1

˙ˆ

n

2

˙

` opn2q.

Thus Prömel and Steger convincingly showed that there is a possibility to
generalize ordinary extremal problems and the corresponding counting problems
to induced subgraph problems. For further information, see [140] [141].

1.12 The Number of Disjoint Complete Graphs

There are many problems where instead of ensuring many Kp`1’s (see Sec-
tion 1.9) we would like to ensure many edge-disjoint or vertex-disjoint copies
of Kp`1. Let us start with the case of vertex-disjoint copies.

If Gn is a graph from which one can delete s´1 vertices so that the resulting
graph is p-chromatic, then Gn cannot contain s vertex-disjoint copies of Kp`1.
This is sharp: let Hn,p,s “ Tn´s`1,p bKs´1. Then Hn,p,s has the most edges
among the graphs from which one can delete s ´ 1 vertices to get a graph of
chromatic number at most p. Further:

Theorem 1. (Moon [135]). Among all the graph not containing s vertex
independent Kp`1’s Hn,p,s has the most edges, assumed that n ą n0pp, sq.

This theorem was first proved by Erdős and Gallai for p “ 1, then for K3

by Erdős [48], and then it was generalized for arbitrary p by J. W. Moon,
and finally, a more general theorem was proved by me [153]. This more general
theorem contained the answer to Turán’s two “Platonic” problem: it guaranteed
that Hn,2,6 is the only extremal graph for the dodecahedron graph and Hn,3,3

for the icosahedron, if n is sufficiently large.
We get a slightly different result, if we look for edge-independent complete

graphs. Clearly, if one puts k edges into the first class of Tn,p, then one gets
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k edge-independent Kp’s as long as k ă cn. One would conjecture that this is
sharp. As long as k is fixed, the general theorems of [153] provide the correct
answer. If we wish to find the maximum number of edge-independent copies of
Kp`1 for

epGnq “

ˆ

1´
1

p

˙ˆ

n

2

˙

` k,

for k “ kpnq Ñ 8, the problem changes in character, see e.g. recent papers of
Győri [106], [108]. We mention just one theorem here:

Theorem 2. (Győri [107]). Let epGnq “ epTn,pq ` k, pp ě 3q, where k ď
3tn`1

p u ´ 5. The Gn contains k edge-independent Kp`1’s, assumed that n ą

n0ppq.

For p “ 2 (for triangles) the result is different in style, see [106].

1.13 Extremal Graph Problems Connected to
Pentagonlike Graphs

A lemma of Erdős asserts that each graph Gn can be turned into a bipartite
graph by deleting at most half of its edges. (Above: Theorem 6) The proof of
this triviality is as follows. Take a bipartite Hn Ď Gn of maximum number of
edges. By the maximality, each x P V pGnq having degree dpxq in Gn must have
degree ď 1

2dpxq in Hn. Summing the degrees in both graphs we get epHnq ě
1
2epGnq. This estimate is sharp for random graphs of edge probability p ą 0, in
asymptotical sense. Now, our first question is if this estimate can be improved
in cases when we know some extra information on the structure of the graph,
say, excluding triangles in Gn. The next theorem asserts that this is not so. Let
DpGnq denote the minimum number of edges one has to delete from Gn to turn
it into a bipartite graph.

Theorem 1. (Erdős, [53]). For every ε ą 0 there exists a constant c “ cε ą 0
such that for infinitely many n, there exists a Gn for which K3 Ę Gn, epGnq ą
cεn

2, and

DpGnq ą

ˆ

1

2
´ ε

˙

epGnq.

Conjecture 2. If K3 Ę Gn, then one can delete (at most) n2{25 edges so that
the remaining graph is bipartite.

Let us call a graph Gn pentagonlike if its vertex-set V can be partitioned
into V1, . . . , V5 so that x P Vi and y P Vj are joined iff i ´ j ” ˘1 mod 5. The
pentagonlike graph Qn :“ C5rn{5s shows that, if true, this conjecture is sharp.
The conjecture is still open, in spite of the fact that good approximations of its
solutions were obtained by Erdős, Faudree, Pach and Spencer. This conjecture

is proven for epGnq ě
n2

5 (see below) and the following (other) weakening is also
known, [64]:
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Theorem 3. If K3 Ę Gn then

DpGnq ď
n2

18` δ
.

for some (explicite) constant δ ą 0.

In fact, Erdős, Faudree, Pach, and Spencer [64] proved that

Theorem 4. For every triangle-free graph G with n vertices and m edges

DpGnq ď max

"

1

2
m´

2mp2m2 ´ n3q

n2pn2 ´ 2mq
,m´

4m2

n2

*

(1.6)

Since the second term of (1.6) decreases in
“

1
8n

2, 12n
2
‰

, and its value is exactly
1
25n

2 for m “ 1
5n

2, therefore (1.6) implies that if epGnq ą
1
5n

2, and K3 Ę Gn,
then DpGnq ď

1
25n

2. It is trivial that if epGnq ď
2
25n

2, then DpGnq ă
1
25n

2.
However, the general conjecture is still open: it is unsettled in the middle interval
2n2

25 ă epGnq ă
n2

5 .

The next theorem of Erdős, Győri and myself [67] states that if epGnq ą
1
2n

2,
then the pentagon-like graphs need the most edges to be deleted to become
bipartite. (This is sharper than the earlier results, since it provides also infor-
mation on the near-extremal structure.)

Theorem 5. If K3 Ę Gn and epGnq ě
n2

5 , then there is a pentagonlike graph
H˚n with at least the same number of edges: epGnq ď epH˚n q, for which DpGnq ď
DpH˚n q.

1.14 Problems on the Booksize of a Graph

We have already seen a theorem of Erdős, stating that if a graph has many
edges, then it has an edge e with cn triangles on it. Such configurations are
usually called books. The existence of such edges is one of the crucial tools
Erdős used in many of his graph theorems. Still, it was a longstanding open
problem, what is the proper value of this constant c above. Without going into
details we just mention three results:

Theorem 1. (Edwards [41, 42]). If epGnq ą
n2

5 , then Gn has an edge with
rn{6s ` 1 triangles containing this edge.

This is sharp. The theorem would follow if we knew that there exists a
K3 “ px, y, zq for which the sum of the degrees, dpxq ` dpyq ` dpzq ą 3n

2 .
Indeed, at least n

6 vertices would be joined to the same pair, say, to xy. An
other paper of Edwards contains results of this type, but only for epGnq ą

1
3n

2.
Let ∆r “ ∆rpGnq denote the maximum of the sums of the degrees in a Kr P Gn.

(For instance, in a random graph Rn∆rpRnq « r ¨ 2epRnqn .)
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Theorem 2. (Edwards [41]). If 1
r∆r ą

´

1´ 1
r`1

¯

n, n ě 1 then

1

r ` 1
∆r`1 ě

2epGnq

n
.

This theorem says that if Gn has enough edges to ensure a Kr`1, then
it also contains a Kr`1 whose vertex-degree-sum is as large as it should be by
averaging. Erdős, Faudree and Győri have improved Theorem 1 if we replace the
edge- density condition by the corresponding degree-condition. Among others,
they have shown that

Theorem 3. (Erdős-Faudree-Györi [63]). There exists a c ą 0 such that if
the minimum degree of Gn is at least rn{2s ` 1, then Gn contains an edge with
rn{6s ` cn triangles containing this edge.

1.15 DigraphjMultigraph Extremal Graph Prob-
lems

We have already seen supersaturated extremal graph theorems on multi-digraphs.
Here we are interested in simple asymptotically extremal sequences for digraph
extremal problems.

Multigraph or digraph extremal problems are closely related and in some
sense the digraph problems are the slightly more general ones. So we shall
restrict ourselves to digraph extremal problems. A digraph extremal problem
means that some q is given and we consider the class of digraphs where loops
are excluded and any two vertices may be joined by at most q arcs in one
direction and by at most q arcs of the opposite direction. This applies to both
the excluded graphs and to the graphs on n vertices the edges of which should
be maximized. So our problem is:

Fix the multiplicity bound q described above. A family L of digraphs is
given and expn,Lq denotes the maximum number of arcs a digraph Dn can
have under the condition that it contains no L P L and satisfies the multiplicity
condition. Determine or estimate expn,Lq.

The Digraph and Multigraph Extremal graph problems first occur in a pa-
per of Brown and Harary [30]. The authors described fairly systematically all
the cases of small forbidden multigraphs or digraphs. Next Erdős and Brown
extended the investigation to the general case, finally I joined the “project”.
Our papers [26], [28] and [29] describes fairly well the situation q “ 1 for di-
graphs (which is roughly equivalent with q “ 2 for multigraphs). We thought
that our results can be extended to all q but Sidorenko [147] and then Rödl and
Sidorenko [144] ruined all our hopes. One of our main results was in a somewhat
simplified form:

Theorem 1. Let q “ 1 and L be a given family of excluded digraphs. Then
there exists a matrix A “ paij q of r rows and columns, depending only on L,
such that there exists a sequence pSnq of asymptotically extremal graphs for L
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whose vertex-set V can be partitioned into V1, . . . , Vr so that for 1 ď i ă j ď r,
av P Vi is joined to av1 P Vj by an arc of this direction, iff the corresponding
matrix-element aij “ 2; further, the subdigraphs spanned by the Vi’s are either
independent sets or tournaments, depending on whether aii “ 0 or 1.

One crucial tool in our research was a density notion for matrices. We
associated with every matrix A a quadratic form and maximized it over the
standard simplex:

gpAq “ max
!

uAuT :
ÿ

ui “ 1, ui ě 0
)

.

The matrices are used to characterize some generalizations of graph sequences
like pTn,pqnąn0 of the general theory for ordinary graphs, and gpAq measures

the edge-density of these structures: replaces
´

1´ 1
p

¯

of the Erdős-Stone-

Simonovits theorem.

Definition 2. A matrix A is called dense if for every submatrix B1 of sym-
metric position gpB1q ă gpBq. In other words, B is minimal for gpBq “ λ.

We conjectured that - as described below - the numbers gpBq are of finite
multiplicity and well ordered if the matrices are dense:

Conjecture 3. If q is fixed, then for each λ there are only finitely many dense
matrices B with gpBq “ λ. Further, if pBnq is a sequence of matrices of bounded
integer entries then pgpBnqq cannot be strictly monotone decreasing.

One could wonder how one arrives at such conjectures, but we do not have
the space to explain that here. Similar matrices (actually, multigraph extremal
problems) occur when one attacks Turán-Ramsey problems, see [69], [70], [71].

Our conjecture was disproved by Sidorenko and Rödl [144]. As a conse-
quence, while we feel that the case q “ 1 (i.e. the case of digraphs where any
two points can be joined only by one arc of each direction) is sufficiently well
described, for q ą 1 the problem today seems to be fairly hopeless. Multidi-
graphs have also been considered by Katona in [113], where he was primarily
interested in continuous versions of Turán-type extremal problems.

1.16 Erdős and Nassredin

Let me finish this paper with an anecdote. Nassredin, the hero of many middle-
east jokes, stories (at least this is how we know it in Budapest), once met his
friends who were eager to listen to his speech. ‘Do you know what I wish to
speak about” Nassredin asked them. “No, we don’t” they answered. “Then why
should I speak about it” said Nassredin and left.14 Next time the friends really
wanted to listen to the clever and entertaining Nassredin. So, when Nassredin
asked the audience “Do you know what I want to speak about”, they answered:

14I am not saying I follow his logic, but this is how the story goes.
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“YES, we do”. “Then why should I speak about it” said Nassredin again and
went home. The third time the audience decided to be more clever. When
Nassredin asked them “Do you know what I will speak about”, half of the
people said “YES” the other half said “NO”. Nassredin probably was lasy to
speak: “Those who know what I wanted to tell you should tell it to the others”
he said and left again.

I am in some sense in Nassredin’s shoes. How could I explain on 30 or 50
pages the influence of Erdős on Extremal Graph Theory to people who do not
know it. And why should I explain to those who know it. Yet I think, Nassredin
did not behave in the most appropriate way. So I tried - as I promised - to
illustrate on some examples this enourmous influence of Paul. I do not think it
covered half the topics and I have not tried to be too systematic.

Long Live Paul Erdős!
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and G. Katona) Acad. Press. N. Y. (1968) 77–81.
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[68] P. Erdős, A. Hajnal: On complete topological subgraphs of certain graphs,
Annales Univ. Sci. Budapest, 7 (1964) 143-149. (Reprinted in [57].)

[69] P. Erdős, A. Hajnal, V. T. Sós, E. Szemerédi: More results on Ramsey-
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Turán- Ramsey theorems and simple asymptotically extremal structures,
Cornbina- torica, 13 (1993) 31-56.
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Akad. Mat. Kut. Int. Közl., 5 (1960) 17–65. (Reprinted in [89] and in [57].)
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Akadémiai Kiadó+Birkhäuser Verlag, (1983) 459–495.

[126] A. Lubotzky, R. Phillips, and P. Sarnak: Ramanujan Conjecture and
explicite construction of expanders, (Extended Abstract), Proc. STOC
1986, 240–246

[127] A. Lubotzky, R. Phillips, and P. Sarnak: Ramanujan graphs, Combina-
torica, 8(3) 1988,261–277.

[128] W. Mader: Hinreichende Bedingungen für die Existenz von Teilgraphen
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