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Paul Turan’s influence in combinatorics

Miklés Simonovits

Abstract. This paper is a survey on the topic in extremal graph theory influenced directly or
indirectly by Paul Turan. While trying to cover a fairly wide area, | will try to avoid most of
the technical details. Areas covered by detailed fairly recent surveys will also be treated only
briefly. The last part of the survey deals with randarh matrices, connected to some early
results of Szekeres and Turéan.
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1. Preface

Paul Turdn was one of my professors who had the greatest influence, — not only on
me, on my way of thinking of Mathematics, of doing Mathematics, but —on my whole
mathematical surrounding.

Once | read that Hilbert was the last polyhistor in Mathe-
matics. This meant that after him not too many people had an
overview over the whole Mathematics. | do not really know if
this is true or not: | know only that “most” of the mathematicians
| know concentrate basically on one or two fields, while some of
my professors, like Eis, Turan, and Rényi were covering sev-
eral parts of Mathematics. | think of Turdn as a polyhistor in
Mathematics.

YES: Today only the best can excel in more than one branch.
Turan was one of them. His main work, his most important re-
sults concern primarily number theory, interpolation and approx-
imation theory, the theory of polynomials and algebraic equa-
tions, complex analysis, and Fourier analysis. He invented a new method in analysis,
called the power sum method [369], giving interesting results in themselves and ap-
plicable in several distinct branches of Mathematics. His results in combinatorics and
graph theory were definitelyot his most important resultstill they were very impor-
tant in graph theory. He found theorems that later became the roots of whole theories.
Definitely this is the case with his — today already classical — graph theorem. Paul
Erdds wrote [121] that
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Turan had the remarkable ability to write perhaps only one paper or to state
one problem in various fields distant from his own; later others would pursue
his idea and a new subject would be born.

In this way Turan initiated the field of extremal graph theory. He started
this subject in 1941 (see [358] and [359])...

I should also mention here that — though the big breakthrough in the application
of probabilistic methods in combinatorics is due to &d Turan’s new proof of the
Hardy—Ramanujan theorem [356] (later becoming the root of statistical number the-
ory) and the Szekeres—Turan proof of the existence of “almost Hadamard matrices"
[347] were important contributions.

| have just written that Paul Turan greatly influenced our way of thinking. Both
Erdds and Turan quite often set out from some particular problem and then built up a
whole theory around it. However, for Turan the motivation seemed to be much more
important. When he spoke about Mathematics, he went a long way to explain why
that problem he was speaking of was interesting for him. My impression was that
he preferred building theories, at the same time was cautious not to build too general
theories that might seem to be already vacuous.

I shall explain this through some “storie’”.

(a) | started working in extremal graph theory, basically at the end of my first year —
as a student — at the E6tvos Lorand University. This happened as follows: Vera Sos (the
wife of Turan) was our lecturer in “Mathematical Analysis” and in “Combinatorics and
Graph Theory”. (Our group of 26 first-year honours students in Mathematics had nine
50 minute lectures with her weekly. A year earlier she had also taught combinatorics
to the group of Bollobds.) After our first year she was definitely our most popular
lecturer. The second semester Vera decided to start a so called “special lecture” on
Graph Theory, as a continuation of her “introductory course”. Most probably most of
the dedicated students in Mathematics attended this course. Here she spoke — among
others —about Turan’s hypergraph conjecture. Next week three of us, (independently?)
Katona, Nemetz, and myself told her that we have proved some theorems in connection
with Turan’s hypergraph conjecture. Vera suggested to write them up, in Hungarian, in
the Matematikai Lapok, in a joint paper. First Katona and | wrote up the paper, but that
was not good enough for Vera, so Katona and Nemetz rewrote it, and finally the paper
[215] appeared and became one of our most cited p&pdesing finished the paper,
| continued working on these types of questions, while Katona and Nemetz went into
other directions. So | proved several theorems which today would be called Turan type
results. | wrote them up in a “student paper” and submitted it to the “Students Research
Society” (Matematikai Diakkdr) whose “professor” leaders were Andras Hajnal and

! Telling stories is a very dangerous thing: the reader may think that | promised to write of Paul Turan
and instead | am speaking of Vera S6s, or even worse, of myself. No, No, No: | am speaking of our
excellent professors, Turan, Brsl Vera S6s, Andras Hajnal, Rényi, Gallai ... .

2 This was my first joint paper with Nemetz, and the second one of Katona, who finished his fourth
year at the university at that time.
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Vera So6s in those days. Most probably | won some prize, and the question was if
to publish my new results in some mathematical journal, say in Acta Math. Acad.
Hungarica. However, a little later Vera Sés informed me that “unfortunately” Gabor
Dirac had just published a paper on related topics [100]. So my second paper was
“killed”.

Anyway, slightly later | met Turan, and tried to inform him of my results, starting
in a “very abstract way”. Basically | defined a monotone prop#&rgnd maximized
the number of edges in the family afvertex graphs of propert. Turan suggested
to take the simpler but equivalent formulation that “We have a finite or infinite family
of excluded subgraphs...”. Even today | stick to this “more transparent” formulation.

(b) Actually, the first time | met Turdn — as a mathematics professor — was slightly
earlier. In the first semester Vera Sés taught us Analysis, however, one day she got flu,
had fever and had to stay home. So her husband, Turdn came in to give the lecture, on
the Lagrange Mean Value Theorem. Despite the fact that in those days Vera was our
favourite lecturer, | was shocked by the spellbinding style of Turan, while speaking of
this relatively simple theorem.

Actually, 1 heard some opinions, according to which Turan was excellent for the
best students but sometimes difficult to follow for the less gifted ériEise reason for
this was that he not only proved the theorems but (a) explained the background very
carefully and (b) explained what would fail if we tried to prove it in some other ways.

(c) When | became a third year student, | started learning Function Theory (Theory
of Complex Analytic Functions), from Katd Rényi, the wife of Alfréd Rényi. | enjoyed
her lectures very much and having finished this two-semester course, for some reason |
dropped into the Mathematical Institutd here | met Gabor Halasz and asked what he
was doing there. He answered that in 10 minutes there would be a seminar of Turan in
Number Theory and Complex Analysis, and he would give a lecture there. | happened
to be free, so | decided to attend Gébor’s lecture. | enjoyed that whole atmosphere
and the Mathematics there so much that | became a regular participant of the “Turan
seminar” for many, many years. And that was partly due to Halasz, but primarily
to Turan. The seminar was interactive, very friendly, anyone could ask any (relevant
mathematical) questions, to help one to understand the details, and the background .. ..

(d) Several years later, as an assistant professor, once | entered Turan’s office. He
was reading a letter, which informed him about some new results (about the conver-
gence properties of power series on the unit complex disk). He started explaining it
to me. | asked him why that result was interesting and the answer was very convinc-
ing. Actually, | was “slightly frightened”: | felt that Turan could convince me of any
mathematical result being interesting, if he felt it interesting.

3 Unfortunately Turan have not given regular Number Theory courses those years. Here the “gifted”
would mean the best 10 students in our group.

4 | was a student and later an assistant professor . . . at the Eétvds University while this was a Research
Institute, part of the Academy, headed by Alfréd Rényi. Fortunately in those days the walking
distance between the two places was roughly five minutes.
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P o 1 3 )4"" et
Kato Reényi, Turan, Vera Sés, Ed (and Knapowski, Erés, Szekeres, and
somebody covered by Vera?) Turan

We are often asked: what is the secret of Hungarian Mathematics that it is so good?
Of course, we have standard answers to this, despite the fact that the question itself
may be slightly dangerous.

It is nice to hear that our Mathematics is outstanding, but at the same time one
should keep checking in which areas can one be satisfied and where we have to do
something to improve “Hungarian Mathematics”.

I myself have at least three answers to this question. The first one is that in Hungary
there is a very strong tradition to support talented young students in Mathematics and
Physics (and most probably, in many other fields as well). We had our K6MaL.: the
High School Mathematics Journal. Most of those who are today math professors in
Hungary still remember how much we owe to it and have gained from participating
in the contests organized in this surroundinglso, there were organized math lec-
tures and meetings while we were still high school students. This is where | first met
Bollobas, Komlés, Halasz, and many others when | was a second year high school
student.

Yet, definitely, one of the most important factors was that we had excellent pro-
fessors at the University. Excellent in Mathematics and excellent in conveying their
Mathematics to us. | myself, selecting those who really influenced my Mathematics,
(following the timeline) would list first Vera Sés, Paul Bisland Paul Turah.

1.1. Apologizing?

In this survey | will try to cover several areas, but not in too much detail. Often | will
start some topic, give a few theorems, and then refer the reader to other surveys or
papers.

5 Actually, Erdbs and Turan learnt of each other from this journal.

5 If | wanted to extend this list, of course, | would add my mother, perhaps Hajos, definitely Hajnal,
Gallai, and Rényi. We met Rényi relatively late, when we became third year students, however,
when he started giving special lectures about Random Methods in Analysis, Random Methods in
Combinatorics, Introduction to Information Theory, again, all the best students were sitting there and
eagerly listening to him. He — similarly to Turan — also gave long explanations on the background
of the theorems he was speaking of.
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While writing this survey, | looked at several other surveys, of excellent authors,
and many of them started with apologizing sentences that there was no way to try to
be complete, and the author had to leave out several interesting and important results.
The same applies to this survey as well. In several cases — selecting a paper — | had to
restrict myself to including its first, or most characteristic results, and leave the other,
at least for me very important, results to the reader. One reason for this was that | tried
to write a readable survey. And the same is the reason why | was not afraid to repeat
some parts: be occasionally “redundant”.

When Turan died in 1976, his collected papers were published
in a three-volume book [368], which is an annotated edition of

| Collected Papers of.

PAUL TURAN h|s works in the sense that the gratgful mathematical surround-

= = - ing added mathematical notes to his papers. | myself was re-
AL sponsible for Graph Theory and Combinatorics. | wrote three
mini-surveys for [368]: one on “pure extremal graph theorems”,

another one on applications of extremal graph theorems in Anal-
- ysis, Geometry (and Potential Theory), and the third one on

“random matrices”. This surveyincludes a large part of those
surveys, however, it goes much further: the new developments

in the field showing Turan’s influence in Discrete Mathematics
greatly surpass what | could write in those days. Here | include many results showing
these new developments (and leave out certain parts covered by other surveys of this
volume, see Katona e.g., [214]. | also cut short describing areas that are covered by the
very recent survey papers of the BsdCentennial volume, e.g., Gowers [189], RadI
and Schacht [303] or Furedi and myself [180], . ...

Of course, the most important subject covered here (where Turan’s influence can
be seen) is Extremal Graph Theory. One basic source to provide a lot of information
is the book of Bollobas, Extremal Graph Theory [55]. There are many surveys cov-
ering distinct parts of this very large area. Among them are mine, e.g., [327], [328],
[330], [332] and there is a survey by Bollobas in the Handbook of Combinatorics [51].
Of course, the Handbook contains several further chapters basic to this field, just to
mention the chapters by Bondy [64] and by Alon [9]. | should also mention many ex-
cellent, more detailed further surveys related to this one, e.g., of Flredi [167], Keevash
[218], Kiihn and Osthus [255].

Since the very recent survey of Firedi and myself [180] covers a huge and impor-
tant area of extremal graph theory, namely the so-called Degenerate Extremal Graph
Problems, here we shall concentrate on the non-degenerate cases, where the extremal
structures have positive density. In this non-degenerate case | will select five topics:

(a) New results attained with the help of the Szemerédi Regularity Lemma [349]
(for the older ones see, e.g., [249]). There are very many new developments
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in this area, which will be touched on only very briefly, in Section 6.2. Here |
mention only its connection to Property Testing [16] [14], ...and to graph limits,
where | refer the reader to some papers of Christian Borgs, Jennifer Chayes,
Laszlé Lovasz, Vera So6s, Kati Vesztergombi, e.g., [68, 69, 70], to the homepage
of Lovasz, where many of these can easily be found, and to the very new book of
Lovasz [263];

(b) Ramsey—Turan type results, where for the older results see the survey of Vera Sés
and myself [335], and for the many new interesting developments, see among
others Balogh and Lenz [39].

(c) and also the Andrasfai—Egd-Sos type theorems [24], Bsl-Simonovits [139],
tuczak [268], Thomassen [355], ...

(d) Applications in multicolor Ramsey problems, e.g., results of Luczak [269], Gyar-
fas, Ruszinko, Sarkdzy, and Szemerédi [194], Kohayakawa, Simonovits, Skokan
[231], and many others.

(e) Typical Structures: Efib—Kleitman—Rothschild type theorems, [131], &sd
Frankl and R&dl [125], and Balogh, Bollobas, and Simonovits, e.g., [34], ...

Again, there is no way to be complete here. Rather | chose to indicate the main
lines of some of these theories .... Itis also very useful and informative to read the
corresponding problem-posing papers of P.@srfiL13] [119] [120], [123]. | should
also mention the book of Chung and Graham ond&mdroblems [93].

In Section 16 | will discuss the theory of Random Matrices, but only shortly: a
relatively new and excellent survey of Van Vu [370] describes this area in detail. There
is also another reason: Subsection 16.2 on determinants is connected to Turan the most,
while in the next two parts on the probability of being singular and on the distribution
of eigenvalues of random matrices is where many new interesting results were proved
after Turan’s death. Yet, they are connected to Turan in a slightly weakef way.

Overlapping with my older surveys is inevitable. Yet | will try to “overemphasize”
those parts that had to be left out from [180] and [331]. Some further related sur-
veys and pseudo-survey papers are Firedi [167], Sidorenko [318] Simonovits [330],
Simonovits and Sds [335], Kohayakawa and Rédl [229], R6dl and Schacht [303], and
many others.

2. Introduction

Today one of the most developed and fastest developing areas of Graph Theory is
Extremal Graph Theory and the parts of Graph Theory connected to it. There are
several reasons for this. One of them is that this is a real theory with many important,
highly non-trivial subfields and many related larger fields of combinatorics. | have
already mentioned some some of them. Further ones are

” Yet | decided to include a short part on them, too.
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(a) Although Extremal Hypergraph theory is still an extremely hard field to achieve
new results in, several very interesting new theorems were proved for hyper-
graphs in the last decade.

(b) New tools were created, above all, Hypergraph Regularity Lemmas, and, con-
nected to them, Removal Lemmas and Counting Lemmas, and Graph Limit The-
ory.

(c) Computers were used to solve several extremal graph and hypergraph problems,
mostly using a new theory, the Razborov Flag Algebras [293, 296].

(d) Some parts of Theoretical Computer Science are connected to the above fields. |
mention here four such topics:

(i) Graph Property Testing, very strongly connected to applying Szemerédi

Regularity Lemma, (see e.g. papers of Alon and Shapira) [21], [16].

(ii) Applications of graph results, e.g., Degenerate Extremal Graph Theorems
in Computer Science.

(iif) Theory of quasi-random graphs (initiated in some sense by Thomason, [353],
then by Chung, Graham and Wilson [94] . ..

(iv) Application of random graph methods and expanders — that are strongly
connected to extremal graph theory — in Computer Sciénce,

(e) As to the tools used in Extremal Graph Theory, they are connected to the theory
of Random Graphs:

() ituses random graphs to get lower bounds,
(i) it investigates extremal subgraphs of random graphs,
(iii) and it motivates the description of typical structures,

() It is connected among others, to Finite Geometry (also used for constructions
providing lower bounds in our problems), to Commutative Algebra, also used to
get lower bounds, . .. (Vera Sés wrote one of the first surveys on the connections
to Finite Geometries [339]).

Reading this “list” the reader immediately sees that describing the new develop-
ments in this area is much more than what such a survey paper can cover, even if
in many cases it only refers to other papers or surveys. So we shall try to provide a
“random tour” in this huge area.

Also, | plan to post on my homepage a slightly longer version of this survey, pro-
viding more details.

2.1. Structure of the paper

(a) We shall start with the Theory of Extremal Graphs. We shall describe the huge
development of the Theory of Extremal Graphs, primarily areas neglected in [332] and

[180].

8 For two “mini-surveys” see e.g. Spencer [341] and Alon [10].
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(b) Section 5 describes the theory of supersaturated graphs.

(c) In Section 13 | shall describe thoapplications of extremal graph resulighich
were initiated by Paul Turan, in the last years of his life. Also we shall describe other
applications of Turan’s theorem.

(d) These applications led also to the Ramsey—Turan Theory, described in more
detail in the survey paper of Vera S6s and myself [335]. There are quite a few new
developments in this field. | shall describe some of them in Section 10.

(e) There are several connections between Ramsey Theory and the theory of Turan
type problems. Section 12 contains some results on this.

(f) There is one more, very important area not to be forgotten6&mhd Turan
greatly influenced our day’s mathematics just by asking about the density version of
Van der Waerden’s theorem. This is well described, at least its early period, in the book
of Graham, Rothschild and Spencer [190]. Many important details can be learned from
the paper of Vera Sés [340], papers of Gowers, Green, Tao, ...l also will include a very
short section on this topic.

(g) Section 16 discusses a paper of Szekeres and Turan on the average of the square
of the determinants of randofl matrices.

3. Turan type graph problems

Paul Turan’s graph theoretical and combinatorial results can roughly be classified as
follows:

(a) His classical extremal graph theorem [358, 359] and the analogous results of
Kévari, V. T. S6s and Turén [252] on the extremal numbeKefa, b).

(b) His results on applications of his graph theorem, see [363, 364, 365, 366], and
also the papers of Eés, Meir, V.T. S6s and Turan [132, 133, 134]

(c) Results on randontt1 matrices, estimating the average of iffé power of their
determinants [347, 357, 360, 362].

(d) Beside this, it was Turan who asked the first general question in connection with
the crossing numbers (see e.g., one of his last papers [367], or Beineke and Wilson
[46]).

3.1. Turan’s graph theorem
In 1935 Erdbs and Szekeres proved [149] that
Theorem 3.1.For everyk there exists am;, such that if we fixu,, points in the plane

arbitrarily (but in general position), then there are alwaly®f them spanning a convex
k-gon.

® and a corrigendum to [134] (misprints).
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To prove this, they applied Ramsey’s theorem. Actually they did not know it, but
rediscovered it. Motivated by the Ramsey Theorem, Turan proved his famous theorem.
Before formulating it we introduce some notations.

Notation. Given a graph, hypergraph, the first subscript will almost always denote the
number of verticesG.,,, S,, H,, will mostly denote graphs (digraphs, hypergraphs) of
n vertices!® Mostly we shall restrict our considerations to ordinary graphs (without
loops and multiple edges). Given a graph (digraph, hypergréhh)G) ande(G)
denote the number of vertices and edges respectively @iglis G’s chromatic num-
ber. K, denotes the complete graph pwvertices,C, and P, are the cycle and path
of ¢ vertices, respectivelyis,(nq, . . . ,n,) is the complete-partite graph with; ver-
tices in itsit" class, andl’, , is the Turan graph of vertices and classes, that is,
Tnp = Kp(na,...,n,) whered" n; = nandjn; — %\ < 1.

Given two graphs= and H, denote byG ® H the graph obtained from vertex-
disjoint copies of7 andH by joining each vertex off to each one off. (Occasionally
we denote their disjoint union b + H, and the disjoint union of copies ofH by
kH.)

Turan’s problem. Given p and n, how large can e(G),,) be if G,, does not contain
a Kp+1 ?

Clearly, T;, , does not contaitf, 1. Turan's theorem asserts thgt ), is extremal
in the following sense:

Turan’s Theorem ([358] (1940)). For givenn and p any graph having more
edges thart;, , or having exactly as many edges As,, but being different from it
must contain &, 1, as a subgraph.

As Turan remarks, from this form one can easily verify that the maximum number
of edges a grapty,, can have without containing &, 1 is

% (l — 1> (n2 — rz) + (;), if n =r (modp) and 0< r < p. 3.1)
p

In this sense Turan’s theorem yields a complete solution of the posed qu¥stion.

How did Turan arrive at this theorem? In Ramsey’s theorem we ask (in some
sense): Assume we know th@t, contains nck independent vertices. For how large

p can we ensure the existence okg, 1 in G,,? Turan replaced the condition thalf,

had nok independent vertices by a simpler condition that the graph had many edges.
He asked:

10 Very rarely we shall consider some “excluded” graphs and the subscript will just enumerate them.
11 Letters: Mostly we shall exclude+ 1-chromatic graphs but there will be cases when we shift the
indices and excludg-chromatic graphs.
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Given a grapht,, of e edges, how large must,,; occur inG,,? Or, in
other words, givem andp, how large are ensures the occurrence of a
Kp+1 in Gn')

The “complementary” form. A lesser known but equally useful form of Turan’s
theorem can be obtained by switching to the complementary graps H,. If H,

has nop + 1 independent vertices, the(H,,) > e(7}, ;) and the equality implies that
H, =T,,. (Thisis Theorem Ill in his original paper [358].)

On the history of Turan’s theorem. As Turan remarks in the “Added in Proof” of
[358], he has learnt from J. Kraus that W. Mantel has already proved his theorem in
the special case = 3, [273]. It is interesting to realize that this theorem could have
been found by Mantel back in 1907, but he missed it. It is even more surprising that
P. Erdbs missed finding this theorem in 1938. As a matter of factd&mhd E. Klein
have proved an analog result in [106]. Here & dnvestigated a number theoretical
question and arrived at the following graph theoretical result:

Theorem 3.2.If G,, contains naCy, thene(G,,) = O(n%/?).

At the same time, E. Klein gave a "finite geometric" construction showing that there
exist graphs3,, with e(G,,) > ¢n®? edges and without containing 4-cycles. Turan,
proving his theorem, immediately posed several other analog problems (such as the
problem of excluded patR;,, excluded loops, the problem whénis the graph deter-
mined by the vertices and edges of a regular polyhedron). This started a new line of
investigation. Erds (as he stated many times), felt it was a kind of blindness on his
side not to notice these nice problems.

In 1949 Zykov [375] rediscovered Turan’s theorem, giving a completely different
proof. He used an operation which could be cakgthmetrizatiorand which was
later successfully used to prove many analog results. Since that many further proofs
of Turan’s theorem have been found. Some of them are similar to each other, some
are completely different. Thus e.g. proofs of Andrasfai [23] G. Dirac [100] and the
proofs of Katona, Nemetz and Simonovits [215] are somewhat similar, the proof of
Motzkin and Straus [277] seems to be completely new, though it is actually strongly
related to Zykov’s proof [375]. Most of these proofs led to interesting new generaliza-
tions. In other cases the generalizations were formulated first and only then were they
proved. This is the case of the proof of Esj and also with the proofs of Esdand T.

S6s, Bollobas and Thomason, and Bondy, see [146], [60], [63]. Before turning to the
general case | state three of these results.

Dirac’s theorem.  Assume that > p ande(G,) > e(T,,). Then, for every
J < p, Gy, contains not only &, 1 but a K, with an edge missing, ..., B, ;1
with j edges missing, assuming that> p + j + 1.

Observe that for eachthis immediately implies Turan’s theorem, sinc&g, ;1 —
(j edges) contains &) 1.
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Erd6s theorem ([118]). If G,, contains nok,,, then there exists g-chromatic
graph H,, such thatifd; < d, < ds < --- < d,andd]; <d; <dj <--- < dj are
the degree sequences®f and H,, respectively, thed! > d;, (i = 1,2,...,n).

This again immediately implies Turan’s theorem, by
2¢(Gp) = di <Y di =2¢(H,) < 2¢(T},).

Denote byN (z) the neighborhood of.

Erd6s—T. Sés—Bollobas—-Thomason theorem [60, 146].1f G,, is a graph with
e(Gn) > e(Typ), thenG,, has a vertex: of, say, degree, for which forG,,_4 :=
Gp — N(z), we havee(G—q) > e(Th—qp-1)

This theorem was slightly improved by Bondy [63]. This result implies Turan’s
theorem if we apply induction op: G,,_4 contains ak, yielding together with: a
K,11in G,,. (Above | deliberately forgot the cas€G,) = e(T),,), for the sake of
simplicity.)

3.2. General problem
Since 1941 a wide theory has developed around Turan’s theorem.

Let £ be a finite or infinite family of graphs and lek(n, £) denote the
maximum number of edges a gra@h (without loops and multiple edges)
can have without containing atly< £ as a subgraph. Further, BX (n, £)
denote the family of graphs attaining this maximum. Given a faijlge-
termineex(n, £) andEX(n, £).

Whenl = {L}, we shall replacex(n,{L}) by ex(n, L). The general asymptotics
onex(n, £) was given by

Theorem 3.3(Erdds and Simonovits [136], Eé$ [114], [115] and Simonovits [321]).
For any family£ of excluded graphs, if

p(£) = minx(L) -1, (3.2)

then

ex(n, £) — (1 - p(1£)> (;‘) to(m?) as n—oo  (33)

Further, if S, is any extremal graph fof, then it can be obtained froffi, , by chang-
ing o(n?) edges.
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(The weaker result of Efis and Simonovits, namely (3.3), is an easy consequence
of the Erdds—Stone theorem [148]. The most important conclusion of these theorems
is that the maximum number of edges and the structure of the extremal graphs depend
only very weakly on the actual familg, it is asymptotically determined by the min-
imum chromatic number. A further interesting conclusion is that for Anye can
find a singleL € £ such thaex(n, £) — ex(n, {L}) = o(n?). This is acompactness
type phenomenon asserting that there is not much difference between excluding many
graphs or just one appropriate member of the family.)

Remark 3.4.Several authors call the result according to which (3.2) implies (3.3) the
Erdds—Stone theorem, in my opinion, incorrectly. This “theorem” did not exist before
our first joint paper with Erds [136]. It changed the whole approach to this field.
Finally, Erdbs always considered it as an Bed-Simonovits result.

3.3. Degenerate extremal graph problems
If £ contains at least one bipartife thenex(n, £) = o(n?), otherwise
nZ
ex(n,L) > e(Ty2) = [4] .
This is why we shall call the cagéL) = 1 degenerate

Here we arrive at the second — and again very important — graph paper of Turan. In
1954 Kovari, V. T. S6s and Turan proved the following result.

K 6vari—T. S6s—Turan theorem [252].

ex(n, Ko(p.0)) < 5 8/a— 1 ) 1+ O(n). 34)

We should remark that an important footnote on the first page of [252] states:

“As we learned, after giving the manuscript to the Redaction, from a letter
of P. Erdds, he has found independently most of the results of this paper.”

This theorem can be regarded as a sharpening of thésE8tone theorem [148]
asserting that

ex(n, Kg(m, ... ,m)) = (1 - dfl) <Z> +o(n?)

and yielding thaiex(n, K2(m,m)) = o(n?). Both these theorems were motivated
by some topological problems. (3.4) is probably sharp for eyery ¢, apart from
the value of the multiplicative constant, however this is not known in general. As a
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construction of Erds, Rényi and T. S6s [135] and of W. G. Brown [76] shows, (3.4) is
sharp forp = 1,2, and 3. Fop = ¢ = 2 even the value of the multiplicative constant
is sharp. A construction aff by Hylten-Cavallius [204] shows that it is also sharp for
p = 2,q = 3. Further, the Mors construction [278] on the analog matrix problem, and
the Flredi construction [171] show that (3.4) is sharpgfoe 2 and allg > 2. We
shall return to this question (that is, to the corresponding matrix problem) below.

Remark 3.5.1t was a great surprise when it turned out thatn, K(3,3)) ~ %n5/3:

by the lower bound given by Brown [76] we knew that the exponei® ib (3.4) is
sharp, however, when Firedi [169] improved the upper bound, that showed that the
multiplicative constam} of the Brown construction is the right one.

Another interesting degenerate problem is the problem when afpathexcluded.
As | learnt from Gallai, this was one of those problems asked by Turan (in a letter
written to Erdds) which started the new development in this field. The answer was
given much later by the

Erd 6s—Gallai theorem [126]. ex(n, P;) < £52n.

Clearly, ifn is divisible byk — 1, the disjoint union of./(k — 1) K}_1's shows that
the theorem is sharp. # is not divisible, this construction yields onéx(n, P;) >
%n — O(k?). The exact value oéx(n, P;) was found by Faudree and Schelp, who
used it to prove some generalized Ramsey theorems [153]6sEadd Gallai also
proved [126] that ifL; is the family of all the cycles of at leagt vertices, then
ex(n, L) = 3(k — 1)n + O(k?), and in some cases the extremal graphs are ex-
actly those graphs whose doubly connected components (blockk).afés. Kopylov
[250] considered the problem of connected graphs witliuand his results implied
the earlier ones. Balister, @yi, Lehel and Schelp [31] also have results sharpening
Kopylov's theorems. The reader can find further information in [180].

It is worth mentioning that Ers and T. SAs conjectured [113] that for every tree
Tk, ex(n,Ty) < %(k — 2)n. Ajtai, Komlés, Simonovits and Szemerédi proved (under
publication) this for all sufficiently largé:

Theorem 3.6(Ajtai, Komlds, Simonovits and Szemerédi [2], [3],[4]here exists a
kg such that fork > kg andn > k

1
ex(n,Ty) < é(k —2)n.
We close this part with the following

Theorem 3.7(G. Dirac, [98]).If P, C G, andG is (at least) 2-connected, thénalso
contains aC,,, with m > v/2¢.
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3.4. Evencycles
An unpublished result of Efib states that
ex(n, Cy) = O(nt+/1), (3.5)

Two different generalizations of this result were given by Bondy and Simonovits [66],
and by Faudree and Simonovits [155]. | skip this area since it is fairly well described
in [180]. Let me discuss the Cube theorem. Turan asked tHatl&notes the graph
defined by the vertices and edges of a regular polyhedron, how lakge(is L) ?
Erdds and Simonovits [138] proved that(fg denotes the cube graph, then

Theorem 3.8(Cube theorem)ex(n, Qg) < Cg - n®/5.

Actually if Qg is obtained fronQg by joining two opposite vertices, thesx(n, @8) =
O(n®/%), too. One intriguing open question is whether there exists>a0 such that
ex(n,Qg) > c - n¥>, or at leastex(n, Qg) > ¢ - n%/>.

Remark 3.9.As | mentioned above, this topic is also discussed in much more details
in the recent survey of Furedi and Simonovits [180]. The same applies to large part of
the next subsection.

3.5. Finite geometric constructions

If the extremal graph problem fof in consideration is non-degenerate, anid de-
fined by (3.2) ther¥, , yields an asymptotically extremal sequence in the sense that
T, contains noL € £ and has asymptotically maximum number of edges. The
extremal graph is often (but not always, see [329], [325]) obtained fppmby

(a) first slightly changing the sizes of the classes, that s, repl&Gindy aK,(n1, . .., ny),
wheren; = 2 + o(n);

(b) then adding(n?) edges to thig,(na, . . ., np).

(c) The assertion that this is not always the case means that sometimes we need a
third step too, namely, to delet¢n?) edges in a suitable way, see [329].

In this sense the non-degenerate case is relatively ¢&sy;) is an asymptotically
extremal sequence of graphs. The extremal structures in the degenerate cases seem to
be much more complicated in the sense that in most cases we do not have lower and
upper bounds differing only in a constant multiplicative factor. Thus for example we
do not know whether the upper bound in the cube theorem is sharp, or that the upper
bound given by the Kvari-T. Sés—Turan theorem is sharp for any > 4. We do not
even know the existence of a positive constastich that

ex(n, K2(4,4))
n2—(1/3)+c

Still, whenever we know that our upper bound for a bipatfitis sharp, we always
use either explicitly or in an equivalent form some finite geometric construction, or
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some algebraic construction very near to it. | have already mentioned some of these
constructions, namely that of E. Klein in [106], of Exx] Rényi and T. Sés [135] for
graphs without”y, and that of Hylten-Cavallius for graphs not containifig(2, 3).

Two further very important constructions are the Brown construction [76] for graphs
not containingk»(3, 3) and the Benson [48] construction (see also the Singleton con-
struction [336]) of graphs not containings, C4, Cs, Cs andC7, and of graphs not
containingCs, ..., C11. These constructions of Benson show that (3.5) is sharp for

t = 3 andt = 5, while W. G. Brown'’s construction shows that théwari-T. S6s—
Turan theorem is sharp fer= ¢ = 3 (and therefore for app = 3, ¢ > 3), apart from

the value of the multiplicative constants.

Remark 3.10.Since [180] is a much more detailed survey, however mostly restricted

on the Degenerate Extremal Graph Problems, and since these finite geometric prob-
lems mostly refer to degenerate cases, we suggest to the interested reader to read the
corresponding parts from [180]. Here we mention only that several constructions using
finite geometries or related methods were found since Turan died. Perhaps Mors [278],
Furedi [171], Ball and Peppe [32], and Wenger [371], should be mentioned here, and
several slightly different constructions of Lazebnik, Ustimenko, and their school (see
e.g., [256, 257, 258]) and also the breakthrough results of Kollar, Rényai, and Tibor
Szabd, [235] and Alon, Ronyai and Szabé [18] (see also [9] and [180]).

3.6. Adigression: the extremal matrix problems

If G,, is a graph, the condition th&t,, does not contain ani € £ implies that if we
consider the adjacency matrikof GG,, and av(L) x v(L) symmetrical submatrix of
A,'? then this submatrix cannot be the adjacency matrik off for every L € £ we
add to£ all those graphs which are obtained frdnby addition of edges, and denote
by L the resulting family of forbidden graphs, then the extremal graph problent for
andZ are the same, further the exclusion of every Lis equivalent to the exclusion
of their adjacency matrices as symmetrical submatrices. of

The number of edges aF,, is half of the 1’s in the adjacency matrix, thus each
extremal graph problem generates an equivalent problem for 0-1 matrices, where the
number of 1's is to be maximized. Sometimes this approach is very useful, e.g., enables
us to find continuous versions of graph theorems. However, in our case there is an even
better matrix theoretical approach. Assume tHatis a bipartite graph with vertices
in its first class andn vertices in the second one. Then we often repreéehy an
n xm 0-1 matrix, and e.g. the exclusion 8% (p, ¢) in G is equivalent to the condition
that taking arbitrary rows andy columns ofA, at least one of the corresponding ¢
entries of the matrix will be 0, further, taking arbitrayyows andp columns the same
holds.

12 where symmetric submatrix means that if we take sgffieow of A then we also take the corre-
sponding;*" column and vice versa.
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Now, as one can read on the first page of thav#ti, T. SGs and Turan paper,
K. Zarankiewicz raised the following interesting question: given a 0-1 matrinf
n rows andn columns, and an integer, how large should the number of 1's be to
guarantee thatl contains a minor of ordef consisting merely of 1's? If the solution
of this problem is denoted bi;(n), then one main result of thed¢ari, T. S6s, and
Turan paper asserts in a somewhat more complicated but sharper form that

ki(n) = O(n> /), (3.6)

Further, they show that lig. kz(n)/n3/2 = 1. Then they point out that their matrix
results imply

ex(n, Kolp.p) < 5 4/p— 1025 +O(n). (3.7)

Some historical remarks. (a) The authors of [252] mention the general of excluding a
px q submatrix of 1's and that they restrict the discussion to the Zarankiewicz problem,
wherea = b.

(b) Kévari, T. S6s and Turan used a finite geometric construction to prove that
ka(n) > n®?2 — o(n®?). However, they did not use finite geometric language. Neither
did Erd3s, describing E. Klein’s construction [106].

(c) Here again we should make a historical remark. According to [252]

“S. Hartman, J. Mycielski and C. Ryll-Nardzewski have proved that
e1n®® < ka(n) < eon’/? (1.2)

with numericale; andey”.

Of course the Erfis—Klein result from 1938 was sharper, though it was formu-
lated for graphs, and therefore formally it did not imply the Hartman—Mycielski—RylI-
Nardzewski result.

Two more historical notes should be made. Above we made a sharp distinction
between degenerate and non-degenerate extremal graph problems. The germ of this
distinction can be found in [252]. In Section 3 the authors write: “Let us call attention
to a rather surprising fact’. And this fact is thek(n, Ko(p,p)) = O(n?~(/P),
while to ensure a fairly similar graph, namel,; 1, we needx % (1 — %) n? edges,
which is much more. Further, in Section 6 the authors formulate the conjecture that
k;(n) > ¢;n?~(1/9), which is equivalent with the conjecture that (3.4) is sharp.

The reader more interested in this topic is referred to the survey of R. K. Guy [193]
and to the paper of Mdrs [278] completely solving the case of the Zarankiewicz prob-
lem when a 2< p submatrix of am x m 0-1 matrix is excluded.
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4. Some non-degenerate extremal problems

Let R, denote the graph determined by the vertices and edges of a regular polyhe-
dron?®3 Clearly, R4 = K is the tetrahedron grapRe = K3(2, 2, 2) is the octahedron
graph,Rg = Qg is the cube graph anf1,, Doy = Ry are the icosahedron graphs

and the dodecahedron graphs. As we have mentioned, Turan raised the question: how
many edges ca@’,, have without containind?;, as a subgraph? Fdf, Turan’s theo-

rem yields the answer. For the cug Theorem 3.8 describes the situation. For the
dodecahedron and the icosahedron Simonovits [325, 324] gave a sharp answer. (Itis
strange that the simplest polyhedron, namely the cube, creates the most trouble.) To
formulate some results, we need a definition.

Definition 4.1. H(n,p, s) := Ty,—s11, @ Ks_1: We join each vertex of{,_1 to each
vertex of 75, g1 .

It turns out that in very many cases this graph is the (only?) extremal graph. Below
first | will give some examples, and then, in Section 4.1 a very general theorem on
the symmetric extremal graph sequences, and finally, in Section 4.2, a few further
examples.

Why is H(n,d, s) a good candidate to be extremal? The simpler, shorter answer

is that H(n, p, s) is a simple generalization df, ,. But then comes the question:
why is (75, ,) a good candidate to be the extremal graph sequence for various extremal
problems? The answer is

Theorem 4.2(Simonovits, critical edge, [321]) p(£) is defined by (3.2), and some
Lo € £ has an edge for which

X(Lo—e) = p, (4.1)

then there exists ang, such that fom > ng T), , is extremal for, moreover, it is the
only extremal graph (for each fixed> ny).

On the other hand, if (3.2) holds and for infinitely mamyf;, ,, is extremal forZ,
then there is ar. € £ and an edge in L for whichx (L — e) = p.

Remarks 4.3.(a) Erdis had some results from which he could have easily deduced
the above result fop = 2.

(b) The above theorem has the corollary thatf, € EX(n, £) for infinitely many
n, then forn > ng there are no other extremal graphs.

(c) In those days | formulated the meta-theorem:

“Meta-Theorem” 4.4. If we can prove some results fér = K, 1, then most proba-
bly we can extend them to arlywith critical edges.

13 Herek = 4, 6,8,12, 20 is the number of vertices.
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This can be seen in the Kolaitis, Promel and Rothschild paper [234], which extends
the main results of Efib, Kleitman and Rothschild [131], and in many, many other
cases of which we list only Mubayi [279], Babai, Simonovits and Spencer [28], Promel
and Steger, [291], Balogh and Butterfield [37] ....

e 1P

Figure 1.0¢-extremal, Grotzsch, octahedron, dodecahedron, icosahedron.

One interesting immediate corollary of Theorem 4.2 is the following.

Theorem 4.5.7, » is (the only) extremal graph fak = C;.1 for n > ng(k).

The value okex(n, C1) can be read out from the works of Bondy [62], Woodall [373],
and Bollobas [55] (pp. 147-156) concerning (weakly) pancyclic graphs for all
andk. It implies that the bound fong(k) is 4k in Theorem 4.5. Furedi and Gun-
derson [172] gave a new streamlined proof based on works of Kopylov [250] and
Brandt [71] and completely described the extremal graphs. They are uniquedor
{3k — 1,3k, 4k — 2,4k — 1} (for 2k + 1 > 5).

Another related result is that of Tomasz Dzido [103]. According to
this, if we consider the even whéél,,, := K1®C5,_1 —where we know
by Theorem 4.2 that for sufficiently large 7;, 3 is the only extremal
graph, Dzido also proves that

Theorem 4.6 (Dzido, even wheels [103]for all n > 6k — 10,
ex(n, Wy) = ex(n, Ky).

Theorem 4.2 immediately yields the extremal number for the 4-color-critical graphs,
among others for the Grotzsch graph seen on Figure 1.

Theorem 4.7 (Grotzsch extremal [321, 325, 330et I'1; be the Grotzsch graph on
Figure 1. Forn > ng, T), 3 is the only extremal graph.

Theorem 4.8(Dodecahedron theorem [325For n > ng, H(n,2,6) is the only ex-
tremal graph for the dodecahedron graghg = Roo.

Theorem 4.9(Icosahedron theorem [324For n > ng H(n, 3, 3) is the only extremal
graph for the icosahedron grapRi».
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Let us return to the questions:

() “When is H (n, p, s) extremal for£?”, and

(8) “When is H(n, p, s) the only extremal graph fof, forn > n,?”

In [330] | asked if there are cases whéf(n, p, s) is an extremal graph but there
are infinitely many other extremal graphs as well. Now | know that YES, there are.
(We skip the details). The next question is: whyH$n, p, s) an extremal graph in
many cases? In particular, why i(n, 2, 6) extremal forD,y? Of course, for such
questions there are no clear cut answers, yet | try to answer this later, see Remark 4.22.

The octahedron graph problem was solved (or, at least reduced to the sufficiently
well-described problem afx(n, Cy4)) by Erdds and Simonovits.

Theorem 4.10(Octahedron theorem [137]Y..5,, is extremal forRg, then one can find
an extremal graph4,,, for C4 and an extremal graplB,,_,, for Ps of %n + O(v/n)
vertices each, such th&t, = A,, ® B,_m.

Clearly, B,,_, is either a set ofn—m)/2 independent edges or a se%@h—m— 1)
independent edges and an isolated vertex.

Some very similar theorems can be found in Griggs, Simonovits and Thomas [192],
see Section 15.1, and some general results enk,(a, b, ¢, ..., c) in [137].

In the late 1960s and early 1970s some basic techniques were found, mainly by
Erdds and Simonovits, to prove non-degenerate extremal graph theorems. Often sharp
solutions are given in terms of the solution of some degenerate problems. This is the
case in the Octahedron theorem (which is the simplest case of some more general the-
orems [137]). The reason of this phenomenon is discussed in detail in [326], [327] and
[329]. Further, many particular extremal graph results can mechanically be deduced
from a fairly general theorem of Simonovits [325]. This is the case e.g. with Moon’s
theorem, [275] or with the dodecahedron theorem. In some other cases, e.g, in the case
of the icosahedron, this deduction is possible but not too easy.

Questions related to this will be discussed in the next subsection.

4.1. How to solve non-degenerate extremal problems?

Given a family L of forbidden subgraphs, beside the subchromatic nump@y de-
fined in (3.2) the so called “Decomposition family” gfis the second most important
factor influencingex(n, £) andEX(n, £). So first we define it, then give a few ex-
amples and show how it influences the extremal structures.

Definition 4.11 (DecompositiorM of £). Given a family£ of forbidden subgraphs,
with ap defined by (3.2), we collect iM those graphg/ for which there exists an
L € L,suchthatM ® K, 1(v(L),...,v(L)) containsL. 14

14 To get finite familiesVI when £ is finite, we may also assume thit is minimal for the considered
property, or at leas¥/ C L.
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In other words M € M if putting® it into a class4; of a largeT;, ,,, the resulting
graph contains some € L. The extremal graph problem df is always degenerate,
sincep + 1-coloring somel,g € £ and taking subgraphs spanned by any two color-
classes of.g we get (several) bipartitd/ € M.

In the general results of Eéd [114, 115] and myself [321] we proved that com-
paring an extremal graph fa¢ and7, ,, the error terms are determined up to some
multiplicative constants, bgx(n, M(L)).

EXAMPLES
(@) If £ = {Kpi1}, thenM(L) = {K,}. More generally, if there is ah € L of
minimum chromatic numbery (L) = p(£) + 1, and there is a critical edgec E(L),
i.e.,x(L —e) =p, thenM = {K>}.
(b) If £ = {Dy}, the Dodecahedron graph, thek6 € M(L)
where @< is the graph consisting of 6 independent edges. However,
M(Dyp) contains als@s + P4 + K>, see the figure.
(c) If £ = { R}, the Icosahedron graph, thég, 2K3 € M(L).
(d) The decomposition class & = {K3(a,b,c) consists of
K(a,b),ifa<b<ec.

Remark 4.12.The Decomposition family does not (always) deter-
mine the extremal graphs. Thus e §.(2, 2,2) andK (2, 2, 3) have the same decom-
position, however, by [137], their extremal numbers are different.

4.2. Some further examples

If the decompositio™ (L) contains a tree (or forest), then the remainder terms in the
general theorems become linear. A subcase of this, Whef) contains a path (or a
subgraph of a path) is described in my paper [325].

Giving a lecture in Stin (1997) | wanted to illustrate the general power of these
results to solve extremal graph problems. So | selected one excluded graph from
tuczak’s lecture, another one from Nad&t lecture, seen in Figure 2. | called in
[330] these graphs shown in Figure 2 accordingly tuczak and Negetphs.

Theorem 4.13(Luczak-extremal)For n > no, H(n,4,2) is the only extremal graph
for the Luczak graptiio.

Theorem 4.14(NeSefil-extremal).For n > no, H(n, 2, 2) is the only extremal graph
for the NeSetfil-graphVio.

Theorem 4.15 (H, ) ,-theorem)(i) Let Li,...,L) be given graphs with
minx(L;) = p + 1. Assume that omitting any — 1 vertices of anyL; we obtain

15 “putting” means selecting(M) vertices in this class and joining them so that the resulting subgraph
is isomorphic toM .
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(a) Petersen graph (b) Luczak graph (b) Nesetril graph

Figure 2. Some excluded subgraphs.

a graph of chromatic number p + 1, but L; can be colored irp + 1 colors so that
the subgraph of.1 spanned by the first two colors is the uniorkdhdependent edges
and (perhaps) of some isolated vertices. Thenpfor no(Ls, ..., L)), Hy, p is the
(only) extremal graph.

(i) Further, there exists a constant > 0 such that ifG,, contains nal.; € £ and

e(Gr) > e(Hppi) — % e

then one can deletle — 1 vertices ofG,, so that the remainingr,,_j. 1 is p-colorable.

This theorem is strongly connected with Theorem 4.2. [325] and [330] contain
much more general theorems than the above ones, these are just illustrations of the
general results. Without going too much into detail, | define a sequence of symmetric
graphs and provide a fairly general theorem.

Definition 4.16.G(n, p, r) is the family of graphs~,,, whereV (G,,) can be partitioned
intop + 1 classed/y, ..., U, andW with

‘|Ui| —Z‘ <r,  |W|<r

whereG|[U;] is the vertex-disjoint union of the connected, pairwise isomorphic sub-
graphs ofG,,, the “blocks”B; ;. Further, each € W is joined —foreach =1,...,p

—to each blockB; ; in the same way: the isomorphisnts; : B;1 — B; ; are fixed
andz € W is joined to ay € B, 1 iff it is joined to eachy; ;(y).

Theorem 4.17.1f M(L£) contains a pathP; then there exists an such that for every
sufficiently largen, G(n, p, r) contains an extremal graph, € EX(n, £).

This theorem helps to prove many extremal graph results. Some other results of
[325] ensure the uniqueness of the extremal graphs, too. One reason why these results
are easily applicable in several cases is that they apply not only to ordinary extremal
graph problems but to extremal graph problems with “chromatic conditions”.
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Assume that instead of only excluding subgraphs fibmve also have some addi-
tional conditions orG,,:

Consider a graph properfy and assume thak, € P. Does this change
the maximum in a Turan type problem?

Denote byex(n, £, P) the maximum ok(G,,) under the condition tha¥,, has no
subgraphs fromC and satisfies”?. Mostly we think of “chromatic properties” (see
Definition 4.18).

Clearly, if no L-extremal graph has propery, thenex(n, £, P) < ex(n, L). If
the condition is thax (G,) > t, for somet > p, that will only slightly diminish the
maximum: we can take a fixed graph, of high chromatic number and high girth and
then considet], + T;,—y . 1°

Definition 4.18 (Chromatic conditions). The chromatic prope€y; is the family of
graphs from which one cannot deletgertices ofL to get at-chromatic graph.

Theorem 4.19.Assume that, s, ¢t are given, anex(n, £, Cs ¢) is the maximum num-
ber of edges arL-free G,, € C,; can have. IfM(L) contains a pathP, then there

exists anr such that for every sufficiently large, G(n,p,r) contains an extremal
graphS,, € EX(n, £,Cs+).

Theorem 4.17 can be used to solve the extremal graph problem “algorithmically”,
sincelV andB; , have bounded sizes. The details are omitted.

Below we describe an algorithm to solve extremal graph problems: This algorithm
works if we know the appropriate information dh

Algorithm 4.20 (The stability method). (a) We look for a propef®@which we feel
is an important feature of the conjectured extremal grahs
(b) Show that ifG,, does not contain some € £ and does not have the propeRy
thene(G,,) is significantly smaller than the conjectured extremal number.
(c) This shows that all the extremal graphs have propBrtyJsing this extra infor-
mation we prove the conjectured structure of the extremal graphs.

Example 4.21.If the decomposition clas¥l contains anV/ consisting ofr indepen-

dent edges, then we can immediately see that ifidnyhas at least two vertices (and
therefore, being connected, has an edge), then the symmetric graph sequences con-
tain someL, a contradiction. Hence the blocks; , reduce to vertices. Therefore any

x € W is either joined to each vertex 6f or to none of them. Now it is not too diffi-

cult to see that the extremal graphs must be (almostffte p, k) graphs: The only
difference which can occur is that the vertices of degree O(1) do not necessarily

form a complete subgraph.

16 There is an exception wheficontains some trees.
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Remark 4.22.So we have seen that if the decomposition clEg£) contains an\/
consisting of independent edges, then we have can apply the theorems from [325] and
have a good chance to hat&n, p, s) as the extremal graph.

Following this line, one can easily deduce Theorem 4.15 from Theorem 4.19. The
next few results follow from these theorems.

Theorem 4.23(Petersen-extremal graphBpr n > no, H, 23 is the (only) extremal
graph for the Petersen grafgPyy.

(An alternative proof of this can be derived from Theorem 4.30 of the next section.)
| close this part with two cases when Theorem 4.17 is applicable but the extremal
graph is not @ (n, p, s). Both results follow from Theorem 4.13. Let £, denote
the graphs withk vertices and edges.

Theorem 4.24(Simonovits [323])Let & be fixed and’ := e(7}, ) + b, for1 < b <
k/(2p). If n is sufficiently large, then

ex(n,Lye) =e(Thp) +b—1

A theorem of Erds, Firedi, Gould, and Gunderson determines
ex(n, Fori1), WhereFy, 1 = (kK>2) ® Kj: k triangles with one com-
% mon vertex. Clearly, here the Decomposition class containsa hence
Theorem 4.17 is applicable. Yet the extremal graph is néf(a, 2, s),
since even one vertex completely joined t@%xa , creates arfy 1. (For
evenk, the extremal graph is obtained fromlg » by putting twoK’s into its first
class.)

4.3. Andrasfai—-Erd6s—Sos type theorems
We have seen thatx(n, L) — ex(n, L) = O(n) if P is thatx(G,) is high. The
situation completely changes if we try to maximizgn(G,,), instead ok(G,,).

Theorem 4.25(Andrasfai—Erés—Sos [24])If G, does not contaitk’,, andx(G,,) >
p, then

dmin(Gn) < (1 — ) n + O(l)

P-3

Comparing this with Turan’s theorem, whetgin(75,,-1) ~ (1 — Iﬁ)n, we see

that because of the extra conditiQG,,) > p, the maximum ofiin(G,,) dropped by
cpn, for somec, ~ 5> > 0. Below we shall need

" They can be obtained directly, by much simpler arguments, as well.
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Definition 4.26 (Blowing up a graph). Given a grapl,, its blown-up versioM [as, . . ., a,]
is a graph where each vertex € V(M,) is replaced by a seX; of a; independent
vertices (and thes&;'s are disjoint) and we join a € X; and aw € X if the original
verticesz; andx; were joined inM,,. If a; = --- = a, = a, then we use the simpler
notationM[a).

To generalize Theorem 4.25, Exsland Simonovits [139] defined
Y(n, L,t) :=maX{e(G,) : L L G, andx(G,) > t},

whereL is a fixed excluded graphi,is fixed, andn — oc. Using this language and
including some further results of [24], we can say that

Theorem 4.27(Andrasfai-Erés—Sos [24]).

P(n, Kp,p) = (1 — ) n+ O(1). 4.2)

_ 4
3

For n > no, the extremal grapl®,, for this problem is a products, = T;,,-3 ®
Cslai, az, ... ,as], where the parameters: and a; should be chosen to maximize
e(S,) among these structures.

The above description of,, almost completely determines its

structure: ifT;, ,—3 = Kp_3(ma, ..., m,_3), then
" 4101 and L ow
a; = m; = .
' 3n—-4 ' 3n—-4
lote 2: Please ) To formulate a more general and sharper result, assume that
sert a reference to F]li)g);tf(;mal
igure 3inthe text  ggrycture. L has a critical edge: anfor whichx(L —e) < x(L).  (4.3)

Theorem 4.28(Erdbs—Simonovits [139])If x(L) = p and L has a critical edge, then,
forn > no(L),
1/)(”7 va) S 112(7% Kpap)'

Actually, equality may hold only fol. = K.

Theorem 4.29(Erd6s—Simonovits [139])Let x(L) = p and L # K, satisfy (4.3).
Then, forn > no(L),

¥(n, L,p) < (1 - ) n+O0(1). (4.4)

_3
2
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Of course, this theorem does not cover the case of the Petersen graph: it has no
critical edge. Figure 2 shows that one can delete 3 independent edgeB;ftonget
a bipartite graph. Moreover, (v, p, s) is the graph obtained frorf, , by puttings
independent edges into the first classRf,, then Figure 2 shows thétyg C 772 3.
So the “stability” ofP1g-extremal graphs is covered by

Theorem 4.30(Simonovits [330]) For everyv (andt < v/2) there exists d( = K (v)
such that if

2
dmin(Gn) > gn + K

andT,,; ¢ G, then one can delet& vertices ofG,, to get a bipartite graph.

Remarks 4.31.(a) Theorem 4.30 is sharp, as showndyin]. Clearly,s(Cs[2n]) >
%n —2andT,2; ¢ 05[%11}. Further, replacing’, »; by any graphL. C T, »; we get
the same sharpnesshf; C L, sinceCs[%n] contains naks.

(b) Moreover, Theorem 4.30 is sharp also fap: one can relatively easily show
thatP;o cannot be embedded in€@[£n).

(c) The theorem isot sharpif (L) = 3 andL C Cs[u] for somey.18

The real question was #(n, K3,t) < ¢n + o(n) for some
constants;; — 0 ast — oo. In other words, is it true that if
the chromatic number tends ¢o, we can push down the degree
density arbitrarily?

In [24] it was conjectured that YES, however, it turned out
in the Erdds and Simonovits paper [139] that NO. This follows
Fig. 4: Hajnal from Construction 4.33 of A. Hajnal beloW. For this we shall
construction. need the definition of the Kneser graiN(2k + ¢, k). Its ver-

tices are the:-subsets of &2k + ¢)-element seU and we join
X, Y CUIf XNY = 0. Itis easy to cololKN (2k + ¢, k) with ¢ + 2 colors. The
Petersen graphi;o = KIN(5, 2) is the simplest non-trivial Kneser graph.

Theorem 4.32(Kneser conjecture, Lovasz theorem [262]).
X(KN(2k + 0, k) =0+ 2. (4.5)

Construction 4.33(A. Hajnal, in [139]). Letk, ¢, h — oo, £ = o(k), k = o(n). Our
graphH,, hasn ~ 3h vertices partitioned into three groups B, andC, where

H[A] = KN(2k + ¢, k), |B| ~ 2h, |C| = h.

(Casek = 2,/ = 1 can be seen in Figure 4).

18 Ot C O[] for > 1.
19 | think that this construction was found by Hajnal, but now that | reread our paper, | cannot exclude
that it was found by Eréls and Hajnal.
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(a) Each vertex of KN(2k + ¢, k) is a subset of1, .. ., 2k + ¢}: call its elements
the “names” ofv. The vertices of are partitioned into 2 +- ¢ subclasse$3;. j =
1,2,...,2k + ¢ of approximately equal sizes. We join the verticesifto those
vertices ofA whose nameset contairis Finally, join each vertex front to each one
of B.

Let us verify the implicitly or explicitly stated properties &f,. x(H,) >  + 2,
by (4.5). H,, contains nak3, because there are no edges betw&eamdA, so all the
triangles have to be iA U B. However,A does not contairk(s’s, and by the “name
rule”, if z,y € A are connected, then they have no common neighbdss finally,
if k,¢,n — oo, k = o(n), £ = o(k), thendmin(H,) > n/3 — o(n), since the vertices

z € A have
k  2n

d@)~ 53

because of the name rule, while for the vertice®a#.6) is trivial; for anz € C,
d(x) = %n —o(n).

(4.6)

Remark 4.34.When we described this construction originally, the Kneser conjecture
was still unproved: we used a much weaker assertion (an unpublished argument of
Szemerédi, based on a theorem of Kleitman) ${&N (2% + ¢, k)) — oo. Soon the
Kneser conjecture was proved by Lovasz [262], then an alternative proof was given by
Béarany [44] and then many nice results were proved, of which we mention here just
one, due to Schrijver [315], describing the color-critical subgrapsNf(m, k).

There are many interesting related results in this area. We mention here only a few
of them:

Theorem 4.35(Haggkvist [197], Guoping Jin [207]).

w(n, K3, 4) = %n + O(l)
The sharpness of this result follows from an “optimally” blown-up version of the
Grotzsch graph, where “optimally” means thatertices are partitioned into 11 classes
Ui, ....U11 and the classes are joined as in the Grotzsch graph, however the propor-
tions are chosen so that the number of edges be maximized, which happens when each
degree is approximately the same. Improving earlier an result of Thomassen [355],
tuczak proved

Theorem 4.36(Luczak [268]).For everye > 0 there exists ar. = L(¢) such that if
G, is triangle-free andinin(G,,) > (% + ¢)n, then@,, is contained in some blown-up
version of a triangle fred?,,, for somem < L(¢).
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As Erdds and myself, using the construction of Hajnal, pointed out, such a result
does not hold below /3, more precisely, with an < 0. The results above leave open
the case = 0 which was very recently answered by Brandt and Thomassé [74], who
also completely described the structure of triangle free graphsiith dmin(G,,) >
n/3. Their results imply

Theorem 4.37 All graphsG,, with dmin(G,,) > %n are 4-colorable.

4.4. The structure of denselL-free graphs

Below we shall writeG — H if H contains a homomorphic image &, or, in other
words, a blown-up versiofl (t) of H containsG. To avoid too technical arguments,
we restrict ourselves to the 3-chromatic case. For a gfapie define

¢&(L) = max{m: misoddandlL — Cp,}
= max{m: misoddandL C Cy,[v(L)]}.

Note that ifx(L) = 3, then{(L) cannot be larger thagirthoqd(L), the length of the
shortest odd cycle contained In Finally, by 3(G) we denote the minimum number
of edges that must be deleted frarto make it bipartite.

In this section we study the structure bifree graphs of large minimum degree for
a general 3-chromatic gragh Our main result can be stated as follows.

Theorem 4.38(Luczak and Simonovits [271]).et L be a 3-chromatic graph. Then
for everya, n > 0, there exists amg such that for every.-free graphG with v(G) =

n > ngand

2n

i@ > |72

—‘ +nn, 4.7)
we haves(G) < an?.

Furthermore, for everyy > 0 there exist am) > 0 and anng such that eacli-free
graphG with v(G) = n > ng and

Imin(G) > [E(LZ)ZJ — 7, (4.8)

contains a subgrapli’ with at leaste(G) — an? edges such that’ — Ce(L)42-

Similar but sharper results were proved byd8y Nikiforov and Schelp for the
special case wheh is an odd cycle.

Theorem 4.39(Gybri, Nikiforov and Schelp [196])If a non-bipartite graphG,, has
minimum degreelmin(Gy) > n/(4k + 2) + cim, Wherecy, ,,, does not depend on
n and n is sufficiently large, and it0>;.1 C G, for somek < s < 4k + 1 then
Cost2j+1 C G, foreveryj =1,...,m.
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They describe the structure of all graphsrowvertices withdmin(G,,) > n/(4k + 2)
not containing odd cycles longer thah2 1. In particular they prove that these graphs
can be made bipartite by deletion of a fixed number of edges or vertices.

Further sources to read: Alon and Sudakov [22].

5. Problem of supersaturated graphs

5.1. Counting complete subgraphs

For the sake of simplicity we restrict ourselves to the case whkas only one mem-
ber L. By definition, ife(G,) = ex(n, L) + 1, thenG,, contains anL. It is rather
surprising that generally(G,,) > ex(n, L) ensures much more than just oheThe

first result in this direction is an unpublished theorem of Rademacher (1941) according

to which a graphts,, with 2—2 + 1 edges contains at legs} | copies ofK3. This was

immediately generalized by

2

Theorem 5.1(Erdds [109]). There exists a constant> 0 such thatife(G,,) = {’H +
k,1 <k < cn, thenG,, contains at leask| % | copies ofK3.

T2, shows that this result is sharp, apart from the value dhdeede(T, 2 ) =
[ﬁ—z} + k and it has onlyk| 5] triangles. Later Erds extended this result t&,, 1

and graphs+,, with e(7}, ,) + k edges [117]. Many similar results were proved by
Erdds [117, 112], Moon and Moser [276], Bollobas [53, 54], Lovasz and Simonovits,
[264, 265].

For complete graphs, Lovasz and Simonovits proved a conjecture 6¢ Erdl for-
mulated a general conjecture in [264, 265] which they could prove only for special
values ofk = e(G,,) — ex(n, K1), namely, wherk € [1,en?].2° Later, in several
steps it was solved by Fisher [158, 159], Razborov [295], Nikiforov [286] and finally,
“completely”, by Reiher [297].

We have already mentioned the “meta-theorem” that if one can prove a result for
K,, then one can also prove it for graphs with critical edges. One example of this is

Theorem 5.2 (D. Mubayi, [279]: critical edges).et L be p + 1-chromatic with a
critical edge. Letc(n, L) be the minimum number of copies bfproduced by the
addition of an edge td@’, ,. There existio(L) andd(L) such that every graphy,, of

ordern > ng with e(G,,) = ex(n, K1) + k edges contains at least:(n, L) copies
of L, providedk < on.

The proof uses the graph removal lemma and thé&f8imonovits stability theo-
rem.

20 More precisely, when for some> p, €(Th.q) < e(Grn) < e(Th,q) + €4n°.
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5.2. General sample graphs

Turning to the general case we fix an arbitrdnand call a graplt,, supersaturated
if e(G,) > ex(n,L). The problem is, at least how many copies.ofust occur in a
G,, with ex(n, L) + k edges. Er@s and Simonovits [140] proved that

Theorem. For everyc > O there exists a* > 0 such that ife(G,,) > ex(n, L) +
en? andv = (L), thenG,, contains at fewest n” copies ofL.

Further sources to read: The reader interested in further information is suggested
to read the papers of Lovasz and Simonovits on structural stability [265§sEdd
Simonovits, [140], or Brown and Simonovits [85], or my survey [328].

5.3. Razborov’s method, flag algebras

Given a graph,,, we may count the occurrences of several possible subgraphs in
it. Denote byc(L, G,) the number of occurrences &fin G,,. Inequalities for such
“counting functions” were the basic tools in several cases, see e.g. [252], [276] [265].
The connection between Supersaturated Graph theorems and proofs of ordinary ex-
tremal graph problems was discussed e.g. in [328]. In the last few years Razborov has
developed a new method which enables the researcher to apply computers to prove
inequalities between counting functions on a graph. This method turned out to be very
successful and popular. To describe it and its applications would go far beyond our
scope. | just mention one of the first papers of A. Razborov [293] and his very recent
survey [296] on this topic, or Keevash [218].

5.4. The general case, bipartite graphs

As we have mentioned, the theory of supersaturated graphs started with Rademacher’s
theorem, and the first few papers in the field counted complete subgraphs of super-
saturated graphs, [117], [100] .... (Perhaps one exception should be mentioned here:
counting walks in graphs, e.g. Blakley and Roy [49], that was found independently
also by [282], [260]. Counting walks is important e.g., if we wish to get information
on the eigenvalues of a graph.)

The theory of supersaturated graphs is completely different for (a) the case when
the excluded grapH, is bipartite, and (b) when it is not. The case when it is bipartite
is described in detail in [180], and from other viewpoints, in my survey, [328], so |
will describe the situation here only very shortly.

Fore(G,) < ex(n, L), of course, it may happen that, contains no copies df.
As soon as we go abowex(n, L), we immediately have very many copies. Yet, to
give a precise description is hopeless, even for one of the the simplest cages, for
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we do not know enough of the finite geometries to tell how m@pynust occur inz,,
if e(Gr) = ex(n,Cy) + 1.

Erdds and | conjectured (see [328]) thakifL.) = 2 then for every > O there exists
ann(e) > 0 such that ife(G,,) > (1 + ¢)ex(n, L), thenG,, contains at leagjn(*)
copies ofL. We also formulated a weaker conjecture, asserting that — for any fixed
—there exist a (small) > 0 and aC' > 0 such that ife(G,,) > Cex(n, L), thenG,,
contains at leasyn’(“) copies ofL. It is also mentioned (implicitly?) in [328] that
these conjectures mean that the random graph has the fewest copi€s®idorenko
[319], [320] considered dense graph sequences, turned the corresponding inequalities
into integrals, the error terms disappeared, and he formulated more explicitly that for
a given number of edges the Random Graph has the least cofies of

Today this has become one of the most important conjectures in this area. The
simplest case when the conjecture is unknown is whés obtained from & (5, 5)
by deleting edges of &10. We could mention here several results, however basically
we refer the reader to [180] and mention only Simonovits, [328], Conlon, Fox and
Sudakov [95].

Remark 5.3.Earlier we always first proved an extremal graph theorem and then the
corresponding supersaturated graph theorem. Today this is not quite so>Fbmwe

do not really know any reasonable upper boun@®tw, Q) (for the k-dimensional
cube), while the corresponding Ers-Simonovits—Sidorenko conjecture is proved by
Hatami [199]. This may seem to be surprising, however, the Sidorenko conjecture is
aboutdensegraphs.

5.5. Ramsey-supersaturated?

The general question would be (though not the most general one) that if we have a
sample grapll, andn > ng, and wer-color K,,, at least how many monochromatic
subgraphs must occét.The simplest case is to determine

min (C(Kp, Gp) + C(Kp,@)) .

For K3 the answer is relatively easy, see Goodman [184]6&mbnjectured [110] that
the minimum is achieved by the Random Graph. This was disproved by Thomason
[354]. (See also [205].)

6. Regularity lemma

When the Szemerédi Regularity Lemma [349] “arrived”, first it seemed somewhat too
complicated. The reason for this was that in those days most graph theorists felt uneasy

21 |n those days quasi-random graphs were “non-existent”, today we know that from this point of view
the random and the quasi-random graphs are indistinguishable.

22 A related question is, how many monochromatic forbidden subgraphs appear near the Ramsey
bound, see e.g., Rosta and Suranyi, [307], Karolyi and Rosta [212], .. ..
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about having this “approximation type statemertts”.

Today we know that (a) it is not that complicated and that (b) it is one ofrtbst
importanttools in Extremal Graph Theory. This is not the place to explain it. Surveys
like Komlés and Simonovits [249], [248] describe sufficiently well the usage of the
Regularity Lemma in our setting, for “dense graph sequentesgveral excellent
newer surveys are also available, like Kohayakawa and Rodl [229], RAdl and Schacht
[302], Gerke and Steger [183], and many others. Yet, for the sake of completeness we
formulate it.

6.1. The original regularity lemma

Definition 6.1 (e-regular pairs). The pair of two disjoint vertex sets,B C V(G) is
e-regular inG, if for every X C A andY C B satisfying| X| > ¢|A| and|Y'| > ¢|B|,
we have
e(X,Y) e(A, B)
IX[[YT ~ TA][B]

<e. (6.1)

Theorem 6.2(Szemerédi Regularity LemmdJor everyx > 0 ande > 0 there exists
a ko = ko(e, k) such that for each graplr,, V(G,) can be partitioned intd: €
(k, ko) vertex setgUs, ..., Uy), of < [n/k] vertices (each), so that for all but(g)
pairs (U;,U;) (1 < i < j < k) the subgraptG|[U;, U] induced byU;, U; is e-regular.

The meaning of this “lemma” is that any graph can be approximated by a “gener-
alized random graph”. Its applicability comes from the fact that embedding certain
structures into random-like graphs is much easier than into arbitrary graphs. This
approximation helps us to prove (instead of statements on “embedding into arbitrary
graphs”) the simpler assertions on “embedding into generalized random graphs”.

The Regularity Lemma completely changed that part of graph theory we are con-
sidering here. There are many excellent introductions to its applications. One of the
first ones was that of Komlos and myself [249], or its extension [248].

Remarks 6.3.(a) The Regularity Lemma can be applied primarily when a graph se-
quenceG,,) is given with positive edge density(G,,) > cn?, for some fixed: > 0.

(b) For ordinary graphs it has several weaker or stronger versions, and one could as-
sert that if one knows the statement, the proofs are not that difficult: the breakthroughs
came from finding the right Regularity Lemma versions.

(c) For hypergraphs the situation completely changes: the regularity lemmas are
much more complicated to formulate and often their proofs are also very painful (?).
For a related survey see the PNAS paper of Rodl, Nagle Skokan, Schacht and Ko-
hayakawa [298] and the “attached” Solymosi paper [337], and Gowers, [188], and Tao
[351].

2 Harary, e.g., did not like assertions containing statements like‘forng” ... .
24 wheree(G',) > cn? for some constant > 0 asn — oo.
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(d) Regularity Lemmas are connected with “removal lemmas”, and “counting lem-
mas”. However, for ordinary graphs they are easy, while for hypergraphs they are
much deeper.

(e) Regularity Lemmas can be applied to sparse graph sequéfiggésas well,

[225, 228] assuming that the grapfig satisfy some technical assumptions, according

to which they do not have too dense subgraphs. Subgraphs of random graphs satisfy
this condition, therefore Sparse Regularity Lemmas were applicable in several cases
for non-random subgraphs of sparse random graphs.

(f) Regularity Lemmas were “invented” to ensure small subgraphs of given prop-
erties of a grapli7,,. Later Komlés, G. N. Sarkdzy, and Szemerédi started using it to
ensure spanning subgraphs. This is what the “Blow-Up Lemmas” were invented for,
see Komlos, [245], Komlés, Sarkozy and Szemerédi, [240]. Later they worked out al-
gorithmic versions of the blow-up lemma too [242] (see also Rddl andiRkici300])
and hypergraph versions (Keevash, [217]) were established. We return to this topic in
Subsection 6.6.

(g) There are many cases where Regularity Lemmas are used to give a first proof
for some theorems, but later it turns out that the “regularity lemma” can be eliminated.

(h) Regularity Lemmas play a crucial role in the theory of quasi-randomness, in
“property testing”, and in the theory of graph limits.

6.2. Some newer regularity lemmas

In [249] we tried to give an easy introduction to the applications of the Regularity
Lemma. We have described the earliest applications, the Alon, Duke, Lefmann, R&dl
and Yuster paper [13] about the algorithmic aspects of the Regularity Lemma, which
helps to turn existence theorems using the Regularity Lemma into algorithms, the
Frieze and Kannan version [164] which helps to make algorithms faster, since it uses
a weaker Regularity Lemma, however, with much fewer classes. Beside [164], see
also[?]. The weak Regularity Lemma in my opinion also connects the combinatorial
approach to Mathematical Statistics, above all, to Principal Component Analysis.
There are also continuous versions of Regularity Lemmas. Here we refer the reader
to the paper of Lovasz and B. Szegedy [266] and to the book of Lovasz [263]. Many
further remarks and references could be added here but we have to cut it short.

6.3. Regularity Lemma for sparse graphs

The Kohayakawa—Rddl version of the Szemerédi Regularity Lemma uses a “technical”
assumption that the consideréd}, does not contain subgrapli,, of much higher
density thanGz,,. Very recently Alex Scott proved a new version of the Regularity
Lemma, for sparse graphs [316]. Yet this has not solved all the problems. As Scott
points out, it may happen in the applications of the Scott Lemma that most of the
edges are in the “wrong place”. We skip the details. On the connection of random
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graph models and Regularity Lemmas, we mention Bollob4s and Riordan [59].

6.4. Regularity lemma and quasi-randomness
Quasi-randomness informally means that

(Q) We consider graph sequendgs,) and look for “properties”P; that are
obvious for the usual random graphs (say, from the binomial distribution
R..p) and equivalent to each other.

Here there are two notions relatively near to each other: the pseudo-random and
the quasi-random graphs. The investigations in this area were initiated by Andrew
Thomason (see e.g. his survey [353]) and were motivated (partly?) by Ramsey prob-
lems. Chung, Graham and Wilson [94] showed that if we weaken the error terms,
then there are six properties satisfying (Q). Vera Sés and | proved that there is another
propertyPr equivalent to quasi-randomness:

Theorem 6.4(Simonovits—Sés [333]A graph sequencé’,,) is p-quasi-random in
the Chung—Graham—Wilson sense iff for evergnde > O there exist two integers
k(e, k) andng(e, k) such that forn > ng V(G,) has a (Szemerédi) partition into
classed/y, ..., Ui (Where|U; — n/k| < 1, k < k < k(e, x)) where all but at most
ek? pairs1 < i < j < k aree—regular with densitied(U;, U;) satisfying

|d(Ul, Uj) —p| < E.

Several extensions exist for sparse graph sequences and hypergraph sequences, how-
ever, we do not discuss them in detail. For the sparse case see, e.g., Kohayakawa and
Ra&dl [229]. For hypergraph extensions (which are much more technical) see, e.g.,
Keevash [217].

6.5. Regularity lemma and property testing

Property testing is among the important “Computer Science motivated” areas. It is
perhaps two steps away from Turan’s results, yet | write very shortly about it. Assume
that we have a graph properB. We would like to decide if a grapy,, € P or not.
However, we may ask only a few questions about pair# they are edges of7,, or

not? For example, we would like to decide&if, contains a giverd. or not. Obviously,

we cannot decide this for sure — using only a few questions — unless we allow some
errors in the answer: if we can change a few edges,jrto get a,, € P then we
accept a YES. Some of the earliest questions of this type came from P#ésl Brdugh

in somewhat different form. In the papers of Alon and Shapira it turned out that — in
the reasonable cases — one can decide the question if one can decide it by applying
the regularity lemma td~,, and then considering the densities between the partition
classes.
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6.6. Blow-up lemma

In many cases we embed a small grdpimto a large one(=,,. There are some ex-
ceptions, when we wish to find ifi,, a Hamiltonian cycle, or a spanning tree of given
structure, . ... In these cases mostly (a) we have to assume some sparseness condition
on L, say a bound ofimax(L). (b) Even if we can embed into G,,, if v(L) = n, then

we have to struggle with finding places for the last few vertices.

To solve this problem Komlds, G. Sarkézy and Szemerédi [240] established a spe-
cial “extension” of the Regularity Lemma, called tBeow-Up LemmaKomlos has a
survey [245] on early successes of the Blow-Up Lemma. This survey very nicely de-
scribes the classification of embedding probléfend lists several conjectures solved
with the help of the Blow-Up Lemma.

We call a pain( X, Y") of vertex-sets irz,, (g, 7)-super-regular ifX| = |Y|, itis e-
regulard(X,Y) > 7 and the minimum degree 6f(X,Y) is also at leastd(X,Y") —
£)|X|.28

Theorem 6.5(Blow-Up Lemma, short form)For everys, A > Othere exists ang > 0
such that the following holds. Given a graph,, and a positive integem, andG,,
and U,, are obtained by replacing every vertex 8f, by m or m — 1 vertices, and
replacing the edges aff,, with (e, §)-super-regular pairs and by complete bipartite
graphs, respectively. If,, C U, anddmax(Ly) < A, thenL,, C G,,.

The meaning of this is that if we do not have large degreds,iand small degrees
in G,, and we apply the Regularity Lemmadg,, and replace each of theregular
T-dense pairs by complete bipartite graphs, then, if we can emhedto the sg
obtainedU,,, then we can embe#,, into the original, much sparsét,, as well.

The basic idea was (i) first to use a randomized greedy embedding algorithm for
most of the vertices of the graph to be embedded and (ii) then take care of the remain-
ing ones by applying a Kénig—Hall type argument [240].

The Blow-Up Lemma successfully solved several open problems, see e.g., Kom-
I6s, Sarkdzy, and Szemerédi, proving the PGsa—Seymour conjecture, [246], the Alon—
Yuster conjecture [243], .... Here the Pdsa—Seymour conjecture asks about ensuring
the k™" power of a Hamiltonian cycle (meaning that we have a Hamiltonian cycle,
where all the vertices are joined whose distance onkhis at mostk).

The randomization was later eliminated by Komlos, Sarkézy and Szemerédi and the
embedding became an algorithmic one [242]. An alternative “derandomized” proof
was also given by Rédl and Ruasiki [300]. This approach turned out to be extremely
successful. The blow-up lemma was also extended to hypergraphs, see Keevash [217].

When using the Regularity Lemma, or the Blow-Up Lemma, we often apply some
“classical” result to the Cluster Graphs. Here we often need the famous

% fixed sizeL, o(n) sizeL, v(L) = cn, v(L) = n
26 We could define this basic notion also slightly differently.
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Theorem 6.6(Hajnal-Szemerédi [244])f n is divisible byp and

drin(G) > (1— ;) ",

thenV (G,,) can be covered by vertex-disjoint copieggyf.

When Hajnal and Szemerédi proved this conjecture obgrthat was an enormous
technical achievement, but | do not think that most people in the surrounding new that
this would also be an important “tool”.

Further sources to read: Several related results discuss how one can get rid of ap-
plying the Blow-Up Lemma (or variants of the Regularity Lemma, see, e.g. Levitt,
Sarkdzy and Szemerédi [247]). Kihn and Osthus have a related survey [255], and
Rodl and Rudiski another one [301]. See also Alon, Rédl and Rseki [19], B,
Csaba [96].

7. Arithmetic structures and combinatorics

This will be the shortest section of this survey. Clearly, writing of the influence of
Turan in Discrete Mathematics one cannot avoid thedErduran conjecture, nowa-
days Szemerédi's,(n)-theorem. This asserts that

Theorem 7.1(Szemerédi [348])For any fixedk, if a sequencel of integers does not
containk-term arithmetic progressions, then it has only:) elements inl, n].

This theorem was very strongly connected to combinatorics. Szemerédi proved and
used an earlier, weaker version of his Regularity Lemma, to prove Theorem 7.1. Vera
S06s has a paper describing the origins of this conjecture [340] (based on the letters
exchanged by Ef@s and Turan, during the war).

Remarks 7.2.(a) Szemerédi’'s theorem is one of the roots of many results that connect
Combinatorics (Graph Theory?) and Combinatorial Number Theory. Beside this it
also connects Ergodic Theory and Combinatorial Number Theory, since Firstenberg
[181] gave an ergodic theoretic proof of it, then Firstenberg, Katznelson [182] and
others gave several generalizations, using ergodic theoretic methods. The reader is
recommended to read e.g. the corresponding chapter of the book of Graham, Roth-
schild and Spencer [190]. At the same time, there are fascinating approaches to this
field using deep analysis, due to Gowers, and otifesge recent papers of Gowers
[186], or an even newer paper of Gowers [189] on these types of problems, on arith-
metic progressions.

27 This approach originates from Roth.
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(b) Historically it may be interesting to read the first, fairly weak results obErd
and Turén on this topic, in [150]. They start with proving thgtn) < %n Then they
prove a slight improvement, and formulate a conjecture of Szekeres which turned out
to be false.

One of the most famous conjectures of &dvas
Conjecture 7.3.1f A = (a1, ..., an,...) is asequence of integers with
1
RS
g
then, for anyk, A contains &-term arithmetic progression.
One motivation of this conjecture is that it would imply

Theorem 7.4(Green—Tao [191])ror arbitrary k& there existk-term arithmetic pro-
gressions in the set of primes.

Further sources to read: Elek and Szegedy on the nonstandard methods in this area,
[104, 105].

8. Multigraph and digraph extremal problems

Here | formulate only the digraph problem, which includes the multigraph case. Let
be fixed and consider digraphs in which for any two vertices at masts of the same
orientation can join them. (Hence the number of arcs joining two vertices is at most
2r.) The problem is obvious:

For a given familyf of digraphs what is the maximum number of arcs a
— — —
digraphD,, can possess without containing afye L£?

The concepts oéx(n, Z) andEX(n, Z) are defined in the obvious way. Brown
and Harary [84] started investigating multigraph extremal problems. Several general
theorems were proved by W. G. Brown, P. &sdand M. Simonovits [78], [79], [80],
[81]. Some results concerning directed multi-hypergraphs can also be found in a paper
of Brown and Simonovits [85]. For the Eid conference in 1999 we wrote a longer
survey on the topic [86]. The case= 1, at least, the asymptotics ek(n, f) in this
case, is sufficiently well described. Below we formulate only one theorem, indicating
that the whole theory of digraph extremal problems is strongly connected to the theory
of matrices with nonnegative integer entries.

Brown—Erd 6s—Simonovits theorem [78]. Let us consider digraphs where any
—
two vertices are joined by at most one arc in each direction. Ldte a given family
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of forbidden digraphs. Then there exist®4 matrix A (of sayt rows and columns)
such that:

(a) If we partitionn vertices intot classeslUs, ..., U, and fori # j join each
vertex ofU; to each vertex ol/;, by an arc oriented front/;, to Uj, iff a;; = 1,
and put transitive tournaments into the claségsiff a;; = 1 (otherwise these are
iﬂ)dependent vertices) then the resulting digraph does not contain subdigraphs from
L.

(b) One can partition vertices intot classed/y, ..., U; in such a way that the
resulting digraphsl_))n form an almost extremal sequence(:l_ﬁn)/ex(n, f) -1
(and Bn contains no forbidden subdigraphs).

The meaning of this theorem is that for= 1 we can always find an almost ex-
tremal graph sequence of fairly simple structure, where the structure itself excludes
the containment of forbidden subgraphs.

Example 8.1.(a) Letr = 1. Let L3 be the following digraphu is joined tob andc by
two arcs of opposite directions anhds joined toc by one arc. The extremal structure
is aCTé obtained frontZ, » replacing each edge by two arcs of opposite direction. Any
tournament?n is also an almost-extremal graph, and there are many other extremal
graphs, see [86].

(b) There are digraph families for which the structure in Figure 5 (a) is extremal, and
for some other famiI;Z> the structures in Figure 5 (b)—(e) forms an extremal sequence,
respectively.

/O\\
vV =0 &Y &

Figure 5. (a) Excluded (b), (c), (d) and (e) extremal structures for sbme

Brown, Erdds, and myself had conjectures asserting that most of the results for
r = 1 can be generalized to any fixechowever, most of our conjectures were “killed”
by some counter-examples of Sidorenko [317] and then of R6dl and Sidorenko [304].

9. Hypergraph extremal problems

Just to emphasize that we are speaking of hypergraphs, hyperedges, ..., we shall use
script letters, and occasionally an upper index indicates-tt: Hﬁf) denotes an
r-uniform hypergraph on vertices.
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Given two positive integers andr, we may considek-uniforms-multi-hypergraphs,
that is, h-uniform hypergraphs, where the edges may have some multipligities
Obviously, given a family of such multi-hypergraples(n, £) is defined as the max-
imum number ofh-tuples (counted with multiplicity) such a multi-hypergraph @n
vertices can have without containing some members§ af submulti-hypergraphs.
Some results on such general extremal graph problems were obtained by W. G. Brown
and M. Simonovits [85], but for the sake of simplicity we shall confine our considera-
tions tor = 1, that is, to ordinary:-uniform hypergraphs. Even féar = 3 most of the
problems we meet prove to be hopeless or at least extremely hard. Therefore we shall
mostly restrict our considerations to 3-uniform hypergraphs.

9.1. Degenerate hypergraph problems

Let lC;Lh)(m) be the followingh-uniform hypergraph: it hagm vertices partitioned
into disjointm-tuplesUy, . . ., Uy, and the edges are thosduples which have exactly
one vertex from eachy;.

Theorem 9.1 (Erdds’ theorem [111])There exist two constants = ¢, > 0 and
A = Ay, such that

nhfcm7<h’1) <eX(n,IC§Lh)(m)) <Anh7m7(h—1).

Clearly, IC<22>(m) = K>(m,m), and the above theorem is a gen-
lote 4: Please eralization of the Kvari-T. S6s—Turan theorem. For the sake of
1sert a reference to simplicity, Theorem 9.1 was given only for the case when the sizes
igure 6 in the text of classes of the excludeuniform h-partite graph were equal.

One annoying feature of this theorem is that we do not have match-
ing lower and upper bounds for the exponents even in the simplest
hypergraph casé = 3 andm = 228 At this point, it is worth

Fig. 6: defining two different chromatic numbers of hypergraphs.
Octahedron
hypergraph.
Definition 9.2 (Strong-Weak chromatic number). A hypergrakh

is stronglyt-colorable, ifVV (H) can bei-colored so that each hyper-
edge uses each color at most once; the strong chromatic nym€y is the smallest
sucht.
A hypergraphH is weakt-colorable if we cant-color its vertices so that each of
them gets at least 2 colorg(H) is the smallest such

This way we see, by Theorem 9.1, that feuniform hypergraphex(n, £(")) =
o(n") if and only if there is ar{(") e £(") that is stronglyr-colorable. This extends
fromr = 2tor > 2, which we already knew from Section 3.3.

28 This is the octahedron hypergraph, defined by the triangles of an octahedron.
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Let £, denote the family of 3-uniform hypergraphs bfvertices andt edges.
Brown, Erdbs and T. S6s [82] started investigating the functfon, &, t) = ex(n, Ly ;).2°
The problem of finding good estimates fifn, &, t) is sometimes relatively simple, for
some other values é@f andt it seems to be extremely hard. One case which they could
not settle was iff (n, 6, 3) = o(n?). Ruzsa and Szemerédi [311] proved the following
surprising result.

Ruzsa—Szemerédi theorem. Letr,(n) denote the maximum number of integers
one can choose ifl, n] so that nok of them form an arithmetic progressiéh.Then
there exists a constanat> 0 such that

cnra(n) < f(n, 6,3) = o(n?).

It is known that

Theorem 9.3(Behrend [45], and Roth [309]).

1-—= n
n  ViIr <r3(n) < ¢f———.
loglogn

The upper bound was recently improved by Tom Sanders [312] to

. (loglogn)®
r3(n) < c nilogn :

So, among others, the Ruzsa—Szemerédi theorem is surprising, since it shows the
nonexistence of an € (1, 2) such thatC1n® < f(n,6,3) < Con®. Another surpris-
ing feature is that it implies that(n) = o(n), which was considered a beautiful result
of K. F. Roth [308, 309], though superseded by the famous result of Szemerédi:

Theorem 9.4(Szemerédi on arithmetic progressions [34B{). every fixed:, asn —
00, rp(n) = o(n).

For some related generalizations, see Alon and Shapira [20].

9.2. The “simplest” hypergraph extremal problem?

Next we turn to a hypergraph extremal problem which has a very simple extremal
structure. G. O. H. Katona conjectured and Bollobas proved that

2 The same question was investigated in some sense by Dirac [100] and in several papets of Erd
and of Simonovits, see also Griggs, Simonovits and Thomas [192].
%0 We have already considered this problem in Section 7.
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Theorem 9.5(Bollobas [52]).If Hgff is a 3-uniform hypergraph with?® + 1 triples,

then it contains three triples where one contains the symmetric difference of the other
two.

This can be viewed as a possible generalization of Turan’s theokénas three
pairs and the symmetric difference of two of them is contained in the third one. To
understand a statement like Theorem 9.5, one always has to consider the conjectured
extremal structure. Now this is the complete 3-partite 3-uniform hypergraph with (al-
most) equal class sizes. For us it is much more interesting that such a simple nice-
looking extremal problem exists for hypergraphs.

9.3. Turan’s hypergraph conjecture

We finish this part with the famous unsolved problem of P. Turan [361]:

Given ap, we define the compleﬂeuniformp—graphlq(;h) as theh-uniform hyper-
graph onp vertices and with all theéﬁ) hyperedges. What is the maximum number of

hyperedges in ah-uniform hypergrapl’i—(%h) if it does not containlq()h) as a subhyper-
graph?

For h = 3 Turan formulated some plausible conjectures. The conjectured extremal
hypergraphs differed in structure for the caseg ¥fas even or odd. For the sake of
simplicity we formulate them only fop = 4 andp = 5.

(a) Forp = 4 let us consider the 3-uniform hypergraph obtained by partitioning
vertices into 3 classel1, U, and U3 as equally as possible and then taking all the
triples of form (z,y, z) wherez,y, andz belong to different classes; further, take
all the triplets(z, v, z) wherex andy belong to thei’” class and: to the (i + 1),
1=1,2,3,andUy := Us.

Figure 7. The conjectured extremal hypergraphg(ffﬁr1 andlcff).

(b) Forp = 5 Turan had a construction with 4 classes and another one with 2
lote 5: Please classes. The one with 2 classes is simple: we take all the triples having two vertices in
1sert a reference togne class and the third vertex in the other class. V. T. S6s observed that the construction
igure 7inthe text yith 2 classes can be obtained from the construction with 4 classes by moving some

triples in some simple way. Later J. Suranyi found a construction showing that Turan’s
conjecture forp = 5 is false forn = 9. As far as | know Kostochka has found a
generalization of Suranyi’s construction: counter-examples for everydk + 1. Still
Turan’s conjecture may be asymptotically sharp.
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(c) Let us return to the case @f = ICf). Even in this simple case Turan’s con-
jecture seems to be very hard, even if we look only for asymptotics, that is, for
lim ex(n, IC§13))/n3. There are no counter-examples to the conjecture, however, first
Katona, Nemetz and Simonovits [215] have found some other constructions, slightly
different from Turdn’s one, and only far= 3k+1 andn = 3k+2. Later W. G. Brown
[77] gave another construction Witholaﬁf) and with the same number of triples, hav-
ing 6 classes, depending on one parameter and containing Turan’s construction as a
special case. Finally Kostochka [251] has found a construction ipdrameters, i3
classes, for arbitrary, and having the same number of triples as Turan’s one, without
containinglCP. His construction was a generalization of Brown’s one. In these new
constructions: = 3k, which seems to be the most interesting case. Next Fon der
Flaass [160] gave a characterization of all of Kostochka's (3,4)-graphs, “explaining”
why the Kostochka constructions do work. Recently Andrew Frohmader [166] found
some new constructions. As to numerical estimates, see e.g. Chung and Lu [92].

Some people include intersection results into extremal hypergraph theory. | prefer
to distinguish between them. Yet, | will include here a very famous problem daf<Erd
and Rado.

Problem 1 (Delta-systems, [130], [124].). Let us call a system of sdis,..., A, a
strongA-system, if the intersection of any two of them is the same. Is it true thét if
is a system of-tuples on am-element set, without A-Delta-system, thep4| < C7,
for some constan®’,. > 0.

9.4. Do hypergraphs jump?

Definition 9.6 (Jumping constants). The numhbere [0, 1) is a jump forr if for any
¢ > 0 and integem > r, anyr-uniform hypergrapl’HﬁZ") with n > n,(e, m) vertices
and at leasto + <) (") edges contains a subhypergral’ with at least( + ¢) ()

edges, where = ¢(«) does not depend anandm.

By the Erdbs—Stone—Simonovits theorem, for ordinary graphs (i.e= 2) every
ais a jump. Erds asked [111] whether the same is trues’for 3. For the sake of
simplicity we restrict ourselves to 3-uniform hypergraphs. For such a hypergfg’ﬂ)h
define the triple density as

Theorem 9.1 of Erdéls shows that if for a three-uniform hypergraph seque{mt@)
the triple-density (HY) > a > 03! then there exist some subgraﬁl‘ng)(n) cHY

31 We may define the density dividing by and by (™).
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with m(n) — oo, for which

(3) 6
C(Hm(n)) > 57 asn—oo.
This means that — in this sense — the density jumps foom 0 to o/ = 2/9. It
seems to me that Edd wanted to know if this minimum density/@ (i.e. the density

of Kf) (m)) is a jumping constant. However, he formulated his question in a more
general form and that was disproved (by a “random graph construction”), by Frankl
and Rodl:

Theorem 9.7(Frankl and Rodl [163])Suppose that > 3and¢ > 2r. Thenl — Wl_l
is not a jumping constant.

Theorem 9.8(Baber—Talbot [30])If o € [02299 023186, thena is a jump forr = 3.

These are the first non-trivial jumping constants. The proof uses Razborov’s flag
algebra method. Theorem 9.8 follows from that for an appropriately chosen f&mily
of 3-uniform hypergraphex(n, F) < 0.2299(3) + o(n?).

Remark 9.9. The jumping constant problem came up slightly differently (perhaps ear-
lier) in the digraph extremal problems, in the following form: “prove that the extremal
densities form a well-ordered set under the ordinary relatigr’.” Actually, a YES
answer implies that the corresponding digraph extremal problems can algorithmically
be solved. For the details we refer the reader to [81, 86]. The answer was YES for
r = 1 and NO for large values of, see Sidorenko [317], and Rddl and Sidorenko
[304].

9.5. The story of the Fano problem

Consider the 3-uniform hypergraph defined by the “lines” of the Fano geometry (see
Figure 8(a)). This hypergraph has 7 vertices and 7 triples and any two (distinct) of
them intersect in exactly 1 vertex. This is the smallest finite geometry. As a hyper-
graph, it will be denoted by.

Figure 8. (a) Fano hypergraph (b) Fano extremal graph.

Vera Sos asked what is the extremal graph&ey and conjectured [339] that it is
the complete bipartite 3-uniform graph shown in Figure 8 (b). Why is this conjecture
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natural?®?
(i) BecauseF7 is 3-chromatic, by Definition 9.2,
(il) however, deleting any triple of7 we get a 2-chromatic hypergraph;
(iii) F7 is relatively sparse.

Theorem 9.10(de Caen and Furedi [90]).

exs(n, F7) — i(g) +O(n?).

Theorem 9.11(Furedi-Simonovits [179], Keevash—Sudakov [2189t n > no(F7)
the complete bipartite 3-uniform hypergraph is the only extremal hypergrapffor

Actually, in [179] a stronger, stability result was proved, easily implying Theo-
rem 9.11. Observe that the degrees of the conjectured extremal graph are%(l’g))md

Theorem 9.12.There exist a» > 0 and ann, such that the following holds. H is a
triple system om > n; vertices not containing the Fano configuratigf and

- (34) ()

holds for every: € V(H), thenH is bipartite, ¥ C H(X, X) for someX C V(H).

This result is a distant relative of Theorem 4.25 (of AndrasfaigEmind T. Sés).

Remark 9.13(Tools). These proofs heavily use some multigraph extremal results of
Furedi and Kindgen [174]: the basic approach is that one finds ﬂfé?)ac H,(f).

If its vertices aren, b, ¢, d, then one considers the four link-graphs of these vertices,
where the link-graph of am in a 3-uniform hypergraph is the paita forming a
3-edge withz.3® These link-graphs define a (colored) multigraph Vj(ﬂ-tf)) —
{a,b,c,d}. We apply a multigraph extremal theorem of [174] to get/anc Hf).

The boundedness of multiplicities is trivial.

There are a few further cases where we have sharp results on hypergraph extremal
problems. | mention here e.g. Firedi, Pikhurko and Simonovits [176, 177, 178], where
the last one refers to 4-hypergraphs. Other sharp results can be found on 4-hypergraph
cases in Furedi, Mubayi, Pikhurko [175].

32 We used the complete-chromatic graph for Theorem 9.1 in a slightly different way. Actually, there
we considered the strong chromatic number, here the weak one.
33 Actually, we use only the three largest ones of them.
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9.6. Co-degree problems

For hypergraphs we have several options to define degrees. Below we restrict our con-
siderations again to the 3-uniform case and instead of degrees we consider co-degrees:
the co-degree of two verticasandy is the number of triples OH%S) containing both

of them.

Theorem 9.14(Mubayi [280]).For everye > 0 there exists amg such that forn >
no, if for any pair of verticese, y € V(Hgf)) their co-degree is at leagt + =)n then
FrcHY.

Mubayi conjectured that = 0 would be sufficient to ensure a Fano subgraph.
Mubayi and Zhao remark in [281] that for co-degree problems many questions have
answers different from that of the ordinary hypergraph extremal problems. One such
case is the problem of jumping constants (see Section 9.4). The co-degree densities
are defined in the obvious way, thus the jumping constants are defined almost the same
way as for hyperedge densities.

Theorem 9.15(Mubayi—Zhao [281])For co-degree problems everye (0,1) is a
non-jumping constant.

Further sources to read: We close this section mentioning some references on hy-
pergraph extremal theorems: Balogh, Bohman, Bollobas, and Yi Zhao: [33], Frankl
and Firedi [162], Keevash and Sudakov [220].

10. Ramsey-—Turan theory

Vera Sés [338] and then Eid and Vera Sés [143] initiated a whole new research field,
the Ramsey—-Turan theory. We shall concentrate primarily on the most recent results,
since a longer survey of Vera Sés and myself [335] covers the earlier results well.

The extremal configuration in Turan’s original theorem is too regular. This is why
one could feel that perhaps better estimates could be achieved by replacing Turan’s
original theorem by some version of it, where the too regular configurations are some-
how excluded. One way to exclude regular patterns is to assumé€ ttha¢s not con-
tain too many independent vertices — Turan'’s extremal graph does. This means that we
exclude large complete graphs in the complementary graphs. This is, how we arrive
at problems which, as a matter of fact, are combinations of Ramsey and Turan type
problems. Very soon after the first results of &dand Vera T. So6s [143, 144, 145]
were published, many others joined to this research.

As we mentioned, Turan'’s original theorem was motivated by Ramsey'’s theorem. It
would have been quite natural to ask sooner or later, whether the two results could be
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combined. The questions thus arising would have been interesting on their own, too.
However, only much later, in connection with the applications discussed in Section 13
did the Ramsey—Turan problems emerge.

We denote byRT'(n, L, m) the maximum number of edges a gragh can have if
L ¢ G, anda(G,,) < m. Settingm = n we arrive at Turan’s extremal theorem. On
the other hand, ifr is too small then, by Ramsey’s theorem, there are no graphs in the
considered class. The first problems and results in this field can be found in Sés [338],
generalized by Burr, Efb and Lovasz [87].

As we shall see in Section 13, if we wish to apply Turan’s theorem to find lower
bounds on “geometric sums” of type (13.1), then we use many different graphs on
the same vertex set, simultaneously. We know that the first one contains no complete
p1-graph, the second one contains no compgbgtgraph, and so on. We would like to
find some estimate on some weighted sum of the number of their edges. The simplest
case is, when these weights are equal. This is how Vera T. S6s arrived in [338] at the
following question:

Partition the edges of &, into & sets, thus obtaining the grapfis, . . ., G
onV(K,). We know that fori = 1,...,k, G; contains no completg;-
graph. What is the maximum efG1) + - - - + e(Gy—1)?

Of course, ifk andpy, . . ., py, are fixed andV/| is too large, then such graphs simply
do not exist. This is just Ramsey’s theorem. However, in the cases interesting for us
p1,...,pp—1 are fixed andp; tends to infinity. We assume only that = o(n), or
more generally, that, = o(f(n)). Thus we could use the notation

RT(n,La,...,Li_1;0(f(n)) < cn?

or RT(...) = o(f(n)) where the left-hand side means that we consider a graph se-
quence(G,,) with a(G,,) = o(f(n)).

Surprisingly enough, such questions sometimes prove to be extremely difficult. The
simplest tractable case was when we had two graghsnd its complementary graph
H,, and wanted to maximize(G),) under the assumption thét, contains nai, 1
and the largest complete graphfify, is of sizeo(n). The first real breakthrough was

Theorem 10.1(Erdés and Sos [143)).
RT(n, Kzp11,0(n)) = e(Tn,) + o(n?). (10.1)

So the estimate dRT'(n, K,,, o(n)) was solved by Eréis and V. T. S6s [143] for the
case whenn is odd. The case of everis was much more difficult. Thus e.g. it was
a longstanding problem whether for= 4 ¢(G,,) = o(n?) or not. Finally Szemerédi
proved that

Theorem 10.2([350]). RT (n, K4,0(n)) < 2n2 + o(n?).
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Later Bollobas and Efks [58] constructed graphs, showing that Szemerédi’s esti-
mate is sharp.

Theorem 10.3([58]). RT'(n, K4,0(n)) = 2n? + o(n?).

The next breakthrough was when Bsj Hajnal, V. T. Sés and Szemerédi, [129], de-
termined (among others) the limit 6t7'(n, K7,, 0(n))/n?, (thus generalizing Theo-
rem 10.3). Ramsey—Turan theory is one of the areas of Extremal Graph Theory where
many new results were proved lately. In [127] &sd Hajnal, Simonovits, Sds, and
Szemerédi asked:

Problem 2. Does there exist a> 0 for which RT'(n, Ka, %) < (% — c)n??

One step to answer Problem 2 was

Theorem 10.4(Sudakov [342])If w(n) — oo, and f(n) = n/e*™V109"  then
RT(n, K4, f(n)) = o(n?).

Then Problem 2 was answered in the negative by

Theorem 10.5(Fox, Loh and Zhao [161]For \/% n<m< %n

RT(n, Ka,m) > %nz + <; - 0(1)> mn.

On the other hand,

Theorem 10.6(Fox, Loh and Zhao [161])There is an absolute constant> 0, such
that for everyn, if e(G,,) > in? andK4 ¢ G, ther?*

n

Oé(Gn) >c |Oglogn

logn

In other words, if¢c > 0is small enough, then

RT (n e, Enloglogn) <Ll
logn 8

In addition, they proved that

Theorem 10.7(Fox, Loh and Zhao [161]).

1
RT(n,Ka, ) < énz + 10%n.

34 Let us use binary log here, but assume thatilag 1.
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J. Balogh, Ping Hu, and M. Simonovits [40] proved (among many other results) the
following phase transition phenomenon.

Theorem 10.8.RT(n, Ks, o(/nlogn)) = o(n?).

One difficulty in this area is that there are no known &dStone—Simonovits type
results (though there are some related conjectures in [129]). Thus, elyt)ifs
a blown-up version ofL, RT'(n, L,o(n)) and RT'(n, L(t), o(n)) may behave com-
pletely differently, even fol, = K3. We close this part with a related construction of
V. Rodl. Erdbs asked if

RT(n, K(2,2,2),0(n)) = o(n?). (10.2)

Ro6dl modified the Bollobas—Eéd construction [58]; his version still did not decide if
(10.2) holds, however, it answered another question ob&rd

Theorem 10.9(Rédl [299]). There exist graphér,, with e(G,,) > $n? — o(n?) edges
and witha(G,,) = o(n), however, not containing’s, nor K (3,3, 3).

Further sources to read: Erdds and Sés [143, 144].

10.1. Sparse Ramsey-Turan problems

Starting out from completely different problems, Ajtai, Komlés and Szemerédi also
arrived at Ramsey—Turan type problems. To solve some number theoretical and geom-
etry problems, they arrived at the following Ramsey—Turan theorem:

Theorem 10.1(([5, 1, 6]). If the average degree df,, isd and K3 Z G,, then

logd
d

a(Gyp) > ¢ . (10.3)

This means a lod improvement over the ordinary Turan theorem. Another inter-
pretation of this is that excluding a triangle in the complementary graph n@kes
random-looking. These and similar results, e.g. [1], were used to improve earlier esti-
mates in some problems in Geometry [239], [238], Combinatorial Number Theory [6]
and Ramsey Theory [5]. We skip the details.

10.2. ay-independence problems

We close this very short part with two relatively new results of Balogh and Lenz [39].
Hypergraph Ramsey—Turan problems motivate the following problem:
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Given two sample graphd and L, and two integers, andm. How many
edges can a gragh,, have if any induced-,, C G,, contains an{ andG,,
does not contai..

For H = K, we get back the ordinar7'(n, L, m), while for H = K, we call
the maximumm in the conditiona,,-independence and denote it by(G,,). Several
related results can be found in [127, 128], and for newer results see Balogh and Lenz
[39]. We mention here just one of them:

Theorem 10.11(Balogh-Lenz)For ¢t > 2and2 < ¢ < ¢, letu = [t/2]. Then
RTy(n; Kyp,0(n)) > 3 (1— %) 27n2,

This is a breakthrough result, answering our earlier questions, where we [128]
wanted to decide, for which is RT;(n; K;.¢,0(n)) > c(£,t)n? for some constant
c(f,t) > 0. Balogh and Lenz found important “generalizations” of the Bollobas—
Erdds construction [58].

Further sources to read: Balogh and Lenz [38].

11. Anti-Ramsey theorems

Anti-Ramsey problen?® (in the simplest case) have the following form: Given an
arbitrary coloring of a graph, we call a subgraffhTotally Multicolored (TMC) or
Rainbow if all its edges have distinct colofs.

Problem 3.We have a “sample grapt¥. Let AR(n, H) be the maximum number
of colors K, can be colored with without containing a TME.

The problem of determining R(n, H) is connected not so much to Ramsey theory
but to Turan type problems. For a given famity of finite graphs, the general result
corresponding to Theorem 3.3 is

Theorem 11.1(Erdés—Simonovits—Sos [141]).et

d+1:= eergi(%{x(H —e) : ec E(H)}. (11.1)
Then
AR(n, H) = e(Tpa) +o(n?), if n— oo (11.2)

35 | heard this expression “anti-Ramsey” first from Richard Rado and it is also the title of his paper
[292] on sequences. There the topic is analogous but not really connected to our problems.

% Originally we called it TMC, later Eréls and Tuza started calling such Arrainbow” colored, and
some people would call it heterochromatic.
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The reason for this Transfer Principle:  Assume thatd — e has the minimum
chromatic number in (11.1). Consider an edge-coloring(gfand choose one edge
from each color. This way we geta TMC gra@h. Now,e(G,,) > ex(n, H—e)+en?
would guaranteen’"!) copies ofH — e. Hence some paitv would be contained in
¢n?H)=2 copies ofH — e, yielding with uv this many copies off. We could choose
two of them having no common vertices huandv. Since all the colors in this union
are distinct, whichever way we colow, we get a TMC copy of{. a

11.1. Path, cycles and further related results

The above approach gives a good asymptotit if 1 in (11.1). On the other hand,
for d = 1 new problems have to be overcome. The anti-Ramsey probldm whs
solved by Simonovits and Sés [334]. The questio@pfvas much more complicated.

Problem 4 (Erdés—Simonovits—Sés [141]). How many colors ensure a totally multi-
colored (Rainbow’, with somef > k.

One immediately sees that this problem is an analog of thé$=@allai problem on
cycles. One of the important open problems in this area was the problem of Rainbow
cycles.

Conjecture 11.2(Erdbs, Simonovits and Sés [141]). Fix a cycle lengthConsider

the following edge-coloring of,,. First we cover the vertices by complete subgraphs

of ¢ — 1 vertices each and a remainder smaller diie(they form an extremal graph

for P,.) Give a “private color” to these edges. Enumerate the complete subgraphs as
Hy,...,H,,... and color the edges betweéh and H; by the new colog; if 7 < j.

One can easily see that this coloringf6f, has no totally multicolored (rainbowg),.

Show that this is the maximum number of colors one can use:

1 n
AR(n,Cy) = E(E —2)n+ -1 +O0(1).
The conjecture is easy fdks, was proved folCs by Noga Alon [8], then for =
5, 6 independently by Schiermeyer [313] and by Jiang Tao and Doug West [206], and
finally the problem was completely settled by Montellano-Ballesteros and Neumann-
Lara [274].

11.2. Other types of anti-Ramsey graph problems

In the results of the previous section typically some colors are used very many times
but the others only once. To eliminate this, &sdand Tuza counted the “color-
degrees™
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Theorem 11.3(Erdds and Tuza [151])Consider an arbitrary coloring of<,,. Denote
by k(i) the number of colors at thé” vertex. IfK,, does not contain TMC (rainbow)
triangles, theny 27+() > 1,

They consider the cases when the color distribution is forced to be uniform in some
sense and list several problems and provide further theorems.

Theorem 11.4(Frieze—Reed [165])f ¢ > Ois a sufficiently small constant,is large,
and the edges ok, are colored so that no color appears more thiae- ¢ gn times,
thenK,, has a TMC Hamilton cycle.

lo

We close this part with mentioning results stating that there are very sparse graphs
having the anti-Ramsey property. In the next two theorems — instead of assuming that
the number of colors used is large — we assume that they form a proper coloring.

Theorem 11.5(R6dl and Tuza [305])There exist graphé& with arbitrarily high girth
such that every proper edge coloring @fcontains a cycle all of whose edges have
different colors.

The proof of the above results was probabilistic. Haxell and Kohayakawa proved
that the Ramanujan graphs constructed by Lubotzky, Phillips and Sarnak [267] also
have this property.

Theorem 11.6([200]). For every positive integet, every reald such that0 < § <
1/(2¢t + 1), and everyn sufficiently large with respect toandd, there is a graptG,,
such that (i)girth(G) = ¢ + 2, and

(ii) for any proper edge-coloring af/,, there is a rainbow’, C G, forall 2t +2 <
(< nd.

Further sources to read: Babai and Sds [29], Babai [27], Alon, Lefmann and Rédl
[17], Hahn and Thomassen [198], Axenovich and Kiindgen [26], Bur§&@raham,
So6s, Frankl [89, 88] ....

12. Turan-like Ramsey theorems

Considering Ramsey theorems for ordinary graphs we may observe the following “di-
chotomy™:

(a) Pseudo-random graphs: In many cases the Ramsey extremal graphs look as if
they were random grapHs.

87 A famous conjecture of V. T. Sés suggests that (at least for complete graphs) these are quasi-random
graphs.
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(b) Canonical structures: In other cases the Ramsey extremal structures look like (al-
most?)Canonical Graph Sequencesvertices are partitioned intpclassed/1, Uy, . .., U,
and the graphs:[U;] are monochromatic cliques, the bipartite gragh#/;, U;] are
also monochromatic complete bipartite graphs, and the sizes of these classes may
vary. (However, in our cases it may happen that Canonical Sequences are Ramsey-
extremal, but there are also some other almost-canonical graph sequences that are
Ramsey-extremal: we can change the colors of a negligible number of edges without
creating monochromatic forbidden subgraphs.)

Denote byRy (L1, Lo, . . ., Li) the Ramsey number correspondindto Lo, . . ., Ly;:
the minimumJX for which, if we k-edge-colork v, then for some theit" color will
contain anL;.

Conjecture 12.1(Bondy—Erds). Ifn is odd, then
Ri(Cp) = Rp(Cr, Cry ..., Cp) = 287 (n — 1) + 1. (12.1)

The background of this conjecture is that for two colors, according to the Bondy—
Erdds theorem [65], or the Faudree—Schelp [154] or Rosta theorems [306] the conjec-
ture is true. The sharpness can be seen if we take two complete BLUE's and
join them completely by RED edges.

Now, if we have a construction oV = Zkfl(n — 1) vertices,k-colored, without
monochromatic”,,, then we may take two copies of this construction and a new color
k and join the two copies completely by this new color. This provides the lower bound
in (12.1).

For k > 3, the conjecture seemed to be harder to prove. tuczak [269] proved that
if n is odd, thenR3(C),) = 4n + o(n), asn — oco. Later, Kohayakawa, Simonovits
and Skokan (adding some fairly involved stability arguments to tuczak’s original one)
showed that

Theorem 12.2(Kohayakawa, Simonovits and Skokan, [231], [232ZPere exists an
ng for which forn > ny,

R3(C7’L7 Cna Cn) =4n — 3. (122)
The special case = 7 of (12.2) was proved in [152]. Conjecture 12.1 is still open

for k > 3. Bondy and Erds [65] remarked that they could prot& (C),) < (k+2)!n
for n odd. The next result improves this:

Theorem 12.3(Luczak—Simonovits—Skokan [272For every oddk > 4,
Ri(Cy) < k3" In + o(n), as n— oo.

The following conjecture is unknown even for= 4:
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Conjecture 12.4(Kohayakawa, Simonovits, Skokan)df, ny, . . ., n; are fixed, then
there are asymptotically Ramsey-extremal grafghsfor the corresponding Ramsey
problem of findingRy(Cy,,, Cp,, ..., Chp, ), WwhereV(Uy) can be partitioned into a
bounded numbedy (1) of classes and — apart fro®,(N) edges — the color of each
edge depends only on the classes it joins.

The case of even cycles has a slightly different answer, since the construction de-
scribed above contains long monochromatic even cycles. Related results can be found
in e.g. tuczak [270], Figaj and tuczak, Benevides and Skokan [47]. For further re-
lated results see the 3-color-Path results of Gyarfas, Ruszinké, Sarkdzy, and Szemerédi
[194], [195].

Slightly different, yet related questions are discussed in the paper of Faudree and
Simonovits [156].

13. Applications of Turan’s graph theorem

13.1. Distance distribution

Here we shall discuss very briefly some applications of Turan’s graph theorem to the
distribution of distances in metric spaces. Perhap9&mbticed first that Turan’s
theorem can be applied to distance distributions.

Theorem 13.1(Erdbs [107]).If we have a sefX of n points in the plane X =
{P1,..., P,} and the diameter oK is at most 1, then at least

() eri~3(3

of the distance®; P; is at mostl/v/2.

To prove this, observe that for any 4 points — by an easy argument — at least one of
the 6 distances is 1/v/2. So the graplir,, defined by the distances 1/+/2 contains
no K. Hencee(G,,) < ex(n, Ka). O

Obviously, this result is sharp: if we fix an equilateral triangle of diameter 1 and put
n/3 points into each of its vertices, then roughly 1/3 of (Q%distances will be 0 and
all the others are equal to 1.

Fourteen years later Turan pointed out that a slight generalization of this simple ob-
servation may yield far-reaching and interesting results (estimates) in geometry, anal-
ysis and some other fields, too. Turan’s basic observation was as follows: Instead of
d = 1/+/2, we can apply the same idea simultaneously to several distances. We define
the correspondingacking Constants

Definition 13.2.Given a metric spachkl with the metricsp(x, y) and an integek, let

di = max minp(P;, P;).
M dlam{ Py Py} <1 i P(Pi Fy)



Paul Turan’s influence in Combinatorics 53

(If M| = oo, it may happen that we have to replace the min by inf.)

Now, the above argument shows that if fhdiameter of am-element set is at most
1, then it contains at leagt)) — ex(n, K;) distancesp(P;, P;) < dj. Using Abel
summation, we may obtain good estimates on sums of the form

> f(p(P, Py)). (13.1)

This way, through distance distribution results, Turan [363], V. T. Sos [338], and later
Erdés, Meir, V. T. S6s and Turan [132, 133, 134] could give estimates on certain in-
tegrals, potentials, certain parameters from functional analysis, and other geometric
sums. In [132] the authors write:

In what follows, we are going to discuss systematic applications of graph
theory — among others — to geometry, potential theory and to the theory
of function spaces ... These applications show that suitably devised graph
theorems act as flexible logical tools (essentially as generalizations of the
pigeon hole principle) ... We believe that the applications given in this se-
quence of papers do not exhaust all possibilities of applications of graph
theory to other branches of mathematics. Scattered applications of graph
theory, (mostly via Ramsey theorem) existed already in the papers 0§ Erd
and Szekeres [149] and Ersl[106], [116].

Remarks 13.3.These lines are 40 years old, however, the development of Discrete
Mathematics really shows that Discrete Mathematics became a very applicable theory
in very many areas of mathematics. Strangely enough, or perhaps because Turan died
too soon, not too many results were published on the application of extremal graph
results to distance distribution after Turan’s death.

However, two further areas were strongly connected to this approach. The first one
was the application of Turan type graph results in estimating distributions in Probabil-
ity Theory. This area was pioneered by G. O. H. Katona. He was able to prove some
inequalities concerning the distribution of certain random variables [213]-[216]. Next
several important results of the field were proved by A. Sidorenko. This volume has
a separate article on this topic, by Katona [214]. | would risk the opinion that among
the several steps that led to the theory of graph limits one important step was this:
introducing integrals in areas related to extremal graph theory.

The other one iRamsey—Turan theodiscussed in Section 10.

13.2. Application to geometry

Givenn points in the space (or in any bounded metric space), for every) we can
define a grapli:(©) by joining the pointsP andQ iff PQ > c¢. By establishing some
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appropriate geometric facts, we may ensure €&t contains no completg = p(c)-
graph. Hence we know (by Turan’s theorem) that the number of p&ir§) with
PQ > cis at mostex(n, Kp<c)).

Assume that we apply this method with several constants ¢, > --- > ¢, > 0.
If f(x)is a monotone decreasing function in (13.1), then we may obtain lower bounds
on this expression by replacing all the distances betwgandc; ; by ¢;. The ‘only’
problems to be solved are:

How to choose the constants > cp, > --- > ¢ > --- > 0?
How to choose the integegs for the constants,, to get good results?

This was the point where the packing constants (depending largely on the geometric
situation) came in. Their investigation goes back at least to a dispute between Newton
and Gregory, see Turan [364]. It was also somewhat surprising that not all packing
constants count in our application. It is enough to regard those ones, wherey, . ;.

It is not worth giving a detailed description of the results obtained this way, since the
Introduction of [134] does it. We make only one critical remark on a side issue:

In [364] Turan remarks that perhaps his method, implemented on a good com-
puter, would help to decide problems such as the one in the Newton—Gregory dispute.
Namely, it could decide whethef = ¢, 1 or not.

This is not quite so. First of all, such an algorithm can never give a positive answetr.
Further, even if the answer is in the negative, and that could be proved by the method
suggested by Turan, then probably that could be decided also without using Turan’s
method.

13.3. Other applications

An old unsolved problem is that if we havepoints in thek-dimensional Euclidean
space, how many unit distances can occur. For the plartesEdaserved that the graph
given by the unit distances cannot contaiR# 2, 3). Hence — by the Kvari-T. S6s—
Turan theorem — the number of unit distance®{*?). A similar argument works

in R3: the 3-space, but for higher dimension the situation changes. Unfortunately, the
application of Turan type theorems is not enough to get the conjectured bounds: to
prove that the number of unit distances is at m@gt!+*).

(b) Some other type of applications of hypergraph extremal problems are found
in the works of Simonovits [322] and Lovasz [261] yielding sharp bounds on some
guestions related to color-critical graphs. For more details see either the original papers
or the Firedi and Simonovits survey [180].

Further sources to read: Erdds [116], Erds and Simonovits [142], .. ..
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14. Extremal subgraphs of random graphs

What happens if, instead of considering all thdree graphg=,,, we consider only
L-free subgraphs/,, of some host-graphg,, and maximize their number of edges.
One of the most investigated subcases of this problem is uieis a random graph
with some given distribution. The maximumeés(R,,, £), however this is a random
number, depending on the random grdph So we can state only that certain events
will hold with high probability.

R&dl and Schacht wrote very recently an excellent survey [303] on this topic, so we
shall give only a very short introduction to this area.

Assume thatR,, is a random graph of binomial distribution, with given edge prob-
ability: R,, € G, ,,. The phenomena to be discussed are

If Lis asample graplt, = x(L)—1, and we take arandom graph € G,
with edge probability > O,

(a) is the subgraplt,, C R, € G, , not containingL and having the
maximum number of edgéschromatic with probability - o(1)?

(b) if (&) does not hold, is it true that at least we can delgtéR,,))
edges fromR,, to get ak-chromatic graph, almost surely?

An early result in this area was

Theorem 14.1(Babai—Simonovits—Spencer [28])here exists ag < % for which in
arandomR,, € G, ,, almost surely, the maximum si&g-free subgraphf;,, C R, is
bipartite.

Several generalizations of this were proved in [28], however, in those days no
“Sparse Regularity Lemma” was known, and the proofs of Babai, Simonovits and
Spencer used the (ordinary) Szemerédi Regularity Lemma [349] and the stability method.
Hence [28] could cover only the case when the edge probabilitypwagg > 0. As
soon as the Kohayakawa—Rddl version of the Regularity Lemma was proved and be-
came known, the possibility to generalize the results of [28] became possible. First
Brightwell, Panagiotou and Steger [75] proved that Theorem 14.1 holds under the
much weaker condition that > n~1/2%0 and very recently B. De Marco and Jeff
Kahn [97] proved that

Theorem 14.2 There exists & > 0such that if the edge probability is> C'\/logn/n,
then every maximum triangle-free subgrapl@f, is bipartite, with probability tend-
ingto 1, asn — oc.

This is best possible.

Let

e(H")
v(H')

do(H) = max{ : H' C H, andv(H') > 3}.
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Conjecture 14.3(Kohayakawa—Rdodl-Schacht [230]). LetH) > 3 ande(H) > O.
Let G = G, be arandom graph with edge probability= p,, wherep,n/%(H) —
oo. Then

(i) almost surely (ag — o),

1

ex(G,H) = <1— XA =1

) e(G) + o(e(G)).
(i) Further, forx(H) > 3, a stability phenomenon also holds: almost surely, delet-
ing o(e(Gy,p)) edges, one can make, , (x(H) — 1)-colorable.

The above conjecture is proved for several cases. Thus, e.g., for cycles it was proved
by Haxell, Kohayakawa and tuczak [201] and [202], while the paper of Kohayakawa,
tuczak and RAdI [227] contains a proof of (i) féf = K.

15. Typical structure of L-free graphs

Here we consider the following problem:

What is the typical structure di-free graphs? Or, more generally, we have

a Universe (graphs, hypergraphs, multigraphs, permutations, ordered sets,
...) and a propert, can we say something informative about the typical
structures irP?

This question has basically two subcases: the exclusion of €oasea not neces-
sarily induced subgraph and the exclusion of some induced subgraphs.

15.1. Starting in the middle

In this part, excluding. C G,, we do not assume that (only) the induced subgraphs
are excluded. The difference can be seen already fotf we define a complete graph
on A and an independent set éhand join them arbitrarily, the resulting,, contains
manyCy’s but no induced’y. So first we consider the case of not necessarily induced
subgraphs.

First we assume that the forbidden graphs are non-bipartite, and return to the degen-
erate case in the next, very short subsection. Denofe(by £) the family ofn-vertex
graphs without subgraphs fro. Since all the subgraphs of aiy, € EX(n, £)
belong toP(n, L), therefore

[P(n, £)| > 22%mE), (15.1)
This motivated
Conjecture 15.1(Erdbés).
|P(n, £)| = 2ex(nL)+o(n?) (15.2)
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Of course, the meaning of this is tiafn, £) cannot be much larger than the right-
hand side of (15.1). This was confirmed first f§}, 1. The result fork’z was much
sharper than for the general case.

Theorem 15.2(Erdés—Kleitman—Rothschild [131]fi) Almost all triangle-free graphs
G, are bipartite.
(ii) In general,

1
|P<H,Kp+1>| < 2(1*;)n+0(n2>.

Later Erdds, Frankl, and R&dl proved the original Bdconjecture.

Theorem 15.3(Erdés, Frankl, and Radl [125]).
|79(n,£)| < 2ex(n,£)+o(n2)_

As we have already pointed out, the finer structure in the extremal graph problems
depends on the “Decomposition famil¥l of £. So Balogh, Bollobas and myself
improved Theorem 15.3 in several steps. First, in [34] we improved the error term
o(n?) of Theorem 15.3 t@(n?°).

Theorem 15.4.For everyL, if M is the decomposition family gfandM is finite, then

1P(n,L)| < nex(mM)+ecn 2% (1—%)7127 (15.3)
for some sufficiently large constast > 0.

This was an improvement, indeedife £ andv = v(L) is of minimum chromatic
number, then we can choose a biparfifeC L from M. Henceex(n,M) < c- nz,%,
yielding a better error term in the exponent in (15.3).

Our next result yields also structural information.

Theorem 15.5(Balogh, Bollobas, Simonovits [35]).et £ be an arbitrary finite family
of graphs. Then there exists a constaptsuch that for almost alC-free graphsG,,
we can deletéy, vertices ofG,, and partition the remaining vertices intoclasses,
Uy, ..., U,, so that eaclz[U;] is M-free.

For some particular cases we can provide even more precise structural information.
A good test case is when the octahedron graph is excluded. In our main result below
we describe the structure of almost all octahedron-free graphs. We say that &Qgraph
has property® = Q(Cy, Ps) if its vertices can be partitioned into two set§, andUs,
so thatCy Z G[U;] andP;s € G[Us]. If G € Q thenG does not contails. It was
proved by Eréds and Simonovits [137] that far sufficiently large everyg-extremal
G, has propertyQ. The typical structure ofs-free graphs is described by
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Theorem 15.6(Balogh, Bollobas, Simonovits [36]The vertices of almost eve€ys-
free graph can be partitioned into two classég,and U, so thatU; spans aCy-free
graph andU, spans aPs-free graph.

A similar, slightly simpler, result is the following. Denof®(n; a, b) the family of
graphs,, for which noa vertices ofGG,, span at leadtedges. In some sense, G. Dirac
started investigating such problems [100]. Several results disEathd Simonovits
are related to this topic, and they became very important for hypergraphs, see e.g.,
Brown, Erdds and T. Sés [82], or Ruzsa and Szemerédi [311]. Much later, Griggs,
Simonovits and Thomas [192] proved that, fosufficiently large, the vertex set of any
P(n, 6, 12)-extremal grapl,, can be partitioned inté; andU> so that the induced
subgraphs(z[Us] is {C3, C4}-free andG[U,] is an independent set. Note thatlf is
{C3, C4}-free ande(G,) = 0 thenG1 ® G» is (6,12)-free.

Theorem 15.7(Balogh, Bollobas, Simonovits [36]The vertex set of almost every
graph inP(n; 6, 12) can be partitioned into two class€$; andU,, so thatlU; spans
a {C3, C4}-free graph and’; is an independent set.

To avoid technicalities, we formulated only this special case. Another line is the
problem of critical edges.

Theorem 15.8(Promel and Steger [291]For everyL having a critical edge, almost
all L-free graphs have chromatic numbefL) — 1.

This is sharp, since no graph with chromatic numgéE) — 1 containsL as a
subgraph, (see also Hundack, Promel, and Steger [203].) To demonstrate the power
of our methods we proved a generalization of their result. Denotetbyhe vertex-
disjoint union ofs copies ofH. Let the excluded graph be = sH, whereH has a
critical edge, and((H) = p + 1 > 3. Simonovits [321] proved that far sufficiently
large, the uniqud.-extremal graph i1 (n, p, s), see Theorem 4.15. Observe that if
one can delete — 1 vertices of a grapld,, to obtain ap-partite graph, thei,, is
L-free.

Theorem 15.9(Balogh, Bollobas, Simonovits [36]l.et p and s be positive integers
and H be ap + 1-chromatic graph with a critical edge. Then almost eveH-free
graphG,, has a sefS of s — 1 vertices for whichy (G, — S) = p.

15.2. Degenerate cases
One could think that if_ is bipartite but not a tree, then (15.2) remains valid:
|P(n, L) < 28x(mL)d+oD) (15.4)

Yet, this is not known even in the simplest case, foe= C,4. The first important
result in this area was
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Theorem 15.10(Kleitman—Winston [224]).
2oV < |P(n, Cy)| < 2V with ¢ =1.082
The result itself is highly non-trivial. The next result in this direction was
Theorem 15.11(Kleitman-Wilson [372]).
[P(n, Cg)| < 2"V

The corresponding results fah;, for k > 4 are still open. Balogh and Samotij also
have analogous results féf; ;, and — more generally, — fak ;.

Theorem 15.12(Balogh and Samotij [42, 43]For L = K, there exist a constant
¢ = ¢y, for which
[P(n, )| < 220,

Their method also implies that

Theorem 15.13(Balogh and Samotij [42, 43]For L = K>, there exists a constant
¢ = ¢y, for which for almost allL-free GG,,, we have

1
1—2ex(n,L) <e(Gp) < (1—c)ex(n,L).

Several of the related papers contain a “mini-survey” of the situation, so we stop
here.

15.3. Typical hypergraph structures

As we have mentioned, for many years there were only a few hypergraph extremal
results. In the last few years this changed dramatically. As we have seen in Section 9,
several interesting extremal hypergraph theorems were proved lately. Also some cor-
responding “typical structure results” were obtained, e.g. [41]. Here we give only a
few examples. The first one is connected to the Fano results [179] and [219].

Theorem 15.14(Person and Schacht [287BImost all.F7-free 3-uniform hypergraphs
are 2-chromatic.

Call the following three edges a triangle:, v, w), (u, v, z), (z,y,w). The follow-
ing result extends the sharper version of Theorem 15.2, at least for triangles.

Theorem 15.15(Balogh and Mubayi [41])Almost all triangle-free 3-uniform hyper-
graphs are tripartite.

The following result attacks already the general case, extends tifs-Hfcankl—
Ro&dl theorem to 3-uniform hypergraphs.
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Theorem 15.16(Nagle and Rodl [283])For any fixed 3-uniform hypergraph,
P(n, L)| < 22x(mL)o(r),

This was extended te-uniform graphs by Nagle, R6dl and Schacht [284].

Other structures. There are some other structures where analogous results were proved
fairly early, showing that some specific structures dominate (in number) the others.
Here we mention some results of Kleitman and Rothschild [222] on the number of
partially ordered sets om elements.

ConsiderQ(n), the family of partial orders of the following structures:vertices
are distributed in three classés, Ly, and L3, where|L1| = n/4 + o(n), |Lz| =
n/2+ o(n), |L3| = n/4+ o(n). Define a partial order by its Hasse diagram. Define
the partial order) as follows: the arcs go from,; to L; 1, i = 1,2, and if we forget
about the orientations, we ge%equasi-random graph betweénandL;, 1. Kleitman
and Rothschild proved that [222]]

Theorem 15.17(Kleitman and Rothscild [222], see also [221]).

mi= (10 (2)) o

|Pn| _ 2n2/4+o(n2) )

Thus

See also Kleitman, Rothschild and Spencer [223].

15.4. Induced subgraphs?

If instead of excluding some not necessarily induced subgraphs, we exclude induced
subgraphs, the situation completely changes. The first results in this direction were
proved by Promel and Steger [289], [290] .... Several extensions were proved by
Alekseev, Bollobas and Thomason, and others.

Definition 15.18.The sub-coloring number.(P) of a hereditary graph propery is

the maximum integey for which if we put complete graphs into some classesBf g
(somehow), and delete some original edges, the resulting graph cannot have property
P.

Example 15.19L et the propertyP be thatG,, contains an induced,. Consider a
complete graplk; and a sef,,, of independent vertices (with disjoint vertex sets) and
join them arbitrarily. The resulting graph will not contain induagégls. It is easy to
see that herg.(P) = 2.
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Theorem 15.20(Alekseev [7], Bollobds—Thomason [61].P is a hereditary prop-
erty of graphs, and(n, £) denotes the family of-vertex graphs of propert, and
p = p.(L) then
Pn, )| = 28 (13 ) o),
This was improved in [12].

Definition 15.21.Given an integek, the universal grapl/ (k) is the bipartite graph
with partsA = {0,1}* andB = {1,..., k}, wherej € B is joined to ak-tuple X if
j € X, (i.e., thej!" coordinate ofX is 1).

Theorem 15.22(Alon, Balogh, Bollobas, Morris [12])Let P be a hereditary property
of graphs, with coloring numbey.(P) = p. Then there exist constarits= k(P) € N
ande = ¢(P) > 0such that the following holds. For almost all grapfi € P, there
exists a partition 4, S1, ..., Sp) of V(Gy,), such that:

@A <n'—,

(b) G[S;] is U (k)-free for everyj € [p].
Moreover, ifP, is the family ofn-vertex graphs oP, then

2(171/;))(’21) <Pl < 2(lfl/p)(72l)+n27s

for every sufficiently large € N.

There are several further interesting results in [12], but we stop here.

Further sources to read: Bollobas [56].

15.5. Counting the colorings

Some of the above results are strongly connected to estimating
¢, (H) := #{r — colorings ofH without monochromatic copies @f}

Estimatingc, r is strongly connected to the extremal problen¥ofi.e. determining
ex(n, F') and also with Ers—Frankl-RddI type theorems, first of all, with Theorems
15.2 and 15.3 Efis and Rothschild conjectured that

Conjecture 15.23.
c2,1¢,(G) < 22%(mH0),

For triangles this was proved by Yuster [374]. This was extended to arbitrary com-
plete graphs by Alon, Balogh, Keevash and Sudakov [11]. A similar coloring-counting
theorem was proved by Lefmann, Person, Rédl and Schacht [259], also explaining the
connection of these results to each other. We skip the details.
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16. “Random matrices”

This part is devoted to randofl matrices, where the questions are:

(i) How large is the determinant of a random matrix,
(i) what is the probability that a random matrix is singular,
(iif) what can be said about the eigenvalues of a random matrix.

Recently very many new results were obtained in this field. Below | shall mention
some of them and provide some references, and also refer the reader to the excellent
survey paper of Van Vu [370].

Szekeres and Turan [347] were primarily interested in (i), more precisely, in the
average of the absolute value of the determinantbianatrix. Later Turan continued
this line, Szekeres went into another direction.

16.1. Hadamard matrices

According to the famous theorem of Hadamard, given a matrix (a;;), | det(A)]

can be estimated from above by the product of the lengths of the row vectors. Equality
holds iff the row vectors are pairwise orthogonal. If the entries of the matrix are 1's
and -1's, then Hadamard’s result yields that

| det(A)| < n"/2. (16.1)

It is natural to ask whether the equality in (16.1) can be achieved-foentries. In
other words, are there orthogonalx n matrices with+1 entries? Such matrices are

. 1 1 .
called Hadamard matrices. The smallest onegHrand 1 1) One can easily

prove that if for some: > 2 such a matrix does exist, thenis divisible by 4. Itis a
very famous, old and widely investigated but still open conjecture that

Conjecture 16.1.Hadamard matrices exist for evenydivisible by 4.

One can easily construct Hadamard matricesifer 2¢ and it is not too difficult to
construct them fon = 4k if n — 1 is a prime.

16.2. Szekeres—Turan approach

In connection with the Hadamard problem, Gy. Szekeres and P. Turan arrived at the
following question [347]:

Problem 5. Consider all thet1 matricesA of n rows and columns. How large is the
average of det A)|¥, as a function of,?

They proved in [347] that
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Theorem 16.2.The average ofdet 4)|? for then x n +1 A, isn!.

They simply calculated the sum of the squares of the determinants of all:the
+1 matrices. Their proof was very simple and elegant. They also calculated the sum
of the fourth powers of these determinants, proving that thi®i¥ - ¢(n), where
©(n) is a function defined by the recursion

P =1 ¢2)=2 e =¢ln-1+pm-2.  (162)

Remark 16.3.For everyc > 0, ¢(n) is betweem?—¢ andn?, if n is sufficiently large.

This means that the average of the squares and fourth powers of these determinants are
(in some weak sense) fairly near to the desired maximum. Geometrically, if wa take

+1 vectors independently, at random, they will be roughly orthogonal to each other.

Remark 16.4.Superficially we could think that the main goal of the Szekeres—Turan
paper was to prove the existence of a good approximation of Hadamard matrices, using
Random Matrix methods. Maybe, originally this was their purpose. However, as they
remarked, Erds had pointed 088 that the following direct construction provides a
much better result on the maximum value of the determinant:

Find a primep = 4k — 1 < n sufficiently near ton and then build a Hadamard
matrix for thisn’ = 4k. Using the monotonicity of the maximum, one gets a much
better estimate than by the Szekeres—Turan argument.

Is this result more than merely answering an important and interesting mathematical
problem in an elegant way? YES, in the following sense:

Here we can see one of the first applications of stochastic methods instead of giv-
ing constructions for some optimization problem in Discrete Mathematics. Later this
method was applied many times and proved to be one of our most powerful methods.
(In combinatorics and graph theory it was Paul&&avho started applying probabilis-
tic methodssystematically From this point of view the Szekeres—Turan paper was
definitely among the pioneering ones.

16.3. Turan’s and Szekeres' continuation

Later both Turan [357, 360, 362] and Szekeres [344, 345] returned to these questions.
They generalized their original results in various ways. However, they did not really
succeed in estimating the average of tk&2ower of the considered determinafts.

(The average of the odd powers is, by symmetry, 0!) Turdn seemed to be more in-
terested in finding analytically various averagestdf determinants. Szekeres went
basically into two directions:

%8 This was remarked in the paper of Turan and Szekeres and also, e.g., in the “problem collection
paper” of Erds [108].
%9 As | see, they could not estimate the average of tfigpbwers.
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(a) He considered the so callsdlew Hadamard matricesestricted the averaging
to these matrices i.e., where for~ j a; ; = —a;;. For them the averaging method
[344] gave higher average.

(b) Also, Szekeres invented new combinatorial/algebraic constructions of Hadamard
Matrices, Skew Hadamard Matrices [345]. He also used computer searches to find
“small” examples. e.g. fon = 52, 92.

16.4. Expected or typical value?

The paper of Szekeres and Turan determines the average and the square average of
det(A)2. In many cases the typical values of some random varighle very near to

its expected values. This is e.g. the case in Turan’s “Hardy—Ramanujan” paper [356].

In case of thet:-1 determinants the situation is different.

A correction/historical remark. Here | have to make a “Correction”: Writing my
notes for Turan’s Collected Papers [368] | “overstated” Theorem 16.2. | wrote that
Szekeres and Turan proved that the determinant of almost &l Theorem 16.2 is
near to the averaggn!. This holds only in some fairly weak logarithmic sense. In the
ordinary sense, not only they did not state this, but — as it turns out below — this is not
even true.

Of course, Szekeres and Turan did not speak of “probability”. The point is that they
did not use Chebishev inequality, and they did not calculate the standard deviation.
(Slightly earlier, Turan, in his proof of the Hardy—Ramanujan theorem, without speak-
ing of probabilities, calculated the mean and the standard deviation of the number of
prime divisors and then applied Chebishev inequality.) Theorem 16.6 below implies
that for a positive percentage of the considered random matrices the determinant is
above(1 + ¢)v/n!, for some fixed: > 0.

This question, wher§ is noticeably aboveéE(¢) (whereE denotes the expected
value), is discussed in e.g. in

Theorem 16.5(Schlage—Puchta [314])et ¢ be a nonnegative real random variable,
and suppose thdt(¢) = 1 andE(£?) = a > 1. Then the probability?(¢ > a) is
positive, and for every < a we havef|£‘>b £ >a—0b.

The paper remarks that this theorem is nearly a triviality, but it has several interest-
ing corollaries. One of them is a lower estimate fdet A)| in the Szekeres—Turan
problem. Since the'4 moment is much larger than th&% (by (16.2)), Theorem 16.5
is applicable here.
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16.5. The Hadamard “goodness” of random matrices

Denote the (Euclidean) norm afby ||a||. Let A be ann x n matrix with column
vectorsa;, (i = 1,...,n). Define its “Hadamard goodness” as

_ det(A)
- Il

if the denominator does not vanish, otherwise defifi¢) = 0.

John Dixon [101] wrote a nice and interesting paper on the above discussed ques-
tion, primarily on the typical goodness of the random method in the “Hadamard ap-
proach”. He wrote that for him a paper of Cabay and Lam suggested that (logarithmi-
cally, in some natural settings) the values of the determinants of random matrices are
close to their maximum. He proved that this is not so: the logarithmic distance is typ-
ically what is suggested in the Szekeres—Turan theoremiAfEt ~ (v/n!)¥/ (%) ~

The question investigated by Dixon [101] is, how large the expected valuedfis
if Ais arandom matrix, where the distribution of entries obey some weak smoothness
conditions. The conclusion of Dixon’s results is that typicailyl)¥™ ~ 1/./e.

h(A)

Condition (D1) If ay, ..., a, are the columns ofl, then the density of the distribution
at A depends only on the values |041]], . . ., ||an]|.

Condition (D2) The probability that d¢td) £ 0 is 1.

Theorem 16.6(Dixon [101]).Let A be a random matrix whose distribution satisfies
(D1) and (D2). Denote by, ando2 the mean and variance of the random variable
logh(A). Then

(i) o = —3n — Zlogn + O(1), ando? = 3 logn + O(1), asn — oc;

(i) For eache > 0, the probability that

1 1 1 1
n~a %e 2" < h(A) <n it 2"

tendsto 1 as — oo.

16.6. Probability of being singular

In this section we are discussing the upper bounds for the probability that)detO.
For a reader interested in more details, the following sources are suggested: Komlds
[237], Kahn, Komlés, and Szemerédi [211], or some more recent papers of Van Vu
[370], Terry Tao and Van Vu [352].

Obviously, for continuous distributions this probability is 0. One can easily see that
this probability must be the largest ferl matrices, where both values are taken with
equal probabilities.
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Theorem 16.7(Komlos, [237]).Let A = (a;;) be ann x n matrix whose entries are
random independent variables, taking valuebwith probability%. Thendet{ A) # 0
with probabilityp,, — 1asn — co.

A more general result is

Theorem 16.8(Komlds, [237]).Let A = (&;;) be ann x n matrix whose entries are
random independent variables, with common, non-degenerate distrifdtidren
det( A) = 0 with probabilityp, — 1asn — co.

Conjecture 16.9.Let P, be the probability that a randomx n matrix with elements
+1 is singular. TherP, = (1 + o(1))n?2t".

The first breakthrough was

Theorem 16.10(Kahn, Komlds and Szemerédi [211])here is a positive constaat
forwhich P, < (1 —¢)™.

This is a considerable improvement on the best previous babng: O(1/y/n)
given by Komlés in 1977.

16.7. Eigenvalues of random matrices

This field is again a very wide one, with many interesting results. The beginnings of
this part heavily relies on the Fiiredi-Komlés paper [173].

Investigating the distribution of the eigenvalues of matrices goes back to E. P. Wigner
(1955), who was motivated by quantum mechanics. The following generalization is
due to L. Arnold [25].

Theorem 16.11(Wigner, semicircle law.)Assume that! is a random symmetric ma-
trix with random independent entries; for i > j. Let the distribution of these entries
be F for i # j and G for i = j. Assume thaf |z|* dF < oo, [ |z|FdG < oo for
k=1,2,... and setD%a;; = Vara;; = o%. LetW,,(x) be the empirical distribution
of the number of eigenvalues 4fnot exceedingn. Let

W) = {i\/l—xz for |z] < 1,

0 for |z| > 1.

Then
lim W, (20vn-z) =W (z).

n—oo

40 A distribution is degenerate if with probability 1, its outcome is the same.
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This implies that for > 20 with probability 1-o(1), all buto(n) of the eigenvalues
belong to]—c+/n, cy/n]. Yet, this does not give information on the largest eigenvalues.
Ferenc Juhasz [209] gave some weak estimates on this and those were improved to
much better ones by the Fiiredi—-Koml6s theorems which basically assert that

Theorem 16.12(Furedi, Komlos [173])Let A = (aij)nxn b€ ann x n symmetric
matrix whereq;; are independent (not necessarily identically distributed) random real
variables bounded with a common boufd for i > j. Assume that, foi > j, a;;
have a common expectatipnand variances?. Further, assume thak(a;) = v.
(Herea;; = aj;.) The numbersy, , o2, v will be kept fixed as. — oo.

If 1« > 0 then the distribution of the largest eigenvaluedt= (a;;) can be approx-
imated in orderl/+/n by a normal distribution of expectation

(n—Dp+v+a?/u (16.3)
and variances2. Further, with probability tending td,

m>azx|)\i(A)| < 20+/n+ O(y/nlogn), (16.4)

where); is theit” eigenvalue of4.*!

Remark 16.13.The semi-circle law implies that max | \; (A4)| cannot be much smaller
than 2r/n.

16.8. Singularity over finite fields

One could ask what happens if we take the entries of a randerm matrix from a
finite field F.

Theorem 16.14(Jeff Kahn, J. Komlds [210])The probability that a random square
matrix of ordern, with entries drawn independently from a finite fiél¢;) according
to some distribution, is nonsingular is asymptotically fas- oc) the same as for the
uniform distribution (excepting certain pathological cases, see below):

Pr(M,, is nonsingular) — [ | <1 - l) as n — oo. (16.5)

1
i>1 q

What is pathological? Kahn and Komlés write that if the entries of the random
matrix M,, are chosen independently and uniformly frdmthat is enough to ensure
(16.5) and this was fairly widely known. Among others in [91] (see also [253, 254]) it
is proved that

4 >\12>\22"'2>\n-
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Theorem 16.15L et M,, be a random x n F-matrix with entries chosen according
to some fixed non-degenerate probability distributioon 7. Then (16.5) holds if and
only if the support of: is not contained in any proper affine field &t

We skip the details here, again.
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