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Abstract. The main result of this paper is that for a special, but rather wide class of “sample
graphs”, the extremal graphs, i.e. the graphs of n vertices without subgraphs isomorphic to the
sample graph and having maximum number of edges under this condition, have very simple and
Symmetric structure. This result remains valid even in the case when the condition “the graph
does not contain the sample graph” is replaced by the condition “the graph does not contain
the sample graph and its chromatic number is greater than ¢, where ¢ is a fixed integer”. The
Tesults of this paper have a lot of different applications, a few of which are listed in Section 3.

0. Notations

The graphs, considered in this paper, do not contain loops or multiple
edges. They will be denoted by capital letters, the upper indices will
always denote the number of vertices. The vertices of a graph will be de«
noted by x, ..., the edges by (x, ), ...; u(G), e(G) and x(G) denote the
number of vertices, edges and the chromatic number of the graph G,
respectively. If x € G, then st x denotes the star of x, i.e., the set of
vertices joined to x. The number of these vertices, i.e. the valence (de-
gree) of x, will be denoted by o(x); if E is a set, then |E| denotes its
cardinality.

To simplify the definitions of graphs we use the following operations:

(a) G = Z G, if G; are spanned subgraphs of G no two of which have
vertices in common and vertices of different G,’s are never joined.

(b) G = XG;, if G;’s are spanned subgraphs of G; no two of which
have vertices in common and vertices of G belonging to different G;’s
are always adjacent.

(c) If G, is a subgraph of G or a set of vertices of it, then GG, is
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350 M. Simonovits, Extremal graph problems

the graph obtained from G by omitting all the vertices of G, from it
and also all the edges at least one endpoint of which is omitted.

Special graphs. K (ry, ...,rg) = X G"P, where e(G"P) = 0 (the com-
plete d-chromatic graph with r,, vertices in its pth class). K;(1, .. L=
K, is the complete graph of d vertlces P! and C! denote the path and
circuit of I vertices, respectively.

Constants will be denoted by cg, ..., ¢, , ... and will always be suppos
ed positive. V;, ... will denote large but fixed positive integers.

Important! If we have to distinguish between the following two rela-
tions:

(a) G, is a subgraph of G;

(b) G contains a subgraph, isomorphic to G, ;
then we use G; € G in the first case and G; C G in the second one.

1. Introduction

A well-known theorem of Turdn [14] states that: Letpandn=p
be given integers. If we consider all the graphs of n vertices not contain-
ing Kp, then there exists exactly one among them having maximum num”
ber of edges. If this graph is denoted by S”, then §" is defined by

St =Ky 1 (ny,sesnp),

where Zn; =n and In;—n/(p-1N< 1 (i=1, .., p-1).
It is natural to replace X, by other graphs or families of graphs in
Turdn’s problem. Thus we obtain:

Problem (L, ..., L,). Let L, ..., L, be given graphs. How many edges
can a graph G" have if it does not contain any L,?

Here the graphs L; will be called sample graphs, the graphs attaining
the maximum will be called extremal graphs and the maximum itself
will be denoted by f(n; Ly, ..., L,).

The most important theorem of [7] asserts that f(n; L,,..., L, ) de-
pends above all on
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m d = min x(L;) — 1
if n is large. More exactly,

(2) im f(1; Ly, L)/G) = 1-1/d.

P. Erdds and the author tried to modify the original proof of (2) to show
that not only the asymptotic number of edges but the “asymptotic
structure” of the extremal graphs are also determined by d. The main
result, obtained by Erdos and the author independently [4,5,12] can

be summarized in the following two theorems. (Throughout this paper,

d is defined by (1)!)

Theorem A. Let S" be an extremal graph for L, ..., Ly Letc=
{max v(L;)} ~! > 0. Then S" can be obtained from a product
Xp <d G"r by omitting O(n?~°) edges, where

e(G")=0(n1"), n,—n/d=0n'"°) whenn-> o .

The minimal valence of vertices in 8” is n(1—1/d) + O(n!~¢). The
number of vertices of G"? joined to at least en vertices of G"7 is O.(1).

Theorem B. For every € > 0, there exists a & > 0 (depending also on
Ly,..., L,) such that if n is sufficiently large and

e(G") > (2) (1~(1/d)—8)

and L; ¢ G" (i =1,...,\), then G" can be obtained by omitting at most
en? edges from a product Xde G"P, where

n, —n/d| < en, e(G"PY<en?, p=1,..d.

(Theorem B is a stability theorem: it expresses that if G" is almost
extremal, then G” has almost the same structure as the extremal graphs.)
Theorems A, B are valid without any restrictions on the graphs
L,,..., L,.If we wish to get some further information on the structure
of the extremal and almost extremal graphs, we need to restrict our in-
vestigations to special cases. In this paper we deal with the case when
there exists an integer 7 such that
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3) LycP XKy 1(r,...,7).

Without any loss of generality we may assume that

4) 7=max v(L;).

(3) and (4) are assumed from now on.

These conditions mean that if the minimum of the chromatic number
of sample graphs is d + 1, then at least one sample graph of chromatic
number d + 1 is almost d-chromatic in the sense that it can be coloured
by d + 1 colours, so that e.g. the subgraph spanned by the vertices of the
first and second colours is a path or a subgraph of a path.

We shall see (Section 3) that our results on this special case have a
lot of different applications, i.e., the class of problems considered here
is fairly wide.

To formulate our theorems, we have to define some classes of “very
symmetrical graphs”.

Definition 1.1. Symmetric subgraphs. Let T, and T, be connected,
spanned subgraphs of G. They are called symmetric (in G) if either
T, =T, or

(@) T, NnTy=0;and

) (x, )¢ GifxeT,,yeT,;and

(iii) there exists an isomorphism Y, : Ty} - T, such that for every
x€T, andu € G—T,—T),, x is joined to u if and only if Y, (x) is join-
ed to u.

Ty,..., T, are symmetric if for every 1 <i<; <+, T; and T} are sym”
metric. '

Remark 1.2. The transitivity of our relation is the consequence of the
connectedness of the considered subgraph.

If we speak about a set of symmetric subgraphs, we suppose that the
isomorphisms y; : T; - T; are fixed even in those cases when they aré
not uniquely determined.

Definition 1.3. G(n, 7, d) is the class of graphs G having the following
properties:

“(i) It is possible to omit < r vertices of G”, so that the remaining gfaph
G" is a product
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Gi= X G™p, wherel|m,—n/di<r.
p<d P

(ii) The graphs G™P are the disjoint unions of small symmetric graphs:
For every p < d, there exist connected graphs H), ; € G™P and i 1so-

morphisms \bp IE p 1 Hp i such that v(H i) S < r and H i U= R vp)
are symmetric subgraphs of G" (G"p = J)
In (ii), it is very important that #, ; (/= 1, ..., »,) are symmetric sub-

graphs of G” and not only of G .
Now we formulate the main result of this paper.

Theorem 1.a. Let Ly, ..., L, be given graphs and let
d =min x(L)) -1

and Ly C P"X Ky_(7,...,7). There exists a constant r (depending only
on 1) such that for every n, G(n, r, d) contains at least one extremal
graph for Ly, ..., L, .

This result remains valid under much more general conditions too.
More exactly, we shall define the concept of “chromatic conditions”
and an operation D™ on graphs and prove:

Theorem 1. Let Ly, ..., L, be given graphs, d and 7 be defined accord-
ing to (1) and (4) respectively, and let (3) also hold

L, CP XKy (.. 7).

Let A be a chromatic condition and let us consider those graphs of n ver-
tices, which satisfy A and do not contain any L, (if n is large enough,
Such graphs do exist!). The graphs, having maximum number of edges
among the considered ones, will be called extremal graphs for
(Ly,...,Ly; A). There exists an r = r(r, A) such that for every n, large
enough, G(n, r, d) contains an extremal graph for (L, ..., L, ; A).

Theorem 1 is an existence theorem; however, in many cases it
Mmakes possible to find some extremal graphs for given concrete prob-
lems relatively easily. Sometimes there are very many extremal graphs,
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sometimes only one. OQur next theorem asserts that one can decide,
whether there exists only one extremal graph or not considering only
G(n,r, d).

Theorem 2. Using the notations of Theorem 1. There exists a constant
ro such that if for every sufficiently large n, G(n, ry, d) contains only
one extremal graph (for (L, ..., L, ; A)), then there exist no other ex-
tremal graphs.

In the case when there are many extremal graphs, they may be char-
acterized by the help of:

Theorem 3. Using the notations of Theorem 1. There exists an ny and
a finite set of extremal graphs, denoted by S, such that if n> n, then
S" is an extremal graph (for (Ly,..., L, ; A), of course) if and only _if
S" € D™ (S) for some S € S and integer m selested in a suitable way.

(Here the operator D™ is a multivalent operator, thus sometimes we¢
may consider it as a family of graphs and use the notation G € D™ )

Now we define the concept of ‘““chromatic condition” and the oper-
ator D™,

Definition 1.4. Symmetrization. Let T be a connected subgraph ofa
graph G and let each vertex of G belong to another graph G. We say
that G i is obtained from G by symmetrizing x, ..., x,,, to T C G if:

(i) G={x1,., X } = G—{x,,..., Xm} 2T,

(ii) the subgraphs T; spanned by Xjo#1s weor X(jr1)p AF€ symmetric to T
in G, wherev=v(T),j = 1, ...,m/v, m is divisible by v.

Definition 1.5. Chromatic conditions. Let us suppose that A is a con-
dition such that (using the expression A-graph instead of writing *“a
graph, satisfying the condition A”):

(i) If G isan A-graph and H contains G, then H is also an A-graph.

(ii) For every w, there exists an A-graph each circuit of which is
longer than w.!

(iii) There exists a constant p such that if Ty, ..., T, are symmetric
subgraphs of an A-graph G, then G—T, is also an A-graph.

! Asa matter of fact, this condition can be omitted. However, in this case some classes of gf"phs
considered by us will become empty.
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Examples. We do not distinguish between a chromatic condition and
the family of graphs, satisfying this condition.

(1) Let A be the family of at least #~chromatic graphs. Then Ais a
chromatic condition. (For the proof of (iii) see the Appendix, (ii) is
proved in [1, 10].

(2) If t and u are given integers and we consider the family of graphs
from which omitting any u vertices we obtain a graph of chromatic
number > ¢, then we obtain a chromatic condition. (iii) is proved in
the Appendix, (ii) follows from [1. 10].

(3) Let A be the family of graphs each vertex of which has valence
greater than t. This is also a chromatic condition. However, it is in-
teresting to notice that because of Theorem A if nis large enough,
there is no difference between (Ly,...,L, ; A) and (L, ..., L, ), unless
d=1.

(4) Similar is the situation with the chromatic condition “G is non-
planar”.

(5) If A and B are chromatic conditions, then AN B and AU B are
also chromatic conditions.

Remark 1.6. Our theorems remain valid even if (iii) is replaced by
(iii)*: there exists a sequence p; such that if Ty, ..., T, are symmetric
subgraphs of k vertices in an A -graph G, then G-T; € A, too.

Definition 1.7. The operator D™ . The operator defined here is a multi-
valent one and it depends also on two parameters V; and p. Let us sup-
pose that the graph G contains a family Tp_ ij of subgraphs,p=1,...,d,
I= L&, i=1..,p.

Let us suppose also that no two of them have vertices in common and
if we fix p and i, then the obtained subfamily be a set of symmetric sub-
graphs of G. Further,if x€ T, ;; andy € T}, 4, then (x,y) € §” iff
P # p'. Let us suppose that Vi D= 1,..d, i=1,.. Ep, are given in-
tegers such that Zp, ; = (Ng) =N, forp=1,...d. Let o(T, ;) < Ny
for every considered subgraph. Now we symmetrize v .1 hew vertices
to T}, , , for every considered pair (p, ). If p and Ny are fixed, let
D(G) denote the family of graphs obtainable in this manner. D™ (G)
is defined recursively: D™ (G) is the family of graphs obtained by ap-
blying D to the graphs of D™-1(G) (D™ (G) can be considered as a
family of graphs and as an operator as well).

2 Here we implicitely supposed that Vp,i is divisible by ”(Tp,i,})'
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As we shall see in Lemma 3.4.1, if a graph does not contain any
sample graphs and we apply the operator D to this graph with a suit-
ably large p, then the obtained graph will neither contain any sample
graph; on the other hand, if the original graph was an A-graph, then
(because of Definition 1.5(iii) and (i)) the new graph will be an A-
graph as well. Therefore, if we apply this operation to an extremal
graph, the obtained graph will have at most as many edges as the corre-
sponding extremal graph. Theorem 3 asserts that if n is large enough,
it will have exactly the same number of edges.

The Appendix includes a theorem, showing that our theorems are
the best possible in a certain sense.

2. Applications
(A) Let
(5) H(n,d,s)=: K;_| X Kj(my, ..., my),

where |m;—(n—s+1)/d| < 1 and Zm; =n-s+1.
For many families of sample graphs, H(n, d, s) is the only extremal
graph if n is large enough. E.g:

Theorem 2.1 (Moon [11]). There exists an n(d, s) such that if n> n(d,s)
and L is the sum of sC K4, then H(n, d, 5) is the only extremal graph
for L.

For d = 1, the theorem was proved by Erdds and Gallai [6] first. MY
Ph.D. Thesis [13] contains a generalization of this theorem for the case
when K, is replaced by an arbitrary d + 1-chromatic graph at least on¢
edge of which is colour-critical (an edge is called colour-critical if by it$
omitting the chromatic number of the graph decreases). This result is 8
very special case of the next theorem.

Theorem 2.2. Let Ly, ..., L, be given graphs, min x(L;) = d+1. If omit-
ting any s—1 vertices of any L; we obtain a > d + 1-chromatic graph but
omitting s suitable edges of L, we get a d-chromatic graph, then H(n, d,s)
is the only extremal graph whenever n is sufficiently large. Further, for
every chromatic condition A, there exists an integer g(A) such that
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6) fA(n', L‘1 v Ly)=f(5 Ly, ..., Ly )—(n/d)g(A) + O(1).

This theorem is an almost trivial consequence of Theorems 1,2. An
interesting special case of it is:

Theorem 2.3. H(n, d, 1) (= the extremal graph of Turdn’s theorem) is
the extremal graph for L, ..., L, for every sufficiently large n if and
only if (1) holds and a d+ 1-chromatic L; contains a critical edge.

(B) A problem of P. Turdn, published by Erdos [3] asks: Let L be
the graph, determined by the vertices and edges of a regular polyhedron.
How many edges can G" have if L ¢ G"?

In the case of the tetrahedron L = K, thus Turdn’s theorem gives a
complete answer. If L is the octahedron-graph, the results of Erdos and
the author give a fairly good description of the extremal graphs [9]. (In
this case, L = K3(2,2,2).) In the case of the cube, we have some upper
and lower bounds [8], but they are different powers of n (it seems to
me that the lower one is too weak).

Let D20 and I'2 denote the dodecahedron- and the icosahedron-
graphs, respectively.

Theorem 2.4. If n is large enough, H(n, 2, 6) is the only extremal graph
for D20 Every almost extremal graph is very similar to H(n, 2,6) in

the following sense:
IfD* ¢ G” and

(7 e(G") > e(H(n, 2,6)) —4n+ M, ,

Where M, is a suitable constant, then we can omit 5 vertices of G", so
that the remaining graph is 2-chromatic.

Theorem 2.5. If n is large enough, H(n, 3, 3) is the only extremal graph
for 112,

Remark 2.6. Let A be the chromatic condition, “it is impossible to omit
S vertices of G to obtain a 2-chromatic graph”. It can be proved that D¢
€ A, but it is possible to omit 6 edges from it so that the obtained graph
is 2-chromatic. Therefore:

(a) Theorem 2.4 is the special case of Theorem 2.3 apart from the
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fact that g(A) = 1. Thus, if we wish to prove Theorem 2.4, we can de-
duce it from Theorem 1 directly, or to prove in Theorem 2.3 that
g(A) 2 1if H(n, d, s) is not an A-graph for every sufficiently large n.
Trivially, this implies Theorem 2.4.

(b) In Theorem 2.4, we asserted that the almost extremal graphs aré
similar to H(n, 2, 6) in the sense that we can omit 5 vertices from them
so that the remaining graph be 2-chromatic. Does this property express
a real similarity?

Yes, this and (7) imply that there exist an m, and an m, such that
G" can be obtained from K5 X K,(m, m,) by omitting O(n) edges,
where m; — }n = O(v/n). (If we do not omit edges and |m;— i(n -5,
then the obtained graph is just H(n, d, 5).)

(c) (7) is the best possible; M, can not be replaced by a small negative
integer.

(d) Theorem 2.5 is essentially deeper than Theorem 2.4, it cannot
be deduced from Theorem 2.3. Its proof, based on Theorems 1, 2,
will be published later. No assertion analogous to the second part of
Theorem 2.4 holds for the icosahedron.

(C) A theorem of Erdds, Gallai and Andrisfai states that: If G” does
not contain K3 and is not 2-chromatic, then

¢)) e(G") S f(n; K3)—im + 0(1)

(see [2]).
In connection with this result Erdds asked:

Problem. What is the maximum number of edges, a graph of n vertices
and chromatic number 2 # can have if it does not contain K5?

I showed [13] that:

Theorem 2.7. Let f,(n; K3) denote the maximum in the problem above.
Then

9) fin; K3) = §n? —g5(O4n + 0(1), -

Where §4(t) is the largest integer m such that for any graph G not cor”
taining K4 and having chromatic number 2 ¢, at least m vertices of G
must be omitted to get a 2-chromatic graph.
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Remark 2.8. (a) According to [10], there exist graphs of chromatic
number 2 ¢ and not containing circuits shorter than ¢. If G is such a
graph and G, is a subgraph of it of < { vertices, then G, is a tree, i.e.,
a 2-chromatic graph. Therefore the definition of §3 (t) is legitimate.
Comparing g5 and g5 of [1], one can easily prove that

(10) c;t? logt/loglogt < g3(t) < c,t* (log 1)? .

(b) Theorem 2.7 would also be a very special case of Theorem 2.3
if the corresponding g(A) were known.

(c) Replacing K3 by K,, we get an essentially more difficult problem
the exact solution of which is unknown to me.

(d) In the original form of (8), O(1) was replaced by the best possible
constant. Later I generalized this theorem for every K, (see [12]) de-
termining the exact constants and the extremal graphs as well.

Now we turn to the proofs of Theorem 1,2,3.

3. Proofs of Theorems 1,2,3
3.1. A general lemma

If we prove any of the Theorems 1, 3, to prove the others will be
an essentially simpler task. Actually, we will prove Theorem 3 first and
deduce the other two theorems from it. The proof of Theorem 3 con-
sists of two parts, a general and a special one. Here the expression
“general part” means that if we replace the condition (3) by

(1D L, CTX Ky_(1,..,7),

Where T is a 2-chromatic graph, then the estimations O(n2~¢) and
O(n1-¢) can be replaced in Theorem A by

Of(n; T)) and O (n; T/n),
Tespectively. The proof of this assertion needs no new ideas but a slight

Modification of the proofs in [4,5,12] (see also [13]). In our case, T is
a path and therefore a tree and one can easily prove that
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if T is a tree, then f(n; T) = O(n) .

This leads us to Lemma 3.1.1, the proof of which will be sketched in
the Appendix.

Lemma 3.1.1. Let us suppose that (10) holds with a tree T. Let K be a
fixed integer and G" be a graph not containing any L; and satisfying
the condition

(12)  e(G"Y2f(;Ly,....Ly)—Kn.

If we colour the vertices of G" by d colours so that the number of
edges joining vertices of the same colour be minimal, and denote by
G"P the subgraph of G" determined by the pth colour at this colouring
then:

(i) G" can be obtained from the product X, < 4GP by omitting
O(n) edges. (In other words, at most O(n) pairs (x, y) of vertices, where
x €GP andy € G4, p # q, are not joined in G". These pairs will be
called "missing edges’’.)

(i) e(G"P)=0(n).

(i) n, —n/d =0H/n).

(iv) Let a(x) and B(x) denote the number of vertices

(@) of G"P joined to x € G"P, and

(b) of G* —G"P not joined to x € G"P, respectively.
Then for every € > 0, the number of vertices such that either a(x)> €n
or B(x) > enis O,(1).

(v) Let Ap be the class of vertices x € G"P such that a(x) < en,
B(x)< en.Ife<1/2r and n is large enough, then T ¢ G(Ap). (IfEisa
subset of the set of vertices of a graph G, then G(E) denotes the sub-
graph of G spanned by E.)

As we can see, (i)—(iv) are improvements of the corresponding asser-
tions of Theorem A. (v) is needed to prove (ii) and this is also the point
where we shall apply our main condition (3). The proof — as we have
already remarked — is outlined in the Appendix.

3.2. Graphs not containing P!

Here we shall investigate the structure of graphs not containing P!
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and prove that they have a fairly simple and symmetric structure for
every fixed ] Thisresult is needed to guarantee that the graphs G(4,) of
Lemma 3.1.1(v) cannot be to complicated when T = P!,

Lemma 3.2.1. Let | be a given integer, € > 0 and let {m; } be an arbitrary
sequence of positive integers. There exists an integer Ny such that if
n>N, and P! ¢ G", then G" contains a family of subgraphs T,
i=1,2,..,7=1,2,..., with the following properties:

(1) No two of them have vertices in common.,

(ii) For every fixedi, T;;'s are symmetrical subgraphs of G". If
v(Tu) =k, thenj=1,2,.., M.

(i) 2 X u(T;;)>n—en.

Proof. The lemma holds for ! = 2 trivially. We apply induction on L Let
us suppose that the lemma holds for /—1.

Accordmg to the hypothesis, we determine NO correspondmg to
I-1, %€ and iy, = my ¢ 2¥¢-1_ Now if G" is a graph not containing P!
and U,’s are the connected components of it, we divide the components
into three classes. The first one contains the components of > N, ver-
tices not containing P'-1, the second class contains the components of
< N, vertices and the third one contains the other components. If u
denotes the number of graphs of < NO vertices and n, the number of
vertices of components in the vyth class (y = 1, 2, 3), then at least

n2—N0 . “kn%.a]\),(o my = nz—O(l)

vertices of components from the second class belong to symmetric
graphs of the desired type: we select my, isomorphic components of
k, vertices from the second class (if we can), then m;, isomorphic
components of k, vertices and so on. If finally we cannot select my,
isomorphic components of k, vertices from the second class, then there
Temain less than u max; < m; components. Now the only thing we
have to notice is that 1somorphlc components are symmetric subgraphs.

In the case of the first class, we apply the induction hypothesis. The
graph spanned by the components of the first class contains a family of
Subgraphs T} ; satisfying (i)—(iii), where, of course, n must be replaced
by ng.

The essential step of the proof is made only in the case of the third
class. If U is a component of the third class having u vertices, then it
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contains a PI-1, If U~P!-1contained an other P!-!, then U would con-
tain a P!. Therefore U—P!-1 does not contain a P/~1 and we can apply
the induction hypothesis. Let T;; be symmetrical subgraphs of U-P+!
for every fixediandj=1,. mk Sometimes they are not symmetric in
G" since they are joined to P’ 1! in different ways. However, among
any 24¢-1) m, subgraphs 7;; (for fixed #), there exist my, subgraphs
joined to P~ in the same way. These sub§raphs are symmetnc in G"

as well. Therefore one can find at least 2% k; subgraphs among
the considered 25" )tmk ones forming ki@ 1 (t 1) sets of my, sym-
metric subgraphs of U. Forz = 1,2, ..., the total number of vertices of
these graphs will be

2 -deyu—-1+1)A=1/H)> (1 —€)u

if € is small enough, ¢ = 3/e and N, is large enough. Therefore the ob-
tained systems of symmetric graphs contain at least

(1-€)ny+(1-€)ny +ny—0(1)2 (1—€)n

vertices together if n is large enough. Further, these symmetric graphs
have O(1) vertices.

Let us notice now that if € < 4 r(the sample graphs and the chro-
matic condition are supposed to be fixed), then Lemma 3.1.1 is ap-
plicable to every extremal graph. Indeed, there exists an A-graph G"
not containing circuits shorter than 7 + 1. Let H* = G* + K (m, ..., mg):
where Imp——(n—h)/dl <l@p=1,...,d). Now

e(H™) =4n2(1-1/d)-nh (1-1/d) + O(1).

Clearly, H" is an A-graph and each subgraph of < 7 vertices is <d-chro-
matic in it. The number of edges of the extremal graphs are greater than
that of H", i.e., greater than

in2(1-1/d) - O(n).

Therefore, Lemma 3.1.1 is applicable to the extremal graiphs. Now we
fix an extremal graph S” and define the graphs G according to Lemm?
3.1.1. We know that P! ¢ G(4p),p=1,...,d. Hence G(4,) contains 2
lot of symmetric subgraphs. If we knew that these graphs are symmetrlc
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in G as well, then we could prove Theorem 3 easily. However, general-
ly these graphs are not symmetric in G”. Our aim is to prove that it is
possible to select some of them, symmetrical in G* too.

3.3. Symmetric subgraphs of the extremal graphs

Notation. a(x) and B(x) were defined in Lemma 3.1.1(v). If T is a sub-
graph of G, let

o= 2 ax), BD= 2 px).
xeT xeT

(a(T) expresses the number of edges of G"P at least one endpoint of
which belongs to T.)

Lemma 3.3.1. Let § be a positive integer. There exists a constant ¢, > 0
such that if Ty, ..., T, are symmetric subgraphs of G(Ap) and v(T)<§,
B(Ty)<§forj=1,..,7, thenat least ¢,y of them are symmetric in G"
too.

Lemma 3.3.2. For every sequence {my} of positive integers and § > 0,
there exists a constant N such that if n > Ny, then G(Ap) contains a
family of subgraphs Ty, ; ; symmetric forj =1, ..., M, ; (wherep < d
andi=1,...are fixed, kp', = v(Tp’U)). Further,

@ Zj_‘, T, )2 (1=8)n,, (T, ;)< No.

Proof of Lemma 3.3.1. If e, > Ois fixed and ¢; ¥< 1, then Lemma 3.3.1
is trivial. Thus we shall consider only the case when v is large enough.
We define an algorithm of selecting such that in the rth step of the al-
gorithm we have a set of integers (denoted by /,) and a set of vertices
Vi, ¥, € 8"=By—A,, where By is the set of exceptional vertices,

i.e., the set of vertices of S"—Up Ap.

Let B, = By U {y,...., ¥, }. The algorithm will ensure that {T;: i€/, }
are symmetric in G(4, VU B,) and forevery y; (s<r)and T; i € 1,), at
least one vertex of T; is not joined to y;.

@Ifr=0,T,.., T,y are symmetric subgraphs of G(A4,) and «(T}) =k,
then because of |By| = O(1) we can find an M such that |By| < M. At
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least v » 27 M subgraphs among T,,..., T, are symmetric in G(4, V By)
too, being joined to By in the same way.

(b) Now we define the rth step. Let us suppose first that there is an
(x,y)¢ 8", such thatx€ T}, y ¢ A; UB,_;. Adding (x, y) to 5", we
obtain a G" and this G” contains at least one L*= L, since S” is an eXx-
tremal graph and G” is an A-graph. Of course, L* € S” and S" —{x} =
G”— {x}, thus x € L*. Permutating the indices, we can achieve that
l,..,7€1I, and if i > 7, then L* N T; = . (T;’s have no common vertices
and L* has at most 7 vertices!) We show that the number of T}’s such
that

(13) T,X (L"—Al—Br__l)CSn and i>7

is at most 7. ((13) means that every vertex of T; is joined to every one
of L*—A—B,_,.) Otherwise, we could suppose that fori =r+1,..., 27
(13) holds. Let ¥; be the isomorphisms in the definition of symmetry
of Ty, ..., T,,. Replacing each y;(z) € T; 0 L* by the corresponding
vertex ¥;,,(2) € Ty, (i< 7), we should obtainan L** ~ L* ~ L, in
G" since

(i) ¥4, (2) is joined to all the vertices of L* —T;—T},, which are join”
ed to ¥,(2);

(i) if 2y, 23 € T, then Y, (2y) and Y, (2,) are joined if and only if
w,ﬁf (zy)and w,z,,f (z,) are joined.

Since L* and L** have no vertices in common, x & L** and conse-
quently L** € S". This contradiction proves that (13) holds for less
than 7 indices i € I, _; . Therefore there exist any, € L*~A,—B,_; and
at least

Hroq|-27
T

subgraphs T, so that y, is not joined to each vertex of T;. At least

]I,_1T|—2r 5=t

T, are joined to y, in the same way. Let I, C I,_; be the corresponding

set of indices. Clearly, {7;: { € 1,} are symmetric in G(4, U B,

U {¥y,...»,}) and no y, (s < r) is joined to each vertex of T} (i € I,)-
The algorithm stops (by definition) if we cannot find a suitable “mis-
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sing edge” (x, ). In this case, {T;: i € I,_, } are symmetric not only in
G(4,V B,_;) but also in §” since each vertex of each remaining 7j is
joined to each vertex of $” —(4; U B,). Thus {T;: i € I, } are symmetric
in §”, what implies the lemma if the algorithm stops fairly soon. Clear-

ly, B(T;) 2 r for every i € I, ; thus the algorithm stops in at most § steps.
An easy calculation gives that if ¥ > ng, then we have at least

2-ME(2r)~8 27t y=2y

symmetric subgraphs at the end. To get rid of ny, we observe that if
¢, =min (&, 1/ng),

then Lemma 3.3.1 holds for every 7.

Proof of Lemma 3.3.2. Let M be a constant such that

BG(4,)) < Mn,,

(see Lemma 3.1.1(1)). Let (1—n)* =18, ¢, = 4Mkn~2, and let 17y, =
2my, (neg)~!. We apply Lemma 3.2.1 to G(4;), n and iy, Thus we
obtain a family {U, ;} of subgraphs symmetric in G(4,) fors = 1, ...,
Ay, (k, =v(U, ) and r is fixed). Further,

2 Lo, o= -mny, U )=k <M .
r s

Now we omit some of these subgraphs in two steps. First we omit all
the graphs Z; U, ; satisfying

ﬁ(Zs) U,,s) >Mnly (Z) U,,,) .

Thus we omitted at most nn; vertices, otherwise
BGA ) >nny 2M ™! =2M ny

would hold. In the second step we omit all the remaining subgraphs
U, , such that

I
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(14) B, )= 4Mn~ 2 u(U,,).

Thus we omitted for each r at most nv(Z U, ;) vertices. (The total num-
ber of vertices of the remaining graphs is at least (1-217) (1-n)n,.)

Let us consider now the remaining components U, ; of a graph
Z, U, ; for a fixed r. Let C, denote the number of these components.
Clearly, C, > (1 —n)r?zkr Since §x, > k, and §x, > B(U, ), we can apply
Lemma 3. 3 ! to any cs, * my, of these components. We apply Lemma
3.3.1 repeatedly: havmg obtamed some sets of my, symmetric subgraphs
of k, vertices we apply the lemma to the other components. Thus we
obtain at least

G -cil om, 21 -mC (<D

components, collected into sets of my, symmetric subgraphs. If we
take the union of these families of sets of symmetric graphs for every
r, then we get a family 7; of subgraphs, symmetric in S” for every
fixed i, whilej=1,. vy Mgy Ky =v(T;;). Further

=D T uT) 2 - A-2m)~ (-n)* =1-8 .

3.4. Symmetrization and extremal graph problems

The last lemma we need expresses that symmetrization is an opera-
tion which can be used to solve some extremal problems.

Lemma 3.4.1. Let Ty, ... T C G be 9ymmetr1c subgraphs and let L be
an arbitrary graph such that v(LYL v If G is obtained from G by sym-
metrizing

xl,...,xm €G- UTi
to Ty (where m is divisible by v(T))and L ¢ G, then L ¢ G.
Proof. (Essentially the same as the argument used in the proof of Lemma3
3.3.1). Indirectly, let L = L* € G. Since v(L) £ 7, if T4y, Tyaeo 31°

the subgraphs obtained from x, ..., x,, , then the number of T}’s i>"
for which T; N L* # ( does not exceed the number of 7}’s ( < < v) for
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which T, 0 L* = (. Without loss of generality we may suppose that for
j>y+u, T;nL* =Pandforj=v+1,..,y+u T;N L* # @ and for
=1, L1 T N L* =@, too. Let us replace in L* everyxe Tjn L* by
\1/,_ 7 1(x)) j=v+1,...,7+u Thus we obtain a new graph L** ~ L
in

Ttw

G- U T;=G- {x{oxp, G,
y+1

This contradicts L ¢ G.
3.5. The background of our theorems

If there are given some sample graphs and a chromatic condition,
then, as we have seen, the extremal graphs contain a lot of symmetrical
subgraphs. Let us consider two sets of symmetric subgraphs in an ex-
tremal graph S”. If we select almost all the subgraphs of the first set but
do not select at least 7+ p of them (see Definition 1.5), then symmet-
rizing the vertices of the selected subgraphs to the subgraphs of the
second set, we obtain a new graph ST of the same number of vertices
which is an A-graph because of Definition 1.5(iii) and does not contain
any sample graph. Symmetrizing the same number of vertices of the
second set to the subgraphs of the first set, we obtain a third graph S} and,
as we shall see, at least in one case the number of edges increased, or the
new graphs S and S have the same number of edges as the original one.
The original one was an extremal graph, therefore the number of edges
remains unchanged and the two new graphs are extremal graphs. Ap-
plying this operation repeatedly one can easily prove Theorem 1. After
this the other theorems will follow easily. However, here we shall prove
Theorem 3 first.

3.6. Proof of Theorem 3

In the first part of the theorem (i.e., in (a) and (b)), we give some
estimations on a(W) and f(W) which will be needed when we apply
Lemma 3.3.1 in (¢).

(@) Let Ty, ..., T, be symmetric subgraphs of S and WS T, N G(4,),
then
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(15) IBOI v +a(W) 2 (W) .

(For the definitions of By and p see Lemma 3.1.1 and Definition 1.5)
Indeed, S —W 2 S” — T, is an A-graph. Therefore, if we omit all the
edges at least one endpoint of which belongs to W and join each edge
of W to each vertex of §”— A, — By, then we obtain a new A-graph 5"
not containing any L;. (We can apply here a modified version of the
proof of Lemma 3.4.1: from L; ~ L* € 8" would follow L; ~ L**C 8"
because the vertices of WN L* could be replaced by some vertices of
A;—W-L" joined to each vertex of L*—A; —B,. Such vertices do exist
because € < 1/27 in Lemma 3.1.1. Since the vertices of W in the new
graph S are not joined to By, by this replacing of vertices we obtain
an L** =~ L* in S"!) Thus e(S") > e(5"). This proves (15) because

e(S")—e(8") < a(W)—B(W) + By v(W) .

(b) We prove that if T, ..., T, are symmetric subgraphs of " and
WcTynGA,), and either W=T, or W,,..., W,, W are symmetric
subgraphs of T}, then
(16)  a(W)=O0WW)).

This, (15) and |By| = O(1) will imply
(16*) B(W) = O(w(W)).
From P7 ¢ W follows that
an e(W) = 0(wW)).
Further, at most 4 (7—1) vertices of G(4;)—T, can be joined to T} - In-
deed, if Uy, ..., U, are symmetric subgraphs of a graph G and x{, ..., Xs
are joined to U, then G contains a circuit
() Xy Uy Uy Xy Uy, U3 X3 U e Uy X, 9,),
where u;, v;_; are the vertices of U, joined by a path in U;(i = 1,.0.,0
vy =V, ). Hence P2 C G. Therefore at most 4 (r—1) vertices of G(4; )»-T1

can be joined to W. Similarly, at most 4 (r—1) vertices of Ty —W can be
joined to W. Thus
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a(W) < e(W) +(2(r—1)/2 + | Byl) v(W) = O(w(W)).

(c) Let Ny and p be given integers. A family 7} j of subgraphs (j =
l,..,p,i=1,..,N; =N,!)is a matrix of symmetric graphs (in S") if
for every fixed i, T}, ..., T; , are symmetric subgraphs of §” and the
graphs T; = : Z; T}, are also symmetric subgraphs apart from the fact
that they are not connected.

Now we prove the existence of an Ny = N (p) such that G(4,) con-
tains either V; symmetric subgraphs of < N, vertices or a matrix of
symmetric subgraphs (if » is large enough). Let M be a constant such
that in (16*), B(W) < M v(W). Let m = p 27 (ckM)"1 ande=6=1/2r.
The constant N, is the corresponding constant of Lemma 3.2.1. Now
we apply Lemma 3.3.2 to 8" and 1y, = N;. Thus we obtain a system
U; of symmetric graphs (j = 1, ..., Ny). If v(U;) < Ny, then there is
nothing to prove. If v(U)) > Ny, then we apply Lemma 3.2.1 to U, .
Thus we obtain a system T, ; of symmetric subgraphs of U,, j=1,...,my
(k= u(Ty,;)). As we know, at most 3 (7—1) vertices of G(A4,)—U, are
joined to U; and at most 4 (7—1) vertices of U; - U Tl,f are joined to
UT, ;. Therefore at least 27 m; subgraphs from Ty y, ..., Ty ,,, are sym-
metric in G(4,) as well. Applying Lemma 3.3.1 (and (16™) with the
constant M) to these graphs we obtain p of them symmetric in S", too.
If Y;: Uy » U, are the isomorphisms in the definition of symmetry and
Tl,j, j=1,..., p, are the symmetric subgraphs of U;, then T;;=: t}/,-(Tu)
is trivially a matrix of symmetric graphs.

Applying the result of (c), the simpler case when we obtain N, sym-
metric graphs of < N, vertices will always be neglected.

(d) Let be given for every p a matrix of symmetric subgraphs 7, %7
inG(A4 p)- Then

(18) XD 2 T,,,cs".
p T ] M

Indeed, ife.g.x€ Ty, andy € T, | and (x,y) ¢ §", then
N1=N0! S a(X) S a(TLl'l) ’
contradicting (16™) if N, is large enough what can be assumed.

If now we omit T,,;, foreveryp=1,..,dandi=1,..,N, /Up ,=
v(T),,;;)), then we obtain a graph G"~V19 such that
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§" € D(G"9M) .

Our main purpose is to prove that G"~9M is also an extremal graph.
Because of Definition 1.5(iii) it is an A-graph and it does not contain
sample graphs. Therefore, the fact that it is an extremal graph or not
depends only on the number of its edges. In order to characterize
e(G"*"W 1), we introduce a new function

o(T, ,1,1) —5(Tp,1,j) _ Z; ap “3,,
W7 i) ? vy, '

(19) B = 2
14

(Here we have to suppose that the family T}, ; ; is fixed!) Now

(20) e(S")—e(G"N1d) =
=e(Kg(Ny, ooy N D)+ (1—dNy) (d=1) N, +B(SMN; .

To prove (20), observe that if a, = ﬁp = 0 for each p, then the first term
is the number of edges both endpoints of which were omitted, the sec-
ond term is the number of edges just one endpoint of which was omit-
ted. In the other cases ®(S") is just the *““correction”.

(e) First we need a definition.

Definition 1.7*, Let G" be a given graph and T, ; be symmetric sub-
graphs of it whenj =1, ..., p for every fixed p. Let v(TpJ) <N, and
X,Z;T,; S G". Let us symmetrize m N, new vertices to Ty ; and then
mN, new vertices to T, ; and so on. The obtained graph of n+dmN;
vertices will be denoted by D™ (G"). Clearly, the operator D*™ is a
very special case of D™.

Without loss of generality we may restrict our consideration to the
case, when an N, is given and n = N, (mod N, ). Let us fix a system Tp,ij
in each considered §”. Thus N{ ®(S") is a well-defined bounded intege’
valued function. (it is bounded because of (16), (16*) and integer
because N, is divisible by v(T,;;).) Let S% be a considered extremal
graph for which it attains its maximum, T ,’,’,, j be the fixed system of

matrices in S*. Now we can apply D*™ to S# and the set T ;". - Let

Z, =:D*'m(sh),
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Further, for the sake of simplicity, if $#*9™N1 js an extremal graph, we
denote it by S, . Since Z,, is an A-graph not containing any L;, we have

21 A(m) =e(S,,)—e(Z,) = 0.
If we could prove that

(22) Am+1)< A@m),
then
(23) A(m+1)=A(m)

would hold for every m large enough.

(f) Now we prove (22). The proof may seem too technical for the
reader; however, it is the special case of a general method used in [12]
(so called “progressive induction’). The advantage of this method is
that one can apply induction even in the cases when the assertion is
not true for small values of m, i.e., we do not have an “‘initial hypothe-

1a??
.

sis
There exists an §m of h+dmN), vertices such that
Spe1 €DES,) .
As we have seen, S’m is an A-graph not containing any L;. Thus

(24) A(m+1)-A(m) = {e(S,41)-e(S )} —{e(Z,, +1)—€(Z )}
S {e(S 41 )@ )1+ {e(Z 41 )-€(Zp)}
=N, {‘I)(Sm +1)-2(Z, 41 )}
= {®(Spy +1)-PESMI N, L 0.

(Here we applied (20) and D(Z,,,) 3 Z,, +; ) Thus we proved (22) and,
consequently, (23) too: for m > my, A(m) is constant. Hence in (24),
we have equality everywhere. Therefore S‘m is an extremal graph. Thus
we proved that if m is large enough, every extremal graph S,, ., can be
obtained from an extremal graph S,, by applying D: S,, ., € D(S,,).

Clearly, this is one half of Theorem 3. The other half is that if we
apply D to an extremal graph, the obtained graph is always extremal
(m > my !).
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Since we have equality in (24) everywhere,

i.e., ®(S,,) is a constant if m > mg. Let S, 41 = D(S,, ). It does not con-
tain any sample graph and is an A-graph. Further,

e(S:n +1 )—e(Sm +1 )= {e(S;n +1 )“e(Sm )}"' {e(Sm +1 )—e(S‘m )}
=N, (®(S,,)—2S,,)=0.

Thus Sy, ., is really an extremal graph.

4. Proofs of Theorems 1.2

Let us notice that Theorem 1 is already proved: using the notations
of the proof above, we have

Sh+mdN: e p™ (S") C G(h+mdN,, h, d) .

Here & depends also on N,, but since it is enough to consider a finite
number of possible choices for N,, there exist an r majorant for all of
them. Now G(n, r, d) contains at least one extremal graph for every n
large enough.

To prove Theorem 2 let us consider the graphs U” and V* and let
us fix the systems T, ; C U* and Z,,C V", so that D'™ could be ap-
plied to them. Fxrst we prove that 1f for infinitely many m,

25  DmMUM=D'm(VM),
then U* ~ V", Trivially, (25) implies that by an appropriate indexing,
one may achieve that T, ; > Z,, ;. Now we choose a maximal system

of symmetric subgraphs T, ; of D*™ (U") such that

X :2, T,; S D™ (U")

(where the symmetry is required for every fixed p and the maximality
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means the maximality of £ Zv(T, ». ). Clearly, if m is large enough, then
this system is just the system of subgraphs symmetric to one of Tpll,
p =1, ...,d. Omitting for every p exactly mN, /v(Tp,l) symmetric sub-
graphs from these ones, we obtain always the same graph up to an iso-
morphism and consequently, just U" . Therefore we can describe how
to reconstruct from D*™ (U") the original graph U" in terms, invariant
of isomorphisms: maximal set of symmetric subgraphs, omitting a given
number of these subgraphs. Therefore the isomorphism of graphs
D*m (U") and D*m (V") implies U" ~ V%,

Now we can prove Theorem 2 very easily:
Let U" and V* be given extremal graphs, 4 be large enough and let us
consider D*™ (U") and D*™ (V"). They are extremal graphs and either
they are not isomorphic for all sufficiently large m, then there is nothing
to prove (ry = h), or they are, and then U" and V* are also isomorphic
graphs. (Notice that D*m (U*), D*m (V%) € G(n, h,d)!)

Appendix

(A) The outline of the proof of Lemma 3.1.1

Let G" be a graph satisfying the conditions of Lemma 3.1.1. Theorem
B is applicable to G" for every € > 0, thus G can be obtained from
a product X G"'? by omitting o(n?) edges. Here

22 e(G"P) = o(n?), In, —n/d) = o(n) .

Let
A,={x:x€ G, a(x) < €2n, B(x) < en} ,
B, ={x:x€G"?,a(x)>en},
Cp={x:x€G"?,a(x) < e*n,Bx) 2 en} .
Since

o(n?) = e(G"P)=14 erG>"P alx) 2 4 xgp a(x)2 1B, len ,
thus |B, | = o(n). Similarly, B(G"P) = o(n?) implies that |C, | = o(n).
Therefore the proof of [B,| = 0.(1) (see [12, p.316]) remains valid
without any essential change. Thus |B,,| = O,(1). Now, if € < %, then
Cp contains only vertices of valence < (1—(1/d)—} €)n. This will imply
ICp| = O (1). Indeed, if Xy, ..., x, are in Cp, let G"~% = G" —{xy, ..., X, }.
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Now
(A1) e(G"?) 2 e(G")—n(1—(1/d)—} e vn+().
If we knew
(A2) S0 Lyss L) ~f(1=V; Ly, ooy Ly) = vn(1~(1/d) + o(1))
for v < n!/4 then we should have

(A3) e(G" )2 f(n;Ly,..., Ly)—Kn—nv(1-(1/d)-} e)+()
> f(n—v;Ly,...,L\)—o(n)+(Gev—-K)n. |

On the other hand ,

(A4) e(G" V)< f(n—v;L,,....L,).

Thus Qev—K)n = O(n), i.e. v = 0(1). This proves that
ICp1 =0(1).

Let U C G(A,) be a subgraph of < 7 vertices. We can determine recur-
sively 7 vertices in each G(A,) (j # p), determining a

UX Ky (,..TV C G",

Therefore G(A p) does not contain T. One can easily prove that f(n; T) =
O(n). Therefore

e(G"P) < e(G(A4,)) + O(n) = O(n) .

This means that (supposing (A2)) we have proved already (iv), (ii) and
(v). In order to prove (i) we choose a K* such that e(G(4 pN<K *n (for
every p) and suppose that at least 2Kn + K* dn edges were omitted from
the product X G"P. Then

fin;Ly, ..., L) - Kn< e(G") S e(Ky(ny, ..., nd))+K*dn—K*dn—2K"
=fn;Ly,.... L) —2Kn.
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This contradiction proves (i). The proof of (iii) is the same asin [12],
(iii) is an immediate consequence of [ 14, Lemma 1]. Therefore the
only thing we have to prove is (A2).

Let now G" be an extremal graph for Ly, ..., L, . There exist in 4,,
Y1,..., ¥, such that

20 a(y;) + BW;) = o(n).

We “quasisymmetrize” v new vertices, i.e. zy, ..., z,, € G" are joined
just to the vertices of N, , sty;. The proof of Lemma 3.4.1 now gives
that the obtained G"*” does not contain any L;. Thus

f(n+v;Ly,..., L) 2e(G"V)>e(G")+vn(1-(1/d) o(1)) +vO(1)
=f(n; Ly, ..., L) +vn(1—(1/d) + o(1)).

This proves (A2).
(B) On the chromatic conditions

First of all, why are the chromatic conditions called so? Because of
the first example after Definition 1.5.

Now we prove that the first and second examples are really chromatic
conditions according to our definition. It is enough to consider only the
second case. (i) is trivial. In order to prove (ii), let us consider a graph
of chromatic number ¢ + u each circuit of which is longer than w. (Ac-
cording to [10] there exist such graphs.) This proves (ii). Now, if G is an
arbitrary graph and Ty, ..., T, are symmetric subgraphs in it and omit-
ting x,,..., x,, from it we obtain a < t-chromatic graph, then we colour
this last graph by ¢—1 colours. If p > u, at least one T; does not con-
tain any x;. Let us colour all the vertices of the other T}’s in the same
way, i.e. let the corresponding vertices have the same colour. This is a
good colouring of the graph G — {x, ..., X, } by £—1 colours. This
proves (iii).

(C) Let S* be a given graph and let the parameters of D be fixed. When
are the graphs D™ (S") extremal graphs for some sample graphs
Ly Ly
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Definition A.1. If for every k omitting any kd N, vertices of D*™(S),
we obtain a graph having at most as many edges as (strictly less edges
than) D*"~%(S) has, then D*™ (S) will be called a (strictly) balanced
regular sequence of graphs.

Theorem A.2. The following assertions are equivalent:

(i) D*™(S) is (strictly) balanced,

(ii) there exist sample graphs L, ..., L, such that if m is large enough,
D*™ (S) is an (is the only) extremal graph for Ly,..., L, for the con-
sidered numbers of vertices.

This theorem shows that our result, formulated in Theorem 1 is the
best possible. The proof will be published elsewhere. (ii) = (i) is trivial.
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