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Abstract

In this paper we consider only graphs without loops and multiple edges. The product of two vertex
disjoint graphs G, and G, is the graph obtained by joining each vertex of G, to each vertex of G,. Given nand
the sample graphs L, . .., L;, we shall consider those graphs on n vertices which contain no L, as a subgraph
and have maximum number of edges under this condition. These graphs will be called extremal graphs for the
L;s.

In many cases the extremal graphs are products of other extremal graphs (for some other families of
sample graphs). The aim of this paper is to investigate, when are the extremal graphs products and when are
not.

Notations

The graphs considered in this paper are undirected, have no loops and no multiple
edges. They will be denoted by capitals, and the superscript will always denote the
number of vertices. Thus G", H", S" will all denote graphs of n vertices.

The number of vertices, edges, and the chromatic number of a graph G will be
denoted by (G), & G) and x(G), respectively. If x is a vertex of G, st(x) denotes the star of
x, 1.e. the set of vertices joined to it; d(x) will denote the degree of x.

To simplify the definitions of graphs we shall use the following operations.

(a)G=) G, ifthe G;'s are spanned subgraphs of G the pairwise disjoint vertex sets of
which cover G and no vertices belonging to different G.’s are joined. (SUM).

(b) G= X G, if the G;'s are spanned subgraphs of G the pairwise disjoint vertex sets
of which cover G and vertices belonging to different G;s are always joined.
(PRODUCT).

(¢)If G, is a subgraph of G or a set of vertices and edges of it, then G — G, is the graph
resulting by deleting all the vertices, edges, and also the vertices incident with some
deleted edges of G, from G.

K{ry, ..., ry denotes the complete d-partite graph with r, vertices in its ith class.
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Ihtroduction

A classical result of P. TurAN[6, 7] asserts that if p and n are given integers and S"is a
graph not containing K, as a subgraph and having maximum number of edges under
this condition, then §"=K,_,(n,, ...,n,_;)where ny, ...,n,_ is the most uniform
partition of n into p—1 summands:

n n
n,-=|:—:| or m= [—}+1, and Hit cootn, o =
p—1 p—1

To generalize the above theorem one can ask the following general problems.

Problem 1. Let & be a given finite or infinite family of graphs and let .o/(n, %) denote
the class of graphs on n vertices not containing any L € ¢ as a subgraph. What is the
maximum number of edges a graph G" € .#(n, £) can have.

(The graphs of Z will be called sample graphs, the graphs attaining the maximum
will be called extremal graphs, the maximum will be denoted by ex(n, %) and the class
of extremal graphs will be denoted by EX(n, £).)

Problem 2. Describe the structure of the extremal graphs.

Some general results obtained by P. Erpos [ 1, 2] and the author [4] independently,
give a fairly good description of the extremal graphs. Thus e.g. we have proved that

Theorem A. For a given & let
(1) d=min {y(L):LeZ}—1.

There exists a ¢ >0 such that if S" is an extremal graph for ¥, then S" can be obtained
from a Kfn,, ..., ng) by deleting from and adding to it O(n*~°) edges. Further,

n
T — 7 L0 )i=1,2 .. ..d
Corollary. Under the conditions of Theorem A S" can be obtained from some
appropriate graphs Gy, . .., G, by deleting O(n* ~*) edges from X G;.
i<d
Remark. 1. The basic content of Theorem A is that the extremal graphs depend only

very loosely on ¢, the minimum chromatic number determines their structure up to
O(n® ) edges.

n
Problem 3. Under which condition is it true that "= X G" where n;= y +o(n)?

i<d

Originally Erpos and I thought that whenever . is finite and n is sufficiently large,
all the extremal graphs for % are products of graphs of almost equal size. Later we
found some counter examples. However, we think that the following conjecture holds.
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Conjecture 1. Let L be a d + 1-chromatic graph which cannot be coloured by d + 1
colours “1”, “2”, ..., “d+1” so that the subgraph L, , spanned by the vertices of
colours “1” and “2” is a tree or a forest. Then there exists an n, such that for any n > n, if

; n
S" is an extremal graph for L, thén S"= X G" where n;= y + o(n).
i<d
One can generalize Conjecture 1 to finite families of sample graphs as follows.

Definition 1. Let % be a given family of sample graphs. Let d be defined by (1). We
say that M belongs to the decomposition family .# of . if there exists an Le % and an
integer r for which

@ LeMxK, (r. .0

Conjecture 2: Let % be a finite family of graphs and d be defined by (1). If the
decomposition family .# of £ contains no trees or forests, then for any sufficiently
large n each extremal graph S§" is a product: for some fixed integer ¢

tn
S"=S"x 8" where n,=g+o(n), ny=n—n;.

Remark 2 One can ask, why to exclude the trees and forests in Conjectures 1 and 2.
To motivate this we remark that

(a) as we shall see (Proposition 2 or Theorem 1 + Remark 3), Conjecture 2 does not
hold if the decomposition is allowed to contain a path. This is, why we exclude the trees
in Conjecture 2. :

(b) It is known [2, 4], that the extremal graph S" can be obtained from a

Kt ) (where n= 3 + o(n)), by changing only O(n) edges in it if and only if the

decomposition contains a tree or a forest: in all the other cases we must alter at least
cn' *® edges in Kyn,, ..., ny), where a>0 is a constant. There is a trivial, but very
important difference between f(n)=n and f(n)=n'"*“, namely, the latter one is strictly
convex. Of course, this is only a heuristic motivation given in a very compact form.

It can be shown that if # contains more than one graph, the (stronger) assertion of
Conjecture 1 does not necessarily hold.

Our assertions above are all trivial for d = 1. Hence we shall assume that d =2. (The
case d =1 will be called degenerate.) The main idea of Conjectures 1 and 2 is to reduce
the general case to the degenerate case as follows.

Proposition 1. Let & be afinite family of sample graphs and k=max{v(L):L € Z}. Let
d be defined by (1) and M be the decomposition family of L. If S" is an extremal graph for
£ and

S"= X G" where n;=k,
i<d

then there exist d families of sample graphs, M ,, .. ., M, for which
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(@) max {v(M):M e 4 | k.
(b) M = .#; and

min {y(M):Me /4 ;}=2.

(c) If H, containsno Me M, (i=1, ..., d), then X H, contains no Le &.
- i<d

(d) G" is an extremal graph for #; (i=1, ..., d).

Proof. Let .#; be the family of graphs of at most k vertices not contained in G™.
Now (a) and (c)—(d) are trivial. If M is in the decomposition of .# but M ¢ .#;, then
there exists an LEM xK,_,(k, ...,k) and by the definition of .#; M <G". Hence
MxK, ik, ....,k)€G"x X GY=§" thatis, L=§", which is a contradiction. This

i#i
proves (b), since

min {y(M):M e M} =2

is obvious: we colour an appropriate L € & by d+ 1 colours and denote by L, , the
subgraph spanned by the first two colours. Clearly, L, , is bipartite and belongs to .#.
To prove (c) observe that, since H; contains no M € .#, each subgraph of H; of at most
k vertices is also a subgraph of G™. Thus each subgraph of X H;of at most k vertices is

i=d

also a subgraph of "= X G™ Thus it cannot belong to .#. This completes the proof.

i<d

Though the proof of Proposition 1 was fairly simple and straightforward, the
proposition itself is worth some further explanation. Assume that Conjecture 1 holds.
Then all the extremal problems satisfying the condition of Conjecture 1 can be reduced
to degenerate extremal graph problems in the following sense:

Given a finite family % of sample graphs, the families .#, . . ., .#, can be defined
only in finitely many ways so that (a), (b) and (c) hold. Assume that we can solve the ex-
tremal problems corresponding to the degenerate families 4, ..., #, If H" ..., H™
are the corresponding extremal graphs, let S"= X H". Clearly,

(3) oS")=e(Kdn,, ..., ”d)H‘Z ex(n, M)=f(ny, ... .ng; My, ..., Ma).

At least in theory, we may find foreachnand #,, ..., #,the partitionn=n, + ... +n,
yielding the maximum in (3). Since there are only finitely many possible candidates
for #,, ..., .#;, we may find the one giving the highest maximum, and the
corresponding S" will be the extremal graph. In this sense we reduced the problem of %
to the degenerate problems of .#,, ...., #,.

This is, why Proposition 1 is important in theory. Another use of it is that in many
cases we can guess the possible extremal graphs by assuming Conjecture 1, and finding
the potentially possible sets .#, . .., .# 4 then the corresponding extremal graphs for
% .Knowing, which are the extremal graphs if Conjecture holds we can often prove that
they are really extremal graphs, not using Conjecture 1 at all.
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One can ask, whether Proposition 1 holds even if the decomposition family .#
contains a tree or a forest. The answer is that sometimes yes and sometimes not.

Proposition 2. There exists a finite family ¥ of sample graphs and an n,, such that if
n>ny, then no extremal graph S" (for ¥) can be decomposed into the product of d
nonempty graphs, where d is defined by (1).

One way to prove Proposition 2 would be to show that for

$*={Kk(l,3, 3), K3 X I_(3., (K2+K2)XK3, K4)I

Proposition 2 holds:
Let $" be obtained from K,(n,, n,), where n; = B] and n, =n—n,, by adding two

incident edges (x, y) and (y, z) and two further incident edges (x', y’) and (y’, z') to it and
deleting (', y), where x, y, z belong to the first class of K,(n,, n,) and x’, y’, z’ to the other
one. One can show that if n is sufficiently large, then this 8" is the only extremal graph for
#* and 8" cannot be decomposed into the product of two nonempty graphs. However,
Proposition 2 will be derived as a consequence of a much deeper theorem, which could
be called either an “inverse extremal graph theorem” or a compactness theorem.

An inverse extremal graph theorem

The aim of the next definition is to define a sequence of graphs which in some sense
are very much alike and differ from each other only in size.

Definition 2. Let the graphs A4,, ..., A;and D be fixed and let also fix a subset B of
n—uv(D)

the pairs (x, y):xe D, y e U A;. Let us take an n for which m; = i are all integers,
i<d wnA;
take m; vertex disjoint copies of A;, denoted by A4,; and fix the isomorphisms

F A~ A Let

.

ZH_HD)_:: X z A’J

Letusjoinanx e Dtoa ye A,;iff (x, F, (y)) belongs to B. Thus we obtain a graph §". A
sequence

St i

will be called a g-sequence if each $™ is obtained from the same D, A, ..., A;and Bin
the way described above. Sometimes we shall call D the head and Z"~"? the tail of the
graph, respectively, though they are not uniquely defined by {S™].

43
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Definition 3. Let {S™] be a g-sequence, obtained from A, ..., A;, D and B. If for

every g-sequence { T™} obtained from A\ = 4,, ..., A,< A,;, D'< S" (for some fixed h)
and BB,
) . oSz e(T™) if me=m,, k>k,

then {S™] will be called dense. If we have strict inequality in (4), then {S™} will be called
strictly dense.

Theorem 1. The following two assertions are equivalent:

(i) {Smthkm is a (strictly) dense g-sequence.

(i) There exists a finite ¥ such that {S"**™) is (the only) extremal graph for ¥ and
n=ny+km, (n>n,).

Remark 3. One can easily find strictly dense g-sequences which are not products.
Such a strictly dense sequence is e.g. 3" defined after Proposition 2. By Theorem 1 these
are sequences of extremal graphs. Thus Proposition 2 follows from Theorem 1. (To be
quite precise, S" is a g-sequence if n is even and another g-sequence if n is odd. Thus
Theorem 1 yields two families %, and % 4and if ¥ =% ., U.Z 44 then obviously
S" is the only extremal graph for % if n is sufficiently large.)

Remark 4. In [5] we proved that if & is a finite family of sample graphs and the
decomposition family of & contains a path or a subgraph of a path, then there exists an
integer ¢ such that for every h there is a strictly dense g-sequence {S*:n=h (mod t)} of
extremal graphs for Z if n is large enough. In other words, in every residue class mod ¢
there is a sequence of extremal graphs of similar structure. Theorem 1 shows that this
(main) theorem of [ 5] is sharp: each strictly dense g-sequence is an extremal sequence
for some finite . In this sense Theorem 1 is an inverse extremal graph theorem. It is also
an inverse extremal graph theorem in the following sense : we first fix the extremdl graphs
and then find the corresponding #.

Remark 5. One part of Theorem 1, namely (ii)— (i) is trivial: let us fix an & satisfying
(i). If {T™} is a g-sequence obtained from a family A\ < 4,, ..., A; = A,;, D'SS™ and
B' < B, then each T™ is a subgraph of an §™ Thus T™ contains no L € #. Further, if
n,=m,, then(4) holds (with strict inequality) since S" is (the only) extremal graph for .
Q.E.D.

Before turning to the proof of Theorem 1 we give some examples illustrating the
notion of dense g-sequences.

Example 1. Erpos and Rényi called a graph A4 balanced if for every subgraph A’

eoA) eA)
= X
v(A) v(A)
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Let A,, ..., A, be balanced and D arbitrary. If B is the whole direct product
{(x,y):xeD, ye | A4}, then the corresponding g-sequence is strictly dense. (A tree, a

i=d

complete graph, a complete bipartite graph, a cycle are all balanced. A balanced graph
is always connected.)

Example2.Let A,, ..., A be given graphs and A, be strictly unbalanced in the sense
that it has a subgraph A’ for which

e(A):v(A,)<e(A'):v(A).

Let D be arbitrary and B be again the whole direct product. Then the corresponding
g-sequence is not dense.

Example 3. Letd=2. A, = A, = C* be a four-cycle and Z** be obtained by taking the
corresponding graph G** x G**, where G** is the union of k disjoint C*. Let D= |xj.
The corresponding g-sequence S®* * ! is not dense if x is joined to one vertex of each C*:
we obtain a better sequence T8 * ! by omitting x and 3 further points from S *°. If x is
joined to 3 vertices of each C*, then the obtained S** ™' is a strictly dense g-sequence.

Proof of Theorem 1

Let us fix the sequence S™. A graph G will be called “small™ if it is contained in an S™.
By Remark 5 it is enough to prove (i)—(ii). We shall prove that if r is sufficiently large
and

& =L L isnot “small”, nE)=7r; .

then S™ is (the only) extremal graph for &, (for n=n,).
We need the following two lemmas.

Lemma 1. Let {S™) be a dense g-sequence. There exists an N, such that if n,> N, and
G™ is “small”, then

(5) AG™=e(S™).

Further, if {S™) is strictly dense and the equality holds in (5), then G™=S".

Lemma 2. Given a dense g-sequence {S™), there exist two integers R and N, and a
positive constant ¢ such thatif n> N, , each vertex of G" has valence > (1 e -—c‘)n and

each subgraph G® of G" is “small”, then G" is also “small”.

43+
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The proofs of these lemmas will be given in the next paragraph. Here we show, how
to complete the proof of Theorem 1 assuming the lemmas.

First we remark that if R is sufficiently large, then ¥, contains an L with y(L)=
=d+1. Indeed, if e.g. b=v(D)+1(A,)+ ... +v(A4}) then K, ., (2bd, ..., 2bd) ¢S™ is
trivial, thus K,,, (2bd, ..., 2bd)e ¥ for R=4bd*. On the other hand, each
K,(p, ...,p)ES™if k=k,(d, p). Hence ¥ contains no <d-chromatic graphs:

min {y(L):L e L =d+1.

Hence, according to the main results of [ 1, 2] and [4], for R =4bd* if H" is extremal for
ZFr, then

1 1
e{H"):eX (n, ,,g)R)z 5(1 == (_1+O(l))n2

. 1
and each vertex of H" is of valence = (1 - 3> n—o(n). Now we may apply Lemma 2 to
H": there exist an R and an N, further a ¢>0, such that if N, <n and the minimum

1
degree of G" exceeds (l o c) nand each subgraph GR< G"is “small”, then G" is also
¢

“small”. Now we fix an R=max [R, 4bd?} and get that if n> N,, then the extremal
graph H" (for ZR)

(a) contains no prohibited subgraphs L € ¥, hence each GR< H" is “small”, and
therefore

(b) H" itself is also “small”.

Now, by Lemma 1, e(H™) < ¢(S™). On the other hand, S™ contains no prohibited
subgraphs L € %, by the definition of ¥, and H™ is extremal, thus e(H™) = e(S™), that
is, S™ and H™ have the same number of edges and both are extremal for Z. If, in
addition, {S™] is strictly dense, then, by Lemma 1, $™= H". This completes the proof.

Proofs of the Lemmas

Proof of Lemma 1. Let G*< S™. To prove that e(G™) < e(S™) let us define G™ as a
“small” graph with the maximum number of edges on n, vertices. It is enough to prove
that

(6) e(G™) < e(S™)

d x
if G™is “small”. Let S* be defined as the infinite graph obtained from Z* =: X Y A4,
i=1 4=y
and D in the way described in Definition 1. Since a graph is “small” iff it is a subg;aph of
S*, G™is the spanned subgraph of S* of n, vertices with the maximum number ofcdges

Let us abreviate n, by n, and denote by v, the number of vertices of G” in Y A =: =
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Fixing these numbers v; we also fix the number of edges joining different A’s. Let ;1‘-‘_!.
denote the subgraph of G" spanned by the vertices belonging to A4;,, too. We may
assume that G" is a spanned subgraph of S*, therefore

(7) AG)=e(Ky(vy, .- vl + Y. Y. clU)- (e(U)+ey),
il O

where ¢(U) denotes the number of 4 .jS isomorphic to U and in the same position as U,
if U is a spanned subgraph of A;.(Here the same position means that the mapping F, ; of
Definition 1 maps ﬁ,-‘_;-onto U.) Further, ¢, denotes the number of edges joining /71,-__;-‘[0 D
(or, in other words, the number of pairs (x, y) in B for which y e U< 4;). The sum is
taken for all the spanned subgraphs U of A4;.

Let b=uv(A,)+v(A4,)+ ... +1(A,)+v(D). We assert that e(U) + ¢, is the same for all
the graphs U such that c(U)>b!if i is fixed. Indeed, if e(U) + e, <e(U’)+ e and c¢(U),
c{U")=b!, then we may replace b!/v(U) copies of U by b!/uo(U’) copies of U’, thus, by (7),
increasing ¢(G"). This contradicts the maximality of e(G"). This very “replacement”
argument also yields that we may assume that ¢,(U)< b! for every U but one for each i:
it may happen that this does not hold for the original G”, but then it can be replaced
by another one, G" for which this holds. After this replacement {G"} is already a
g-sequence, and therefore (since S™ is a dense sequence) for G" = G"™

(8) e(G™)<e(Gm)<e(S™),

what was to be proved. The second part of Theorem 1 concerning the strictly dense
sequences can easily be proved: we have to show that if (G™)=e(S™), then G™ = S™ for
k> kg . Indeed, in this case, by (8) G™= G" can be assumed. If there exists a U # A for
which ¢(U)=b!, then the above replacement technique yields a g-sequence {G"!
different from [S™], since the sum of the block-sizes is smaller) and this contradicts
e(G™)=eS™) or that {S™] is strictly dense. This shows that c{U)<b! if U # A;, that is,
G™=G™itselfis a g-sequence. Therefore, by the definition of strict density, G™ = S™ if k
is sufficiently large.

Proof of Lemma 2. The basic idea of the proof is to partition first the vertices of G"
into d + 1 classes .« , ..., .o, and .« , then show that the subgraph of G" spanned by
o/ (i=1, ..., d) is the sum of components of at most b=uv(A4,)+ ...+ v(A;)+v(D)
vertices. If we take all the occurring components as many times as they occur in case if
they occur at most 2bd! times, otherwise we take only 2bd! copies and we take ./, for
which |.o/,|=0(1), the if the subgraph G® spanned by these O(1) vertices is “small”,
then the original graph G" 1s “small” as well. In details:

First we fix the constants ¢, M and R as follows: r=(3b)",

b
M=1000-, R=max {4bd’g, 2%, 30b°d]

9 e
®) “= 10042 :



678 _ M. SiMoNOVITS

where g, denotes the number of graphs on (3b)"" vertices. By the Erdds—Stone theorem
[3] G" contains a K{M, ..., M), if n is large enough. Let the classes of this
KiyM, ...,M)be C,, ..., C;. Now we partition the vertices of G"— K,(M, ..., M)=
=G""“M into the following d + 2 classes: P; (i=1, ..., d) contains those vertices which

e 1
are joined to each C; (j#1) by at least M (1 - Ef}) edges and by at most 3b— 1 edges to

C;. E is the class of vertices joined to each C; (i=j included) by at least 3b edges. V
contains the rest.

We assert that |[E[|<b. Clearly, if K, (1, 3b, ..., 3b)= S™, then its single vertex of
the first class belongs to the “head”, of S™. Therefore, if L can be covered with b+ 1
copies of K, (1, 3b, . . ., 3b) with different peaks, then L is a prohibited subgraph. On
the other hand, for each x € E wecanfind a K, (1, 3b, .. ., 3b) with the first class {x],
thus |[E| Sv(D) < b. A similar argument shows that if O, = P, is the set of vertices joined to
at least 3b vertices of P,uC;, then | JQ,|<b.

Next we show that

(10) |VI<Tbcd - n.

Indeed, if T denotes the number of edges joining KM, ..., M) to G" ™ then on the
one hand

1 _
(th ngM(l— : —c) n—(dM)?

¢

1
since each x e K(M, ..., M) has valence ;(l s —c)n. On the other hand,

M
(12) T=<(n—dM)-((d—1)M +3b)—|V| 6b +bM

since the vertices of G" “M are generally joined by at most (d —1)M + 3b edges to
K{M, ..., M), however, in case, when x € E, it may be joined to KM, ..., M) by dM
M
edges and if x € V, then it is joined to KM, ..., M) by less than (d —1)M +3b— b
edges. (10) follows easily from (11), (12) and (9).
Now that (10) is established, one can easily show that the classes P; are
approximately of the same size:
(a) Let xe P,—Q,;. Since x is joined to <3b vertices of its own class P; and

d(x)= (1 — 1 —c) n, thus
d

1
(13) |Pl=n—d(x)+3b< (E +c*)n+3b.
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n :
This means that none of the classes P; can be much larger than the average 5 But this
(¢

implies that none of them can be much smaller:

1
IP;|_>_=n—(d—l)(~{ +(')n—3(d—])b—[l/1g
¢
(14)
n e
> - —((d=1)+8bd)cn= - —10bcd - n.
d d

Let us subdivide the class V into d+ 1 subclasses now:

— V, contains the vertices of V joined to at least 3b vertices of each P,—0Q;;
— Vi is the set of vertices of V joined to at most 3b— I vertices of PO =1 el

By the valency condition each x € V; is joined to P;—Q; (j i) by at least

(15) '-; _ 10bed - n—(10bedsinir ent 3b)">;g = bedn
[

: . : h ; ; :
edges, since it misses at least J—l(}bc-d-n——Bb vertices of P,—Q; and 1t misses

n
altogether n —d(x) < y + c¢n vertices. Thus the classes V;(i=0,1, .. ., d) are well defined.
«

Let ./, =: P,uV,uC,and W, be the set of vertices of .« joined to at least 3b vertices of
the same .Z,. A slight modification of the above argument shows that ) [W|<b: we

replace K, ; 1,3b, . .., 3b) by L defined asfollows:forj=1,2, ...,3b,p=1,2, ...,d;
we fix the vertices y,; joined to a vertex x (which will be called the “peak”, and y, ;is
joined to 3b vertices of the jth class of a fixed K, (10b, . . ., 10b)for every j # p. If this Lis
a subgraph of an S™, then we omit the head, D from S™ and obtain, that the “tail” §™—D
contains L — D. Since 1(D)< b, one can easily see, that the “peak” x was also deleted:

x € D.Thus ) |W|<uv(D)<b, since each x € W;is the “peak” ofan L= G". Let now L* be

defined as follows: we take a K, (3b, ..., 3b) and the vertices y,; (p=1, 2, ..., d,
j=1,2, ...,3b)are joined to all the vertices of K;(3b, ..., 3b) except to the vertices of
the pth class. Further, we take b* + 1 vertices x; forming a path (x;x; ... Xp ;) and join
each x;toeach y, ;butfora p=p,. One can easily check that deleting b vertices of L* we
get an L** not occurring in the “tail” Z"~*®=8"—D. If on the other hand </,
contained a path of length b2 + 2b, then G" contained an L*. By v(L*) < R this L* would
be “small”, that is a subgraph of an S™ and therefore L* —(at most b vertices)=
= L** = Z"~"Pwould yield a contradiction, proving that .+, contains no path of b* + 1
vertices. Hence each connected component of the graph spanned by < ,— W, has at
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most r=(3b)"" vertices. For a fixed p let us call two components equivalent iff they are
isomorphic and connected to the vertices of EOW,u...UW, in the same way. The
number of nonequivalent components is bounded by g, - 22"

Let us take the subgraph of G" defined as follows: we select all the vertices of
EuWiu...UW,and for each p=1, ..., d from each equivalence class of components
(in o/ ,— W, we take 2bd copies of components if there exist that many members in the
equivalence class, otherwise we take all of them, i.e. less than 2bd copies. These vertices
define a graph GR € G" for some R <R, therefore GRis “small”. We embed this GRin S*.
This embedding yields automatically an embedding of G" into S$* : if U is a component
of o7, occurring in G"— G, then it has multiplicity =2bd, therefore it occurs at least
2bd times in GRS S*. Hence it occurs at least b times in some class of the “tail” Z* of
S7*. Thus we may replace this b copies by an arbitrary number of copies from this class
of the “tail™. (If U and U’ are two such components, joined to each other by at least an
edge, then in the embedding of GRin $* U and U’ were put into different classes of the
“tail”, otherwise a class of the tail contained a K,. Thus the increasing of the multiplic-
ities of different connected components do not disturb each other!) Thus G" is “small”
as well. This proves Lemma 2.
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