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1. Introduction

Many problems in graph theory involve optimization, and therefore could be
called “extremal problems”. Here we take a more restricted meaning of the
term, concentrating on what can be called “Turan-type extremal problems”.
In such a problem, a graph of given order has a certain type of subgraph
prohibited, and one is to determine the maximum number of edges possible
in the graph. Turan’s original problem asked for the maximum number of
edges in any graph of order n which does not contain the complete graph K.

How Turan arrived at this problem is quite interesting. In 1935 Erdos and
Szekeres rediscovered and proved Ramsey’s theorem, after which Turan
turned the problem around and looked at it in a different way. In Ramsey’s
problem one assumes that a graph does not contain ¢ independent vertices
and tries to ensure that it contains K,; in Turan’s problem one assumes that a
graph has a certain number of edges and tries to ensure the same result. We
shall see that, whereas Ramsey’s problem remains essentially unsolved,
Turén’s problem has a nice solution. (For a survey of Ramsey graph theory,
see ST1, Chapter 13.)
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Ideally, for a given class of prohibited graphs, one can determine the
extremal graphs—that is, those graphs which have the maximum number of
edges but do not contain a prohibited graph, as in the case of Turan’s result.
This is frequently too difficult, and so one tries to find just the maximum
number of edges the graph can have, or even just bounds for this number.
However, there is considerably more to extremal graph theory than merely
results of this nature, but in a survey such as this a great deal of selection must
take place.

In Section 2 we present Turan’s theorem and give two proofs of it, along
with some generalizations, and then in Section 3 we move on to the general
problem.

Extremal graph problems behave differently when the minimum chromatic
number of the forbidden graphs is 2 and when it is larger. Problems of the
former type are called degenerate, whereas those of the latter type are called
non-degenerate. Section 4 gives a few theorems concerning non-degenerate
problems in which the extremal graphs can be fairly well described. Section 5
deals with “‘perturbation problems” such as chromatic perturbation,
minimum valency perturbation, and Ramsey perturbation. In Section 6, we
consider degenerate extremal problems and their connection with non-
degenerate problems; in fact, many non-degenerate problems can be reduced
to degenerate ones.

The lower bounds of degenerate extremal graph problems are often
obtained by finite geometrical constructions, as described in Section 7.
Section 8 deals with the use of random graphs as a non-constructive method
of obtaining lower bounds, whereas Section 9 treats some hypergraph
problems.

If a graph has more edges than an extremal graph, for a given prohibited
family, then it must clearly contain a prohibited subgraph. It is an interesting
phenomenon that it generally contains many of them; Section 10 discusses
these “supersaturated graphs”. Section 11 deals with digraph extremal
problems, and the last section is on some applications in analysis and
geometry.

In selecting these topics, we have used several criteria for the inclusion of
results. Some were chosen on the basis of being especially interesting or of
being typical of a particular area of extremal graph theory; others, such as the
reduction theorem (Section 6), Szemerédi’s uniformization lemma (Section
8), and Erdos’ hypergraph lemma (Section 9), were chosen because of their
usefulness in establishing other results. We have also tried to indicate various
techniques—for example, ‘“‘chopping off a nice subgraph”, symmetrization,
progressive induction, the method of finite geometries, and the probabilistic
method. The proofs which we have included were also chosen because they
indicate basic ideas or illustrate techniques. For lack of space, many
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interesting results (and proofs) could not be included ; for a fuller treatment of
some areas, the reader is referred to Erdos’ Selected Works [39], Bollobas’
excellent book [8], and Simonovits [82].

Before proceeding with our survey, we present some of the notation and
terminology to be used in this chapter. In a few instances, this differs from
usage in other chapters.

Generally, our graphs are simple and undirected, but on occasion we
consider variations such as multigraphs, hypergraphs and digraphs. The
number of vertices in a graph G may be indicated by |V (G)|, or given in a
superscript such as G" (denoting an arbitrary graph of order n). However, for
well-defined graphs such as K, the order still appears as a subscript. The
number of edges in G is denoted by e(G ), and for disjoint subsets X and Y of
the vertex-set, e(X, Y) denotes the number of edges joining X and Y. We
further say that X and Y are completely joined if every vertex of X is adjacent
to every vertex of Y.

If G and H are disjoint graphs, then G + H denotes thelr disjoint union,
whereas G x H denotes the graph obtained by completely joining (G ) and
V(H). (Note that this notation in particular differs from that of other
authors.)

The Turan graph T, , is defined to be the complete d-partite graph K, ,,
of order n in which the partite sets are as nearly equal as poss1b1e—that xs
Zn, = n,and |n; — (n/d)| < 1 (see Fig. 1). We note that, among all d-colorable
graphs of order n, 7, ; has the maximum number of edges.

(o) (O
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o—=—0
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Fig. 1

2. Turan’s Theorem

As we mentioned in the Introduction, from a consideration of Ramsey’s
problem Turan arrived at the following question:

Question 2.1. What is the maximum number of edges a graph G" can have
without containing the complete graph K ,?

His answer was published in 1941 [90] (see also [91]):
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Theorem 2.1 (Turan’s Theorem). Among the graphs of order n which do not
contain the complete graph K ,, there exists exactly one with the maximum

number of edges—namely, T, ,_ .

In addition to proving this result, Turan’s renowned paper established
some other theorems and posed other questions. Since the other results are
closer to Ramsey-type theorems than to our topic, we omit them, but we note
that the questions he posed include his famous hypergraph problem, which is
still unsolved and is one of the most intriguing problems in this field (see
Section 9). Another problem posed by Turan (in a letter to Erdos) was the
version of his problem for paths rather than complete graphs. Soon after this,
numerous results on problems of a similar nature were found, and a new
branch of graph theory began to flourish. From a historical point of view, it is
interesting to speculate on why Turan’s paper stimulated these deeper
investigations, even though the special case for K; had been published in
1907 and Erdos [28] had considered the question for the circuit graph C, in
connection with a problem in number theory.

Turan’s original proof, which uses a method we call chopping off a nice
subgraph, 1s quite straightforward:

Sketch of Turan’s proof. The proof uses induction on n. Assume that G"is a
graph containing no complete graph K,, and assume, without loss of
generality, that G" hds a subgraph H=K,_,. Let e, e,, e; denote the
numbers of edges in H, edges in G" — V(H ), and edges joining vertices in H
to vertices not in H, respectively, so that e(G") = e, + e, + e;. Now ¢, =
(?31), and by the induction hypothesis, e, < e(7,-,+,, ,—;). Furthermore,
since G" contains no K, each vertex not in H is joined to at most p — 1
vertices of H, and hence e; < (p — 2)(n — p + 1) (see Fig. 2). These results
imply that e(G") < e(T,, ,—,).

All that remains is to show that if equality holds, then G" =T, ,_;.
Clearly, in this case, each vertex not in H is joined to exactly p — 2 vertices of
H. The vertices of G (including those of H) can thus be partitioned into p — 1
classes according to which p — 2 vertices of H they are adjacent to. One can
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easily see that the vertices in each class are independent, so that G" is the
complete (p — 1)-partite graph defined by these classes, and hence that
G =T

n.p— 17 [|

We now turn to a second proof, due to Zykov [93]. Its basic advantage is
that it avoids an explicit induction, but the main reason why we choose to
present it is to demonstrate one of the most powerful methods of extremal
graph theory, the method of symmetrization. (We note that the Motzkin—
Straus proof [69] is in a sense a variation of Zykov’s.)

Fig. 3

Two vertices in a graph are called symmetric if they have precisely the
same neighbors. In the operation of symmetrization of a vertex w to a vertex
v, all edges at w are deleted and then w is made adjacent to all neighbors of v
(see Fig. 3). Clearly, after this symmetrization, v and w are symmetric.
Further, the symmetry of symmetric vertices is not affected by the symmetri-
zation of other vertices. We also note that symmetrization in a graph
containing no K, preserves this property. In addition, if p(w) < p(v), and if
vw is not in G, then symmetrization of w to v does not reduce the number of
edges.

Sketch of Zykov’s proof. Assume that G" contains no complete graph K,
and let v, be a vertex of maximum valency. Symmetrize to v, all those vertices
not adjacent to v, (one by one, or all at once), and call this entire set of
vertices S; (including v,). The resulting graph G| has at least e(G") edges,
and the vertices of S; are all adjacent to all other vertices. Repeat this
procedure using a vertex v, of maximum valency in G| — S, to obtain a
graph G% with two sets S, and S, of independent vertices joined to all other
vertices, and with e¢(G%) = e(G1). If this procedure is iterated until all vertices
have been used, then the result G} is a complete r-partite graph K, .
During this symmetrization no K, can occur, and so r < p — 1. Hence
e(G") < e(Gy) < e(T,, ,—,). The proof is complete once it is determined
that, if e(G") = e(T}, ,—,), then G" =T, ,_,. |
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In subsequent sections, we shall see many different generalizations of
Turan’s theorem; in most of these, the prohibited graph is something other
than K,. To conclude the present section, we mention a few direct
generalizations. The first of these is due to Erdos, but because the result
originally appeared in Hungarian, we refer the reader to Bondy and Murty

[16].

Theorem 2.2 (Erdos’ Theorem). Let G" be a graph which does not contain
K,, and which has valencies py = p, = ... = p,. Then there exists a (p — 1)-
chromatic graph H" (which thus contains no K,) whose valencies 6, > 0, >
eSO sausiy-ar g forii=125 cham |

This result implies Turan’s theorem immediately, except for the unique-
ness of the extremal graph. Indeed, since H" is (p — 1)-colorable, we have
e(H") < e(T, ,—,), and by adding valencies we see that e(G") > e(H").

Another surprising result, due to Bollobas, Thomason, Erdés and Sos (see
[14] and [52]), asserts that if e(G") > e(7, ,-;), then not only is there a
complete graph K, but G" has a vertex x such that the graph G™ spanned by
its neighbors has at least (7, ,_,) edges. Bondy [15] improved this result, as
follows:

Theorem 2.3. Assume that e(G") > e(T, ,_,), and that x is a vertex of
maximum valency m. Then the graph G™ spanned by the neighbors of x has more
than e(T,, ,-,) edges. ||

We note that the earlier result covered the case of equality, whereas
Theorem 2.3 does not (for the simple reason that the conclusion does not
follow). We also observe that these results imply Turan’s theorem.

3. General Theory

In this section, we present the asymptotic solution to the general extremal
problem, which is the following:

General Extremal Problem. Given a family ¥ of forbidden subgraphs, find
those graphs G" which contain no graph in & and have the maximum number of
edges.

The collection of these graphs G" forms the set of extremal graphs for .Z. It
is denoted by EX(n, ), and the number of edges of a graph in this set is
denoted by ex(n, #). The problem is considered to be “completely solved” if
all the extremal graphs have been found, at least for n > ny(%). Quite often
this is too difficult, and we must be content with finding ex(n, &), or even
good bounds for it.
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It turns out that a parameter related to the chromatic number plays a
decisive role in many extremal graph theorems. The subchromatic number
Y(Z) of £ is defined by

Y(&£) = min{y(L): Le £} — 1.

The following result [46] is an easy consequence of the Erd6s—Stone theorem
[55] (see below):

Theorem 3.1 (The Erdos-Simonovits Theorem). If & is a family of graphs
with subchromatic number p, then

ex(n, &) = (1 x4 1)(") + o(n). |
p/\2

The meaning of this theorem is that ex(n, #) depends only very loosely on
&Z; up to an error term of order o(n?), it is already determined by the
minimum chromatic number. It is natural to ask whether the structure of the
extremal graphs is also almost determined by /(¥ ), and therefore whether it
must be very similar to that of 7, ,. The answer is yes. This is expressed by the
following results of Erdos and Simonovits [35], [36], [72]:

Theorem 3.2 (The Asymptotic Structure Theorem). Let ¥ be a family of
prohibited graphs with subchromatic number p. If S" is any graph in EX(n, &),
then it can be obtained from T, , by deleting and adding o(n*) edges.
Furthermore, if & is finite, then p,,(S")n=1—p~! + o(1). |

The structure of extremal graphs is fairly stable, in the sense that the
almost-extremal graphs have almost the same structure as the extremal
graphs. This is expressed in our next result:

Theorem 3.3 (The First Stability Theorem). Let & be a family of prohibited
graphs with subchromatic number p. For every ¢ > 0, there exist 6 > 0 and n,
such that, if G" contains no L € ¥, and if, for n > n,,

e(G") > ex(n, &) — on?,
then G" can be obtained from T, , by changing at most en* edges. ||

These theorems are interesting in themselves. However, it is important to
note that they are also widely applicable. To illustrate this, we show how the
last statement of Theorem 3.2 can be deduced from Theorem 3.3.

In order to facilitate this, we introduce some new terms. Consider a
partition Sy, S,, ..., S, of the vertex-set of G", and the p-partite graph
H" =K, ., corresponding to this partition of V(G"), where s; = |S,|. An
edge vw is called an extra edge if it is in G" but not in H", and is a missing edge
if it is in H" but not in G". For given p and G”, the partition S, Sys 0 SIS
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called optimal if the number of missing edges is minimum. Finally, for a given
vertex v, let a(v) and b(v) denote the numbers of missing and extra edges at v.

Sketch proof of Theorem 3.2. The first part of the theorem follows from
Theorems 3.3 and 3.1 by simply setting G” = S”. For the second part, take the
optimal partition Ry, R,, . . ., R, of V(S"), and assume that R; has minimum
order. Then |R,| < n/p and, by Theorem 3.3, 3, .z, b(v) = o(n?). If r denotes
the maximum order of a graph in %, take r vertices v, v,,...,v, with
> b(v;) minimum. Clearly, for some ¢ > 0, |R,| > cn. Thus

¥

=Z IR1I UZ b(v) = o(n).

€R,

(This 1s what we called a “trivial averaging argument”.)

Now we apply the symmetrization method in a slightly modified form: for
an arbitrary fixed vertex v in S”, delete all the incident edges and then join it
to all vertices adjacent to all of v,,v,,...,v,. The resulting graph S§” can
contain no L € &. It follows that e(S") <-e(S"), and hence

— Y b)=n—=—o).|
i=1 P

p(v) =

() nbd (v;)
=1

>|(J R
j=2

In the remainder of this section we formulate a sharper variant of the
stability theorem, and then return to the particular problem considered in the
Erdds-Stone theorem.

One can ask whether further information on the structure of prohibited
subgraphs yields better bounds on ex(n, #) and further information on the
structure of extremal graphs. At this point, we need a definition. Let % be a
family of forbidden subgraphs, and let p = (%) be its subchromatic
number. The decomposition .# of ¥ is the family of graphs M with the
property that, for some L € ¥ of order r and subchromatic number p, L
contains M as an induced subgraph and L — V(M) is (p — 1)-colorable. In
other words, L=< M x K,_,,, and M is minimal with this property. The
following result is due to Simonovits [72]:

Theorem 3.4 (The Decomposition Theorem). Let & be a forbidden family of
graphs with Y(¥) = p and decomposition M. Then every extremal graph
S" e EX(n, #) can be obtained from a suitable K, ....n, by changing
O(ex(n, #)) edges. Furthermore, n; = (n/p) + O(ex(n, M )/n), and p;.(S") =
(1 —p~Yn + O(ex(n, 4)/n). ||

It follows from this theorem that, with s =[n/p|, ex(n, &) = e(T, ,) +
O(ex(S, ). This result is sharp: put edges into the first class of a T‘



6 EXTREMAL GRAPH THEORY 169

that they form a G" € EX(r, #); the resulting grdph contains no L € #, and
has e(T, ,) + ex(r, #) edges.
A second stability theorem can be established using the methods of [72]:

Theorem 3.5 (The Second Stability Theorem). Let £ be a forbidden family
of graphs with y(¥) = p and decomposition M, and let k > 0. Further, let
G"cEX(n, &), let S,,...,S, be its optimal partition, and let G; = {S;).
Then,'if e(G") = ex(n, &) — k ex(n M), the following results hold:

() G " can be obtained from X G; by deleting O(ex(n, #)) edges;
(ii) e(G;) = O(ex(n, #)) + O(n), and |V(G,)| = (n/p) + O(/ex(n, #4));

(iii) for any constant ¢ > 0, the number of vertices v in G; with a(v) = cn is
only O(1), and the number of vertices with b(v) = cn is only O(ex(n, M )/n) +
Oy

(iv) let Le &, with |L| = r, and let A; be the set of vertices v in S; for which
b(v) < (n/2pr); then the graph {A;) contains no L. |

This theorem is useful in applications. The deepest part is the first part of
(ifi ). This implies (iv), which in turn implies all the other statements. A proof
is sketched in [77], where the theorem was needed.

Now let m = m(n, ¢) be the largest integer such that, if e(G") = e(7,, ,) +
cn?, then G" contains the regular (p + 1)-partite graph K, .. The
Erdos—Stone theorem asserts that m — oo for fixed ¢. Moreover, m > L ,(n),
where L, denotes the p-times- iterated logarithm. This implies Theorem 3 1%
as follows

 Proof of Theorem 3.1 (using the Erdos—Stone theorem). Since each L € & is
not p-colorable, L & T, ,. Hence,

ex(n, ) = e(T, ,) = (1 5 1)(”) +0n).
p)\p

On the other hand, there is some Loe ¥ with y(Ly)=p + 1. Let
m = |V (Ly)|. The Erdos—Stone theorem asserts that

ex(n, K+ 1m) = (1 -—}))(Z) + o(n?).

Hence, since Ly S K, 4 1(m), W€ have

ex(n, £) < ex(n, K, 1 14m) < (1 — % + 0(1))( ) I

One can ask how large is m = m(n, ¢), defined above? This was determined
by Bollobas, Erdos, Simonovits, Chvatal and Szemeredi [10], [12], [94].
Observe that m(n, ¢) also depends on p:
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Theorem 3.6. There exist constants ¢ and ¢’ such that
log n ~logn
log(1/c) log(1/c)

The first breakthrough here was that the p-times iterated log was replaced
by Klogn, where K is a constant; the second breakthrough was the
dependence on c—namely, that the multiplicative constant is O(— 1/log c).

!

c'- <mn,c)<c |

Inverse Extremal Problems

To conclude this section, we discuss some “‘inverse” extremal problems.
These are problems in which we have a sequence of graphs {S”} and we wish
to find prohibited graphs for which {S"} is a sequence of extremal graphs. On
the one hand, such theorems have their own interest; on the other hand, they
often show that some result on the structure of extremal graphs (for certain
types of extremal problems) cannot be improved.

Theorem 3.7. Let {S"} be a sequence of graphs (not necessarily defined for all
positive integers n). If there exists a family & for which each S" is extremal,
then e(G") < e(S") if G" < S™ for some m. Conversely, if {S"} satisfies this
condition, then there exists a family ¥ for which every S" is extremal—namely,
the family of those graphs which are not contained in any S".

Proof. First assume that {S"} is extremal for %, and that G" < S™. Then G”"
contains none of the prohibited subgraphs—that is, e(G") < e(S"). This
proves the first part. Conversely, if {S"} satisfies the given condition, and if
¥ sis the family of graphs contained in no S”, then each S" is extremal for Z.
Now take a G" containing no prohibited subgraph. Then G" ¢ ¥ s—that is,
some S™ 2 G". But then e(G") < e(S"), which means that S" is indeed
extremal. ||

Our next result, although not very deep, is quite important:
Theorem 3.8. For every family &, ex(n, ¥)/(5) is decreasing as n — 0.

Proof. For a fixed S™ we take all (7') subgraphs of order n, G, . . ., G,. Each
edge of S™ belongs to (7-7) of these. Hence,

— 2
(’;‘_ 2>e(sm) < Y e(G) < (’") e(s"),

i<t n

e(s™) / (’;") < e(S") / @ n

which implies that
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We note that this proof works equally well for digraphs, hypergraphs and
other structures.
Our next inverse extremal theorem [72], [77] is much deeper:

Theorem 3.9 (The 7, , Theorem). A family & has the Turan graph T, , as an
extremal graph (for n sufficiently large) if and only if some L € ¥ has an edge e
with (L — e) = y(&Z) = p. Furthermore, if T, , is extremal for &£ for infinitely
many values of n, then (again for n sufficiently large) it is the only extremal
graph.

This theorem is a special case of Theorems 5.1 and 5.3. The reason why we
give a direct proof here is that this proof uses “progressive induction” in
perhaps its simplest form, and it is therefore an apt illustration of this useful
method. Additionally, it will be a second application of the “chop off a nice
subgraph” principle (see Turan’s original proof in Section 2).

The idea of progressive induction is that we have an assertion which
satisfies the induction step: if we know it for n, then it follows for n + 1.
However, it is not valid, or at least we do not know it, for small values of n,
and proving it for some initial n, is as difficult as proving it for every n.
Theorem 3.9 is of this type. We introduce a norm D(n) measuring how far
what we know is from what we conjecture, and we prove that this D(n) is
decreasing unless D(n) = 0, in which case the result already follows.

Proof of Theorem 3.9. One part of the theorem is trivial: if (L —e) > p + 1
for every L € £ and every e € E(L), then adding one edge to T, , yields a
graph which contains no prohibited L. Thus 7, , is not extremal for £.

Now assume that y(L) = p + 1, but y(L — e) p. Let {S"} be a sequence
of extremal graphs for %. Smce T, , contains no forbidden subgraph,
e(S") = e(T, ,). We introduce

D(n) o e(sn) o e(-T;i.p):

to measure the ““distance between our knowledge and the conjecture”. We

shall prove that, for n > n,,

(x) either T, , is the only extremal graph, or there is an n’ < n for which
D(n') > D(n) and n" - o0 as n — 0.

The statement (x) implies that, for n > n,, T, , is the only extremal graph.
Indeed, for n < ny, D(n) is bounded, by K (say). By (x), D(n) < K, for every n.
Let N; be defined so that, if n > N;, thenn’ > N;_,, and N, = n,. It is trivial
to show by induction on j that, for n > N;, either D(n) = 0 or D(n) < K — .
Hence, for n; = Ng_, (since D(n) > 0), T, , is the only extremal graph.

As a matter of fact, in our proof,n’ = n — pt for t = 3|V (L)|, and mstead of
using the fact that S" contains no L € £, we use only the fact that, if L is
the graph obtained from 7,, , by adding one edge, then L < L Thus
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St L.To prove (x), we choose an arbitrary extremal graph S”, and using the
Erdos-Stone theorem and the fact that e(S") > e(7, ,), we fix a “nice
subgraph” T, , = K* = §", and similarly, a subgraph 7, , < T, ,. Put

p.p =
o=

Aoy wes =l S5 E);

r!p

ST g gt Lo

-pt,p =
and

ér= e(Tpr,ps T;i—pr,p) = (n e pt)(p = 1)t

Since L & §", K* 1s an induced subgraph of S” and each vertex of S" ?' is
joined to at most (p — 1)t vertices of K*. Therefore,

e(S") =e(K*)+ es+e(S" ") = e(K*)+ (n—pt)(p — 1)t + e(S"™ 7).
This implies that D(n) < D(n — pt), as follows:
D(n — pt) = D(ny={(e(S"%)~elly i )y —(e(S*) ~e(T, )
2 (T p)— eldy=pp)) — (2(57) — €(S" 7))
Zes—er=0.

The only thing left is to check that, if D(n) = D(n — pt), then S" =T, .
Clearly, each vertex of S" 7 is joined to exactly p — 1 classes of K* in this
case. We partition V(S") into sets S, . . ., §, by putting into §; the vertices of
§" not joined to the jth class of K* = T}, ,. The vertices of S; are independent
since otherwise L < S". Thus S" is a p-colorable graph, and e(S") > e(T, ,).

This shows that " = 7, ,, completing the proof. ||

One reason why we could not apply ordinary induction is that the theorem
does not hold for small values of n. Another reason is that the Erdos—Stone
theorem cannot be applied for small n. One of the important points of the
proof was that “each vertex of S$"™# is joined to at most (p — 1)t vertices of
K*. This was the “chopping off a nice subgraph”, which means selecting
U™ < S" such that each x in S" — U™ is joined only to a small number of
vertices of U™, :

4. Non-degenerate Extremal Problems

According to Theorem 3.2, if S" is an extremal graph for a family % of
subchromatic number p, then S" can be obtained from an appropriate
complete p-partite graph by deleting and adding o(n?) edges. However, in
many cases we find that there is no need to delete edges: S" can be obtained
from some K by adding only o(n*) edges. In other words, S” is the join
of p almost-equal factors. Assume now that §" = X ., G", where n; =
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(n/p) + o(n) (if n is sufficiently large). Then the graphs G™ are extremal graphs
for the degenerate extremal graph problems in which the ith prohibited
family is

M ; = {M: there exists L € & for which
LecMx X G% and V(M) <|V(L)l}.

j*1

Clearly, the entire decomposition .# of & is in .#;, and y(.#) = 1; hence the
extremal problem of .#, is indeed degenerate. The reader can easily check
that G" is extremal for .#,. In this sense we have reduced the non-degenerate
extremal graph problem of .# to the p degenerate problems of 4, ..., #,.
If & is finite, then ; is also finite, and maxy. ,|M;| = max,_¢|L]|.

There are some problems with this reduction method, however, and we
mention three difficulties here.

First, it does not always work, since in some cases the extremal graph is not
a join. However, in all known instances when this happens, there is always a
tree or forest in the decomposition, and this motivates the following
conjecture (see [81]):

Conjecture 4.1. If ¥ contains just one graph and its decomposition contains
no tree or forest, then every extremal graph is a join: S" = X .., G™, where
n; = (n/p) + o(n), for n > ny.

Secondly, it can happen that the .#; also depend on n, and this is
unpleasant.

Thirdly, even if the reduction can be achieved, the resulting degenerate
extremal problems may be too difficult. This 1s perhaps where a
breakthrough is most needed—in the solution of degenerate problems. In
part, this is why three sections of this survey (Sections 6-8) are devoted to
such problems.

We now turn to a specific example. Turan once asked for the value of
ex(n, £) for each of the five regular polyhedra. For the tetrahedron K, the
answer is of course provided by Turan’s theorem. For the other four, the
solution is considerably more difficult, and we treat only the octahedron
O¢ = K, , , in this section; the dodecahedron and icosahedron will be
considered in the next section, and the cube in Section 6. We note that for all
but the cube, the extremal graph is a join of almost equally large graphs. The
following theorem is due to Erdos and Simonovits [48]:

Theorem 4.1 (Octahedron Theorelm). If S" is an extremal graph for the

octahedron Og, for n sufficiently large, then there exist extremal graphs G, and
G, for the circuit C, and the path Py such that S" = G, x G, and |V(Gy)| =

In+ o), i=1,2.|
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Note that G, consists of independent edges, and that, if G, does not
contain C, and G, does not contain P;, then G; x G, does not contain Og.
Thus, if we replace G, by any H; in EX(|V(G,)|, C,) and G, by any H, in
EX(|V(G,)|, Ps), then H, x H, is also extremal for Og. It follows that this
theorem is indeed a reduction theorem.

We shall see in the next section that the extremal graphs for the
dodecahedron and icosahedron are also products, even though their
decompositions contain trees.

5. Perturbation Problems

The idea behind perturbation problems is to consider some property of
extremal graphs for a family .#, and try to determine whether it is important.
More formally, given a family % of graphs and a graphical property 7, we
let ex(n, &, 7 ) denote the maximum number of edges in a graph G" which
contains L € % and does not have property 7, and we let EX(n, &, )
denote the family of graphs attaining this maximum. Of course, a property
we consider is one that is held by graphs in EX(n, %) (and usually an obvious
one). If ex(n, &, 7) is significantly smaller than ex(n, &), then we may
conclude that 7 is an important property in the original problem.

In this section we consider three types of perturbation problems (the third
only briefly):
(a) chromatic perturbation in Turan-type extremal problems;
(b) Ramsey perturbation;

(¢) Zarankiewicz perturbation.

Chromatic Perturbation in Turan-type Problems

One feature of Turan’s extremal graph 7, , is that it is p-chromatic. In this
subsection we consider a number of results, found in Simonovits [77], related
to chromatic properties of extremal graphs. The first shows that the
chromatic property of Turan graphs is an important feature:

Theorem 5.1 (Chromatic Perturbation Theorem). Let & be a family -of
graphs with subchromatic number p. If, for n > ng, T, , is the only extremal
graph for &, then there exists a constant K such that, if G" contains no
prohibited subgraphs and e(G") > ex(n, ) — (n/p) + K, then G" is p-
chromatic. ||

This theorem shows that the almost-extremal graphs for & are very much
like 7,, ,, and that each can be transformed into a complete p-partite graph by
changing O(n) edges. This is a consequence of the following result:
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Theorem 5.2. Assume that &£ is a family for which T, , is the only extremal
graph for n > no(¥) and that  is the property of being t-colorable. Then there
is an integer-valued positive function g(t, £) such that, for t > p,

ex(n, £, T) = ex(n, &) — g(t, y)g +0q). |

This result can be deduced from a still more general theorem of Simonovits
[77]. Its formulation requires two further definitions.

First, the chromatic condition </ , is the property that a graph G" has if
every subgraph of order n — s + 1 has chromatic number at least ¢. (A more
general concept is defined in [77].)

Secondly, a graph G" is in the class %(n, p, r) of very symmetric graphs if it
has a set S of at most r vertices for which G" — S is the join of p graphs G; of
order m;, where |m; — (n/p)| < r. Furthermore, each G; consists of a number of
copies of a graph H; of order at most r such that a vertex v in S is adjacent to
corresponding vertices in the various copies. Figure 4 shows a typical graph

in %(n, 3, 5).
(144 j -<I/;,<D
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Theorem 5.3 (The Very Symmetrical Extremal Graph Theorem). Let £ be
a finite family of forbidden subgraphs with subchromatic number p. Assume that
L, is a subgraph of P, x K, 14> Where k is the maximum order of a graph in &
and P, is the path of length k — 1. Then, for any chromatic condition </, there
exists r = r(k) such that, for n sufficiently large, 4(n, p, r) contains an extremal
graph S" of EX(n, &, — o), where — </ denotes the negation of property <. ||

We note that, as a consequence, under the conditions of this theorem there
is an r for which ¢(n, p, r) contains an extremal graph for & itself.

The significance of this theorem lies in the fact that it implies many other
theorems of extremal graph theory, including the icosahedron extremal
theorem. As the proof of Theorem 5.3 is rather long and uses a number of
technical tricks, we omit it, and prove instead the following result. Here,
H, ,  denotes the graph K, ; x T,_,., , (see Fig. 5). Also, T, , ; is the
graph obtained from 7,, , by adding s independent edges within one partite
class of maximum order.



176 M. SIMONOVITS

Th-s+1.p
\\\ )
\
i< )
H,p,s
Fig. 5

Theorem 5.4 (The H, , ; Theorem). Let % be a family of graphs and let s be a
positive integer, such that:

(i) for every Le %, deleting s — 1 edges always leaves a graph with
chromatic number at least p;

(ii) for some m, some L € & is a subgraph of T,, , ;.
Then, for n sufficiently large, H, , , is the only extremal graph of & .

Sketch of proof. It can easily be checked that H, , , contains no graph in &,
so that in this sense it is a good candidate to be extremal. Let S" be an
extremal graph for Z. If we are interested only in estimating e(S"), then by
Theorem 3.5 we may assume that S" € (n, p, r). Since some T, , ; contains
some forbidden L (and hence S” & T,, , ), we conclude that the “blocks” of
S" cannot have edges. It follows that they form a Turan graph. A simple
calculation yields that e(S") = e(H, , ;) + O(1). This is nearly what is desired,
but a bit weaker, so we introduce the chromatic condition & = &/, ,.
Applying Theorem 3.5 to a graph F" in EX(n, %, &) n %(n, p, r) (rather
than to S”), one can easily show that e(F") < e(H, , ;) for n sufficiently large.
This implies that, for such n, all extremal graphs for £ have property —.o/,
and it follows that H, , ; is the only extremal graph. |

Immediate applications of this theorem are a result of Moon [67] and the
dodecahedron extremal theorem [77], to which we now turn. One can easily
see that the dodecahedron graph D, is a subgraph of 75, , ¢, and that if a1~
five edges are deleted from D,,, then the result is still 3-chromatic. We can
therefore apply the H, , -theorem with p=2 and s=6 to obtain the
following result:

Theorem 5.5 (Dodecahedron Extremal Theorem). For n sufficiently large,
H, , ¢ is the only extremal graph for the dodecahedron graph. |
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Ramsey Perturbation

A second important feature of Turan graphs is that they contain large
independent sets. In this subsection, we consider what happens if we exclude
this. Incidentally, we note that these problems arise from some applications
(mentioned in Section 12).

Let us fix a function f, and denote by ex(n, .Z, f) the maximum number of
edges in a graph G" containing no L e % and at most f(n) independent
vertices. Our interest here will be primarily in the case in which 7, , is the
only extremal graph, and even then specifically when ¥ = {K ..

Clearly, for f(n) = n, we are back to Turan’s theorem—in fact, that is the
case even for f(n) = [n/(p — 1)]. On the other hand, if f () is either a constant
or tends to oo very slowly, then the set of graphs will, by Ramsey’s theorem,
be empty.

The first interesting question is thus whether ex(n, K, f) is significantly
smaller than ex(n, K,) when f(n) = [n/(p — 1)] — cn. Erdos and Sos [51]
proved that, in fact, for every ¢ > 0 there exists ¢’ > 0 such that ex(n, K, f)
< ex(n, K,) — ¢'n?, so the answer is yes.

The next interesting question is whether, for f(n) = o(n), ex(n, K, f) is
very much smaller, or not. This question is much harder to answer, and there
is a difference between the cases p odd and p even.

We first consider the case p = 3, noting that ex(n, K3, f) < 3nf(n). Indeed,
the neighbors of any vertex v in an extremal graph G" are independent, so
p(v) < f(n) and e(G") < 3nf(n). It follows from an important “probabilistic”
construction of Erdos [29] that there is a graph G" containing no K; for
which the vertex-independence number «(G") < f(n). Furthermore, we have
e(G") = cnf (n)/log n. Therefore, in this sense, the case of K is easy and not
worth investigating further.

Beyond this, Erdos and V. T. Sos solved the general odd case, showing that
the exclusion of both K,, , ; and o(n) independent vertices is roughly the same
as excluding K, . ;:

Theorem 5.6 (The Erd6s—S6s Theorem). There is a constant ¢ > 0 such that,
if g(n) = ci/nlog n and g(n) < f(n) = o(n), then

CX(H, Kr—l) < CX(H, K2r+19 g) < eX(H, K2r+lsf) < EX(H, Kr+1) b 0(}12)

(el

We note only a construction for the lower bound: take a Turan graph 7, ,,
and add c\/ﬁ log n edges in each class so that no triangle occurs nor are there
c/nlog n independent vertices, and the resulting graph contains neither
K, ., nor cﬁ log n independent vertices.
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The even case is deeper [41], and was proved originally only for K, (where
the upper bound was established by Szemerédi [87], and the lower bound by
Bollobas and Erdos [11]).

Theorem 5.7 (The Erdos—Hajnal-T. S6s—-Szemerédi Theorem).

3k —
ex(n, Ko, 0(n)) = 3 (3]{ = g) n? + o(n?). ||

In other recent work (see [41]), it has been shown that in the general case,
ex(n, L, o(n)) actually depends on the arboricity of L. The arboricity plays a
role similar to that of the chromatic number in the Erdos—Simonovits
theorem (Theorem 3.1); however, the analogy is not complete.

Zarankiewicz Perturbation

Given a family % the Zarankiewicz problem which corresponds to Turan’s
problem asks for the determination of dex(n, ¥)= max{pmn(G"):
G" 2 Le &}—that is, the maximum minimum valency of G". Since
Pmin(G™") < (2/n)e(G™), Theorem 3.1 implies that

dex(n, &) < (1 — ;) n+ o(n).

On the other hand, 7, , shows that this is sharp. This means that in solving
Turan’s problem, we have also solved Zarankiewicz’s problem. Earlier in this
section we saw that chromatic perturbation in Turan’s theorem changes the
maximum only negligibly—that is, by O(n). The chromatic perturbation in
Zarankiewicz-type problems is interesting because it changes the maximum
by cn? (counted in edges!)—see [3]:

Theorem 5.8 (The Andrasfai-Erdos-T. S6s Theorem).

max{pmn(G"): (G") = p, K, ¢ G"} = (1 - . i) n+0(1). |

S

For other results, see Erdos and Simonovits [49].

6. Degenerate Extremal Problems

An extremal problem is called degenerate if there is at least one bipartite
prohibited graph—that is, if p = 1. The basic difference between degenerate
and non-degenerate problems is that ex(n, &#) = o(n?) for the former, and
ex(n, &) = |in?| for the latter.

We have seen that in many cases the extremal graphs can be decomposed
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into the product of extremal graphs for some other degenerate extremal
problems. Such was the case, for example, in the octahedron and dodecahed-
ron theorems. This, and other things, suggest that a major breakthrough is
badly needed in the area of degenerate extremal graph problems. Also, this
area has perhaps the greatest connection with other branches of com-
binatorics, such as random graphs and finite geometries. We therefore devote
the next three sections to this topic—and even the section on hypergraphs
will be related to it. For further results on degenerate extremal graph
problems, see Simonovits [82].

One important degenerate extremal theorem is the following result of
Kovari, T. S6s and Turan [62]. We include a sketch of the proof since it is
~ both typical, and yet one of the simplest in this area.

Theorem 6.1. For r <s, ex(n, K, ;) < 3(s — 1)!n?~ 1" + O(n).

Sketch of proof. We count r-stars K, ; in a graph G" containing no K, ;.
Every set of r vertices is the r-set of at most s — 1 r-stars, so that the total
number is at most (s — 1)(?). On the other hand, if py,..., p, are the
valencies in G", then the number of r-stars equals 37—, (%). Extending (¥) to
all x > 0 by

(x):{x(x—l)...(x_r+1)/r! forx>r—1,

r 0, forx<r—1,

we have a convex function. Jensen’s Inequality implies that, if m is the
number of edges in G", then

n(zmr/”) oy (’;") <@-=1) (f)

and the result follows by an easy calculation. ||

A theorem which asserts that a graph G" contains very many graphs L
from a family .& is called a theorem on supersaturated graphs. Such theorems
are not only interesting in themseleves, but also are often useful in
establishing other extremal results. At this point it is worthwhile deriving
such a result for complete bipartite graphs, obtained by Erdos and

Simonovits [50]:

Theorem 6.2. If G" is a graph with m edges then, for any r and s, there exists a
number c, ; such that G" contains at least |c, ;m™/n*>~""*| copies of K, .

Sketch of proof. Let R be a set of r vertices of G", and let f(R) denote the
number of r-stars in G" with R as r-set. As in the preceding proof, n(*™")
< Y (%). Furthermore, the number of K, ;’s on R is just (*®), and each is
counted s! or 2(s!) times, depending on whether r # s or r = s. If the number
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of K, s in G" is N and the number of K, ;’s is M, then, using Jensen’s
Inequality and the fact that > ; f(R) = M, we have

Nzl (ﬁ(R)) i (n)(M/(f)) e RS
shiN g s s il

for some constants ¢; and c¢,. ||

We now turn to a reduction result of Erdos and Simonovits [47] which has
several applications. Let L be a bipartite graph with partite sets X and Y, and
let L{t> denote the graph obtained by completely joining one partite set of
K., to X and the other to Y. The following result was obtained by Erdos
and Simonovits:

Theorem 6.3 (Reduction Theorem). If L is a bipartite graph with ex(n, L)
= O(n*~?), then ex(n, L{t)) = O(n®>"?), where b= =a™' + . |

The first application of Theorem 6.3 is to the cube problem. As we
mentioned in Section 4, Turan asked for the value of ex(n, Q;), where Q;
denotes the 3-dimensional cube. We note that Q5 is the result of deleting four
independent edges (a 1-factor) from K, ,. Let H be the graph obtained by
deleting just three independent edges from K, ,. Then H = L{1), where L is
the circuit graph C, (see Fig. 6). Now ex(n, C¢) = O(n¥) (by a later result,
Theorem 6.11), so that ex(n, H) = O(n*) by Theorem 6.3. We therefore have
the following result, which we conjecture is sharp: '

Corollary 6.4 (Cube Theorem). ex(n, Q;) < O(n?). ||

A second application is to trees. By Theorem 6.7 below, ex(n, L) = O(n) if
L is a tree, so we have the following result:

Corollary 6.5. For any tree L, ex(n, L{t — 1)) = O(n*~ ). |

One special case of this result is the Kovari-T. Sos—Turan theorem, since
for L = K,, we have L{t — 1) = K, ,. As a second interesting special case,
Erd6s and Simonovits proved an earlier conjecture of Erdos:
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Corollary 6.6. ex(n,Q; —e) = O(n?). ||

It is easy to show that if a graph G" has minimum valency at least r — 1,
then it contains every tree 7" (by induction on r). A further induction on #
yields the result that :

ex(n, 7") < (r — 2)n.

Concerning circuits, on the other hand, Erdds proved, using probabilistic
methods (see Corollary 8.3), that for some constant ¢, > 0,

ex(, {Cs, . . ., Coi}) > ¢ /n?H2k=1),

We therefore have the following result:

Theorem 6.7. ex(n, &) = O(n) if and only if & contains a tree or forest. |

Faudree and Schelp [56] found the exact extremal numbers for paths, and
used these results to prove some Ramsey theorems. Here, we state only the
following earlier and weaker result of Erd6s and Gallai [40]:

Theorem 6.8. ex(n, P,) < 4(r — 2)n, with equality if n is a multiple of r — 1. ||

We note that the same inequality holds for the star K, ,_ ; these results led
Erdos and T. Sos to conjecture that ex(n, T") < 3(r — 2)n for every tree
1". The disjoint union of complete graphs K,_; shows that ex(n, T") >
3(r — 2)n — O(1), but the upper bound was troublesome until a recent result
of Ajtai, Komlos and Szemerédi:

Theorem 6.9. There exists r, such that, for r > rq, ex(n, T") < 4(r — 2)n. ||

Certainly circuits are among the most important special graphs, and for all
circuits beyond a certain length, Erd6s and Gallai [40] established the
following result:

Theorem 6.10. ex(n, {C,:r>1t})=3(t — )n + O(1). |

By excluding just one circuit length, however, we get entirely different
results. For odd circuits, the 7, ,-theorem implies that ex(n, C,; 4 1) = [21?]
for n > n,. Therefore, the even circuits are the interesting ones, and the
following result was established by Erdos (unpublished, see [17]):

Theorem 6.11 (The Even Circuits Theorem). ex(n, Cy,) = O(n' *1%). |

It is worth noting that Erdos showed that excluding just one even circuit
has essentially the same effect as excluding all smaller circuits as well; this is
far from trivial! Erdos never published a proof of his result; however, it has
been generalized by Bondy and Simonovits [17]:
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Theorem 6.12. Let G" be a graph with m edges, and let t satisfy 2 <t <
m/100n and tn'"" < m/10n. Then G" contains C,,. ||

Corollary 6.13. If G" has at least 100kn* *'/* edges, then it contains C,, for
every t € [k, kn''*]. |

Clearly this corollary implies Erdos’ theorem. That theorem is known to
be sharp for C,, C, and C,,. The upper end of the interval in the corollary is
also sharp, apart from the constant 100: take the disjoint union of complete
graphs of order 200kn'’*, We make the following conjecture:

Conjecture 6.1. ex(n, C,,) = c,n' TV Moreover, ex(n, Cy)/n'*Y* con-
verges to a positive limit.

In drawing this section to a close, we note that not many recursion
theorems are known. One is the following rather trivial result:

Theorem 6.14. If L' is obtained from a graph L by appending a tree at some
vertex, then ex(n, L') = ex(n, L) + O(n). ||

Another result, due to Faudree and Simonovits [57], has as a consequence
another generalization of Erdos’ theorem:

Theorem 6.15. Let C, , denote the graph of order 2 + (k — 1)p in which two
vertices are joined by p paths of length k. Then ex(n, C, ,) = O(n' *'/¥). |

We conclude with a degenerate-graph conjecture of Erdos and Simonovits
[47]:

Conjecture 6.2. For every degenerate family &, there is a rational number
c e [1, 2) such that ex(n, £)/n° converges to a positive limit.

7. Finite Geometries

The method of finite geometrical constructions is very important and
powerful in combinatorics. In particular, it is often the best way to obtain
lower bounds. It is for this reason that we include this section, giving detailed
explanations of this proof technique rather than including (say) ten more
theorems.

We give three constructions: the first two show that the Kovari-T. Sos—
Turéan theorem (Theorem 6.1) is sharp for both K, , and K3 3, and the third
shows that Erdos’ theorem on even circuits is sharp for C.

The Erdos—Rényi-T. S6s—Brown Construction [45], [18]

From Theorem 6.1, we know that ex(n, C,) < 4./n° + 0(\/&3'), but is this
result sharp? In analyzing the proof, we realize that if it is sharp (that is, if
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there are infinitely many orders of graphs G" not containing C, and having

= §\/n73 edges), then almost all valencies are ;v,\/?:, and every pair of vertices
must have a common neighbor (and no pair has two). This suggests that the
neighborhoods N(x) behave much like the lines in a projective plane, in that
the following statement ““almost” holds: any two vertices lie in a common set,
and any two sets intersect in one vertex.

Construction 7.1. Let p be a prime, and construct a graph as follows: the
vertices are the p* pairs (x, y) of residues (modulo p), and (x, y) is joined to
(a,b) by an edge if ax + by = 1. (This graph may contain loops, but we
simply delete them.) With n = p?, the resulting graph H, has the necessary
properties to be sharp for K, , in Theorem 6.1:

(a) for a given pair (a, b), there are p solutions to ax + by = 1, so that, even
after the loops are deleted, there are at least p(p — 1) edges in H,, and
hence e(H,) = in? — n;

(b) if H, had a 4-circuit with vertices (a, b), (u, v), (@', b")and (v, v'), then the
two equations ax + by = 1 and a’x + b’y = 1 would have two solutions,
which is impossible. Hence the construction gives the infinitely many
graphs needed to show sharpness.

The Brown Construction

The geometric idea behind the above construction is to join a point of the
plane to the points of its “polar” (with respect to the unit circle), and then to
use the fact that two lines intersect in at most one point. In contrast, the
Brown construction for the sharpness of Theorem 6.1 when p =3 and g > 3
uses the fact that, if points of 3-space at distance 1 are joined, then the
resulting infinite graph G does not contain K; ;. This is easily seen as
follows: suppose G does contain K5 ;. Then the three points of one color class
cannot be collinear since no point is equidistant from three collinear points.
On the other hand, only two points are equidistant from three points on a
circle, and so K; ; cannot occur.
Brown’s construction [18], [19] is the following:

Construction 7.2. Let p be a prime of the form 4k — 1, and construct a graph
B, whose vertices are the triples (x, y, z) of residue classes (modulo p) and
whose edges join vertices (x, y, z) and (x', y', z') if

= X P L=y =2y =1

The graph B, then contains no K 5 and has ir} + o(r') edges. This last fact
follows from a theorem of Lebesgue asserting that, for fixed (x', y', z’), the
edge-defining equation has p? — p solutions. The proof that B, does not
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contain K, 3 was sketched above, but here the geometric language must be
translated into the language of analytic geometry. It then carries through to
the given finite affine space. There is just one place where care must be taken:
it is indeed true that the sphere (x — a)® + (y — b)* + (z — ¢)* = r? contains
no three collinear points, but number theory must be used to show this since
the corresponding result does not hold for p = 4k + 1.

The Benson Construction

M 4

In the preceding section, we asserted that Erdos’ theorem on even circuits
is sharp for C,, Cy and C,, (and is conjectured to be sharp in all cases). For
C,, the sharpness follows from Construction 7.1. For Cg, it can be deduced
from the Benson construction (see [5] and [83]), which follows.

We begin with some heuristic calculations. Consider the 4-dimensional
finite geometry GF (p, 4) over the field of order p—that is, the 5-tuples with x
and y considered identical if there exists 4 # 0 such that x = Ay. Let A be the
matrix

010500 "1
O 0508 1" 10
A=|0 01 0 0
Jedls M50 20
T 0070 T07

Clearly, A is regular. Furthermore the equation xAx” = 0 defines a surface
S in which each point is in & p lines. For x and y on S, the line xy consists of
the points z = ax + (1 — @)y, and lies entirely in S if both yAy” = 0 and
xAy’ = 0. The number of points on S is &p>, so that y can be chosen in
~ p* ways. But, since xy has x p points different from x, the number of lines

containing a given point x is & p. We observe that the number of lines is also
3

=p .

Construction 7.3. Let G, denote the bipartite graph whose sets of vertices
are the sets of points and lines of the surface S described above, with adjacency
in G, corresponding to incidence in S.

Clearly, e(G,) ~ ipn = (4 + o(1))n*. Furthermore, G, contains no circuits
of length 3,4, 5 or 7. (For the odd cases this is because G, is bipartite, and the
existence of a 4-circuit would imply that two points of S are on two different
lines.) Now suppose that G, contains a 6-circuit v,w,v,w,v3w3v,. Then S
must contain the three lines v,v,, v,v3, and v3v,, and so it must contain the
plane <{v;v,v3>. But this is impossible, for if we apply a coordinate
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transformation T with v, v, and v; as the first three base vectors, we get
the matrix

GEOEOR %32
0020 2 )

A=T AT =10 00 7 7
P ER 9Ty

i o ok Ul

since v;Av/ = 0. But then A’ cannot be regular, contradicting the regularity of
A. Hence G" cannot contain Cg either.

We note that a justification of this construction must include a careful
check that any results of ordinary linear algebra which are used do indeed
carry over to finite fields. (It is trivial that det A’ = 0 and that det T~ AT’ =
det A, so that det A = 0.)

In concluding this section, we note that finite geometry constructions can
also be used in hypergraph extremal problems (see [24], [25] and [76]).

8. Random Graphs

The theory of random graphs is an interesting, important, and rapidly-
developing subject. Applications of probabilistic methods have proved
effective not only in graph theory, but in coding theory, analysis, and other
areas of mathematics. We shall not go into details of the theory of random
graphs here, but refer the reader to Chapter 7 of this book. Rather, we restrict
ourselves to simple applications of random graph methods to extremal
theory, concluding with a brief description of what we call pseudo-random
graphs.

The Erdos—Rényi Threshold Theorem

The random graph distribution used here is that in which, for each n, an
integer E, between 0 and (%) is fixed, and each graph G" with E, edges has the
same probability p,, given by

e
Pn = En

Theorem 8.1 (The Erdos—Rényi Threshold Theorem). Let ¥ =
{Ly, ..., L} be a family of graphs, and let

: . |V(H)|
c=¢clY )= n .
() mjln }I}};Lj o(H)
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Further, let {E,} be a sequence of integers with 0 < E, < (3) and let G" be a
graph of order n with E, edges. Then the probability that G" contains a member
of & tends to

@) 0, if E, = o(n*~°);
() 1, if E,/n*~¢ - o0 ||
(In extremal graph theory, only part (a) of this theorem is used.)
For an example, we consider L = K, , in whichcase ¢ = r~' + s~ '. Then,

for ¢, sufficiently small, the probability that a graph G” with ¢,n® ¢ edges
does not contain K,  is positive. It follows that

ex(n, K, |) = con?~n-ss

Comparing this with the Kovari-T. S6s-Turan theorem (Theorem 6.1), we
see that that theorem is in a sense best possible if r is fixed while s — 0.

The next result, proved implicitly by Erdos, is sharper. It uses a method
which might be called the expected number method, or the altering a random
graph method.

Theorem 8.2. Let & ={L,,...,L,} be a family of graphs, and let

(%) ¢ = min min w
e H el e(H)— 1

Then, for some ¢y > 0, ex(n, L) = con*~".

Proof. Consider G" as a labeled graph in which each edge occurs
independently with the same probability p, For each L;, choose a subgraph
H; which attains the inner minimum in (%), and let

h; denote the order of H;,
e; denote the number of edges in Hj,
o; denote the number of copies of H; in K, ,
and
B; denote the expected number of copies of H; in G".

Note that, if K,,J_ conf[ains a; copies of H;, then K, contains ocj(;,’;) copies of H;.
For each copy H of H;, define a random variable k; = ky(G") = 1if H = G",
and 0 otherwise. Since the number of copies of H;in G" is just >y c ¢ ky, it

follows that
n 7
ﬁj=0‘j( ) Z E(kﬂ)z%( )Pej-
hi HeK, hi
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Summing over j and taking p = c¢;n"¢, we get

n

e; h:—ce; __ 2=

2 B; < zmaxaj(h)pf S fmax e n' =i = feyn® E.
J J

Now let a(G™") = e(G") — 3; B;- Then, for ¢, sufficiently small, the expected
value is

Ea(G") > % ('2’) p>Len?c.

It follows that there exists a G" with a(G") > lc,n? " °. Delete an edge from
each H; in this G". Then the resulting graph contains no L;, and has at least
1(®)p = e n® ¢ edges, completing the proof. |

The following corollary is the result of applying the theorem to some
families of circuits:

Corollary 8.3. For some constant c,,, ex(n, {Cs, ..., C,.}) = c,nt T~ V7" |

Erd6s’ even circuits theorem asserts that ex(n, C,,) = O(n' * /%), and this
upper bound is probably sharp. The random method (that is, Theorem 8.2)
yields a lower bound of c,n'*@*~D7" a weaker result. We believe that is
unlikely that Theorem 8.2 ever yields a sharp bound for a finite family.

We note that Corollary 8.3 was used in Section 6 to prove that ex(n, &)
= O(n) if and only if # contains a tree or forest.

The Lovasz Sieve

Even though the next result has no applications in this chapter, we feel that
its inclusion here is worthwhile because of its use in the theory of random
graphs:

Theorem 8.4 (Lovasz’ Sieve Theorem). Let G" be a graph with maximum
valency p. Fori =1, ...,n,let A, be an event in a probability space A such that
A, is independent of {A;: v;isin G"}. Ifthereisp < }p~ ' suchthat P(A;) < p,
then

PA,n...0n4)>0.|

In general, to ensure the conclusion of this theorem, one needs that
> P(4;) < 1. Of course, if all the 4; are independent, then no condition is
needed. Lovasz’ theorem handles the in-between case: the events are not
independent, but the ‘“‘dependence graph” has only a few edges. It is
interesting to note that the condition involves neither the number of vertices
nor the number of edges, but only the maximum valency.
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Pseudo-random Graphs

There are important instances in the theory of extremal and random graphs,
in which graphs that are not really random at all can be regarded as being
“approximately random”. In our view, the significance of these “‘pseudo-
random’ graphs has been increasing, and we give two examples here. The
first is due to Szemerédi [89], and says that if the vertex-set of a graph is
partitioned in the right way, then the edges joining the sets behave in some
random fashion. To facilitate the statement of the result we define the density
of edges between two disjoint sets of vertices X and Y by

e(X, Y)

PR S

Theorem 8.5 (The Szemerédi Uniformization Lemma). For every ¢ > 0,
there exists k, such that, for every G", the vertex-sets can be partitioned into
sets Vo, Vy, ..., V, (for some k < k,) such that each |V;| < en, each |V;| = m for
i > 1, and for all but at most (%) pairs (i, j) with i # j, for every X = V; and
Y € V, satisfying | X|, |Y| > em, we have

(X, Y) —o(V;, V)l <e. |

As we have already indicated, the basic meaning of this theorem is that G"
behaves as if the edges between V; and V; were taken independently, at
random, with probability p;; = o(V;, V;). Applications of this lemma (or an
earlier version of it) can be found in many proofs of extremal theorems,
examples being Theorems 5.7 and 9.2.

The last theorem to be mentioned in this section is due to Ajtai, Komlos
and Szemerédi [1], [2]:

Theorem 8.6 (The Triangle-Perturbation Lemma). There exist positive
constants ¢, and c, such that if G" contains no K5 and its average valency is
t > ¢y, then it contains c,n(log t)/t independent vertices. |

This result is an improvement of the assertion that, if the average valency
of G"is t, then G" contains |n/(t + 1)] independent vertices. The lower bound
n/(t + 1) is achieved by the complement of 7, ;, if n =d(t + 1). However, this
graph consists of complete components. It may (and does) happen that we
need a lower bound on the independence number of G" when K; & G". In
that case it is advisable to use Theorem 8.6. (Recall that for random graphs
the independence number i1s much larger than n/t; it is around n(log £)/t.)

9. Hypergraph Extremal Problems

A hypergraph is r-uniform if every edge has r vertices. Clearly, extremal



6 EXTREMAL GRAPH THEORY 189

problems extend to r-uniform hypergraphs (with no multiple edges), and the
corresponding definitions of EX(n, &) and ex(n, £) are obvious.

The oldest hypergraph problems are due to Turan [90], [91]. All
hypergraphs are assumed to be uniform here.

Turan’s Problem. For given r, p and n, how many edges can an r-uniform
hypergraph H" have without containing the complete hypergraph of order p?

This problem seems to be extremely difficult. For the sake of brevity, we
consider here only the simplest form of the corresponding conjecture, with
r—=3iandspi=4. :

Let T3 be the 3-uniform hypergraph whose n vertices are divided into
three sets C,, C, and C,(as nearly equal in size as possible), where a triple
{x, y, z} is an edge if no two are in the same set or if two belong to C; and
the third belongs to C;., (subscripts taken modulo 3)—see Fig. 7.

QAL
B K
/.--5‘
0
Fig. 7

Turan’s conjecture is that 7} has the maximum number of edges among
the 3-uniform hypergraphs of order n not containing the complete hyper-
graph of order 4.

Even this case remains unsolved. If the conjecture is true, then the extremal
graph is not unique. In addition to there being some trivial variations of
Turan’s construction, a very nice construction was found by Brown [19].}
Let n = 3k and let C,, C, and C; be sets each of k vertices. Further, let s
vertices of each C; be called A-vertices. The edges of our hypergraph F{» on
C; U C, U Cjy are those triples {x, y, z} such that

(i) no two are in the same class C;, and the number of A4-vertices is not 1;
or (ii) x,ye C;, ze C;,, and at least one is an A-vertex;

or (iii) x, ye C;, ze C;_,, and x and z are A-vertices.

One can easily check that F* contains no complete 4-hypergraph, and has
exactly as many edges as 7¢%. (In fact, if s = 0, they are isomorphic.)
We now turn to the hypergraph version of the extremal problem of K, , for

t Added in proof. Kostochka has found a generalization of this construction—see
Combinatorica 2/2 (1982), 187-192.
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simple graphs (that problem being known as Zarankiewicz’ problem and
,,,, ,, denote
the complete r-partite r-uniform hypergraph (with »; vertices in the ith class
and having those edges with one vertex from each class). The problem is to
determine how many r-tuples H"” can have without containing K{7),,. (As

usual, r(m) means that each of the r partite sets has m vertices.) Bounds for
this number were found by Erdos [34]:

Theorem 9.1. There exist positive numbers ¢ and A such that
i 1-r o]
Aot L ek, KD ) <A™ |

The proof of the upper bound of this theorem is not much more difficult
than that of the Kovari-T. Sos—Turan theorem: as a matter of fact, it can be
reduced to it. (The lower bound is obtained by the method of random
hypergraphs.) We know much less of extremal results on hypergraphs than
on ordinary graphs; here we mention just a few.

Let &, , denote the family of r-uniform hypergraphs with k vertices and ¢
edges. Brown, Erdos and T. Sos [24], [25] began investigating the function
f(n, k,t) =ex(n, £, ,). The problem of finding good lower and upper bounds
is fairly simple for some pairs k, t and extremely difficult for others. The first
real difficulty which they encountered was the case r=t =3, k=6.
Although they could not settle this problem, Ruzsa and Szemerédi [71] later
found an astonishing result.

Let r,(n) denote the maximum number of integers in [ 1, n] containing no
arithmetic progression of length k. Szemerédi’s famous theorem [88] asserts
that r,(n) = o(n). Further, it is known (see [4]) that

1 —c(logn)” n

L

n ; loglogn‘

Simyn)es

Theorem 9.2 (The Ruzsa- Szemerédi Theorem). There exists ¢ > 0 such that
cn r3(ﬂ) <f(n9 63 3) = O(nz)' ”

One reason, why this result is so surprising is that it implies the non-

existence of an « such that
cint<iex(n; )<veon’:

Although we cannot prove it, we are convinced that for ordinary graphs the
situation is completely different (see Conjecture 6.2).
The Problem of the Jumping Constants. Theorem 9.1 has the following
consequence:

Corollary 9.3. Let ¢ > 0, and let {S"} be a sequence of r-uniform hyper-
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graphs such that e(S") > €(7). Then S" contains a subhypergraph H™ with
e(H™) > (r!/r') () and m - o0 as n - 0. ||

This means that if the edge-density of S" is positive then, for some
appropriately chosen subgraphs, this density must jump up (independently of
¢) to r!/r". The problem of the jumping constants can be formulated in its
most special form (with » = 3) as follows:

Problem 9.2. Let ¢ > 0 and let {S"} be a sequence of 3-uniform hypergraphs
for which e(S") > (5 + &)n®. Is it true that there exist a constant ¢ >0
(independent of ¢ and {S"}) and a sequence of subgraphs H™ = S" (where
m — 0 as n — o), for which e(H™) > (35 + c)m3?

The general problem is to characterize those constants ¢ for which there
exists an f(c) > ¢ such that, whenever the edge-density of S" is larger than c,
then there is a subsequence H™ < S" (as m — co) for which the edge-density
of H™ is at least f(c).

10. Supersaturated Graphs

A graph G" is supersaturated for a family ¥ if e(G")> ex(n, Z).
Consequently, a supersaturated graph must contain a prohibited subgraph.
What is surprising is that it frequently contains not only one but many of
them.

The general problem can be stated as follows:

Problem 10.1. - For given ¥, n, and k, how many copies of graphs in ¥ must
G" contain if e(G") = ex(n, £) + k?

The first result in this area is for K;. It was established for k = 1 by
Rademacher in 1941, and subsequently extended to other values of k by
Erdos [32]. Later, Erdos [37] further generalized it to arbitrary complete
graphs.

Theorem 10.1 (The Rademacher—Erd6s Theorem). There exists ¢ > 0 such
that,if 1 < k < cnand e(G") = |4n?] + k, then G" contains at least k|3n| copies
of K. |

The literature on supersaturated graphs is quite extensive, but for the sake
of brevity, we restrict ourselves to just a few results. The next two theorems
may be found in [66]:

Theorem 10.2 (The Bollobas—Lovasz—Simonovits Theorem). If t is defined

by e(G") = 5(1 — t~)n?, then G" contains at least (})(n/1)” copies of K,. |
The complete t-partite graph K, shows that this result is sharp. The next

result describes its stability:
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Theorem 10.3 (The Lovasz-Simonovits Stability Theorem). For every
c> 0, there exist 6 >0 and ¢’ > 0 such that, if t is defined by e(G") =
1=t YHn?, if d=|t|, and if &(G") = e(T, ;) + k for some k € [0, on*],
then either G" contains at least

(v

copies of K, or it can be obtained from T, ; by changing at most c'k edges. ||

Heuristically (with d =p — 1), this result implies that if e(G") =
ex(n, K,) + k, then either the structure of G" is very regular and similar to
T, ,-1, or else there is anarchy in the structure and then it has many K.s,

For further results on supersaturation for complete graphs, we refer the
reader to [65] and [66], in which Lovasz and Simonovits generalize Erdos’
extension of Theorem 10.1, and to [6] and [7], in which Bollobas gives
various results, including an elegrant proof of the Nordhaus-Stewart
conjecture using symmetrization.

For supersaturated hypergraphs, we have the following result of Erdos and
Simonovits [50]. Although it is not very deep, it is quite interesting and
useful; its proof depends on an elementary lemma of Erdos [38].

Theorem 10.4. Let L* and G" be r-uniform hypergraphs. For every ¢ > 0,
there exists ¢’ > 0 such that if e(G") > ex(n, L*) + cn", then G" contains at least
c'n* copies of L*. ||

This theorem is sharp, in the sense that G" cannot have more than O(n*)
copies of L*.

There is another type of result on supersaturated graphs; for this type,
what is guaranteed is a richer structure instead of many copies of prohibited
graphs. One example is a generalization of Turan’s theorem due to Dirac
[27]. Another is Theorem 6.15, as an extension of Theorem 6.11. Our final
result in this section is a hypergraph theorem of this type, which was proved
for complete hypergraphs by Erdos [40].
~ We first make a definition: if L is an r-uniform hypergraph with vertex-
set {vy,...,0,}, let L(r) denote the r-uniform hypergraph with vertex-set
{wj:1<i<p,1<j<t}, where (W, ;,,...,w;;)is an edge if and only if
(v;,,...,v;)1s an edge of L. We then have the following result:

B2

Theorem 10.5. ex(n, L(t)) = ex(n, L) + o(n"). ||

11. Digraph Extremal Problems

The general problem for digraphs is the same as for graphs: given a family ¥
of prohibited digraphs, what is the maximum number of arcs which a digraph of
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order n can have without containing a digraph in ¥ ? As before, this maximum
will be denoted by ex(n, #), and the family of digraphs attaining this
maximum (that is, the family of extremal digraphs) will be denoted by
EX(n, &£).

The subject of extremal digraphs was introduced by Brown and Harary
[26], who concentrated on exact results for small prohibited digraphs. Other
exact results were obtained by Haggkvist and Thomassen [58]. In this brief
section we shall consider only asymptotic results from the papers by Brown,
Erdos, and Simonovits [20], [21], [22], [23]. (In this survey we have
considered only simple (undirected) graphs and, for the sake of simplicity, we
shall do the same for digraphs. This is in spite of the fact that in some cases
the general result may be more interesting. For such results, in both the
undirected and directed cases, see the previously-mentioned papers.)

A sequence {D"} of digraphs is said to be asymptotically extremal for a
family % of digraphs if no D" contains an L € &, and if e(D") = ex(n, &) +
o(n?).

Our first, and most important, theorem states that there are always
asymptotically extremal digraphs with a very elementary structure. In a
sense, it is a generalization of the Erdos-Stone-Simonovits theorem
(Theorem 3.1). Before stating it, we need a generalization of the Turan graphs
T
iet A = (g;;) be an r x r matrix in which each non-zero diagonal entry is 1,
and each non-zero off-diagonal entry is 2. (The reason for the 2s will be
indicated later.) For a vector x = (x,, . . ., x,) with integer entries, we define
the matrix digraph A(x) to have n = ZXx; vertices divided into r classes C;,
with |C;| = x;. For i # j, there are a;; arcs from each vertex in C; to each
vertex in C;. For i =j, if a; = 1, C; is made into a transitive tournament,
whereas if a;; = 0, C,; has no internal arcs. An example is indicated in Fig. 8.

Although this definition is quite involved, these digraphs are considered
elementary since they are quite natural generalizations of complete p-partite
graphs. The Turan graph 7, , was chosen to have the most edges for a given
order. We make a similar definition here.

NN N O
NN D N
o o o M
D D

Fig. 8
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For given A and n, a matrix digraph A(x) of order n is called optimal if it
has the greatest possible number of arcs. In general, optimal matrix digraphs
are not unique, but we let A” denote a specific one. (Later it will be observed
that only O(1) of them satisfy a “‘density’” property.)

Theorem 11.1 (The Fundamental Theorem for Extremal Digraphs). For
each family ¥ of prohibited digraphs there is a matrix A such that {A™} is an
asymptotic extremal sequence for & . |

Now, for any r x r matrix A with non-negative entries, we consider the
quadratic form uAu’ and define the density of A to be

(1) g(A) = max{uAu’: 4, > 0 and Z g =

The matrix A is said to be dense if, for every principal submatrix B,
9(B) < g(A).

The advantage of using quadratic forms and the notion of density is this: if
a; loops are added to each vertex in C;, then A™ gives a digraph D" with
xAx” arcs. Hence

() xAx" — 2n < 2e(A(x)") < xAx”.

(This, incidentally, is what motivates the 2s in the matrix A.) Since the
maximum in (1) can always be obtained by a vector with rational entries, it
follows at once that, for n sufficiently large,

€)) 39(A)n* — O(n) < e(A™) < 79(A)n’.

Now, a principal submatrix B of A of minimum order satisfying g(B) = g(A)
is clearly dense, so that, by (3), ¢(A"™) — e(B™)= O(n), and A can be
replaced by B in Theorem 11.1. Since A has greater order than B, B™ is a
graph with simpler structure.

Corollary 11.2. For every family of digraphs ¥ there exists a dense matrix A
such that {A™} is a sequence of asymptotically extremal digraphs for £ ||

Some interesting facts about our matrices A are established in [23],
including the following:

(¢) there are only finitely many (if any) matrices A of given density;

(ii) the set of realizable densities is well ordered under the usual ordering
of the real numbers.

Corollary 11.2 is best possible in the following sense (see [22]):

Theorem 11.3. (The Inverse Extremal Theorem for Digraphs). For any
dense matrix A, there is a finite family & of digraphs for which {A"™} is extremal,
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and hence {A™} is asymptotically extremal. Furthermore, there exists ny such
that, for n > n, there are no other extremal digraphs for %, in the sense that

(i) if B is a dense matrix for which {B™} is an asymptotically extremal
sequence, then B = PAP ™! for some permutation matrix P;

(if) if {D"} is a sequence of digraphs which is asymptotically extremal for &,
then D" can be obtained from A™ by changing o(n?) arcs. |

Prohibited families of digraphs also have a “compactness property” (see

[23]):

Theorem 11.4.  Every infinite family & of prohibited digraphs contains a finite
subfamily # such that

ex(n, £) = ex(n, #) + o(n?).

Furthermore, a sequence {A™} is asymptotically extremal for & if and only if it
is asymptotically extremal for M . ||

In conclusion, we observe that there is an algorithm (see [23]) which finds,
for an arbitrary finite family %, all the dense matrices A for which A® is
asymptotically extremal. Again, we remind the reader that the results given
here hold, or are conjectured to hold, in a much more general multi-digraph
form.

12. Applications of Turan’s Theorem

In a certain sense, Turan’s theorem and its generalizations are closely related
to the pigeonhole principle, and this is why they can be used in so many areas
of graph theory and other branches of mathematics. We shall not consider
here any applications to combinatorics (which are perhaps not so surprising),
but only applications to geometry, potential theory and probability theory.
Work in the first two areas was initiated by Turan [92], and continued by
Erdos, Meir, So6s and Turan [43] and others. The application to probability
theory is due to Katona [60]. No proofs will be given.

Distance Distributions

Let M be a metric space, and let .# be a family of finite subsets of M each of
which has diameter at most c, for some fixed constant ¢. Typical examples
are:

(1) the family of all finite subsets with diameter at most ¢ of a closed set
Dce M,;

(ii) the family of all subsets of a bounded set D = M.
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We are interested in the distribution of distances d (P;, P;) for an n-element set
{Py, ..., P,}. Incharacterizing these distributions, we find that the “packing
constants™ defined below are very useful. The kth packing constant is
dy= sup mind(P, P)).
{Piy.. PleF i#]
Clearly, d;, , < d;. If M is a bounded subset of the m-dimensional Euclidean
space R™, then d, — 0.

Observe that, by the definition of d,, if {P,, ..., P} € # and if G" is the
graph defined on these vertices by joining P, and P; by an edge if and only if
d(P, P;) > d, ., then G" contains no complete subgraph. Applying Turan’s
theorem to this G” we obtain a slightly simplified version of Turan’s distance-
distribution theorem [92]:

Theorem 12.1. For any {P,, ..., P,} € #, the number of distances d(P;, P;)
< dy,q is at least (n/2k)(n — k). ||

Under some quite natural additional conditions, Theorem 12.1 becomes
sharp.

Potential Theory

Let f(r) be a decreasing function, and let r, , be the distance between x and y
in R™. If D is a closed subset of R™ and p is a mass distribution (or measure)
on D, then the generalized potential is defined by

I(f) = J Jf(rx,y) du. du,.

DxD

(In classical physics, f(r) = —logr for m =2, and f(r) =r*~™ for m =
3,4,...) .
Theorem 12.1 immediately implies the following result (see [92]):

Theorem 12.2 (Turan’s Potential Theorem). IfD = R™is compact, if d, is its
kth packing constant, and if f(r) = ¢, for r € (0, d,), then

Probability Theory
We conclude with an application, due to Katona [60], of Turan’s theorem to
probability theory:
Theorem 12.3 (Katona’s Inequality). If & and n are vector-valued in-
dependent random variables with the same distribution, then

P(I& + 7l >x) = 3P(|¢ > x). |
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