NOTE ON A HYPERGRAPH EXTREMAL. PROBLEM

M, Simonovits, Eotvos L. University, Budapest

Introduction, We shall consider 3-uniform hypergraphs "without loops or
multiple edges.," This means that we shall consider & set X which will be called
the vertex-set of the hypergraph and a set of unordered triples from X called the
triples of the hwpergraph. The expression "without loeps" means that each triple
has 3 different elements and the expression "without multiple edges" means that
each triple can occur at most once in the set of edges.

Problem, Let L be a family of hypergraphs. What is the maximum number of
triples a ﬁypergraph on n vertices can have if it does not contain a subhyper-
graph isomorphic to some members of L ? For a given finite or infinite family L ,
the problem asked above will be called an extremal problem; the maximum will be
denoted by ext(n ; L) ; the members of L will be called sample hypergraphs, and
the hypergraphs attaining the maximum generally are called extremal hypergraphs.

Definition. The r-pyramid L

X 't
hypergraph defined on the r + t vertices

based on a polygon of t vertices is the
xl )---;xr 5 yl J"OJyt St ’y‘b’yt+l= 'Yl
and having the triples

(xi’yj ’yj"'l) (i=l Jesse) r ;j=1 LR R RS t)
Further, Lr is the family of all the r-pyramids Lr £ P A o W et
A
Theorem. ext(n ; L3) > (% +0(1) ) n8/3 "
(This means that there are hypergraphs with n vertices and almost > n8/3
[
triples which do not contain any 3-pyramid.)

Remarks, 1) In [1] we needed and proved the following lemma:

(1) ex‘b(n;Lr)=a(n3'%) R

This lemma was needed to prove that a 4-colour-critical hypergraph cannot have too
many independent vertices., As a matter of fact, we needed this result only for

r =2 , At the same time W, Brown, P, Erdos and V. T, Sos, [1] among some other

hypergraph extremal theorems proved that if T is the family of sample hypergraphs
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obtained from the triangulations of the 3-sphere, then
=
(2) ext(n 3 T) = O(n3 - 2) :

They used the fact that T contains L, , proved (1) for r =2 , from which (2)
followed trivially. Using a finite geometrical construction, they also proved that
(2) is sharp, i.e. the exponent is the best possible. We used a so-called proba-
bilistic argument to prove the weaker assertion that (1) is sharp for r =2 , The
main purpose of this paper is to prove that (1) is sharp for r = 3 as well,

2) There is a result of Kovary, Turan and T. Sos [3] asserting that
if K2(p , @) 1is the complete bipartite graph with p and q vertices in its

first and second classes respectively, then
i

5=
(3) ext(n ; Ky(p , @) ) =0(n® " P), (p<aq)
It can be conjectured that this result is the best possible; however, this is not

proved except for p=1, 2, and 3, If we can prove that (1) is sharp for

4 ., This suggests that
Lo,

r =4 , then it will follow that (3) is also sharp for p

it will be difficult to prove the sharpness of (1) for r

]

The construction, The construction given below will be based on the con-

struction of W. G. Brown [L4], showing that (3) is sharp for p = 3 . In view of
the second remark, this is not "surprising" at all, First weldefine the graph of
Brown, Let p be an odd prime and the vertices of our graph be the points in the
3-dimensional affine space over the field GF(p) , i.e. over the field of residues
mod p .

Let us join two points x and y by an edge if

2
(xi = yi) = a
!

where a is a quadratic residue or non-residue depending on whether p has the

(%)

e w

i

form 4s +3 or s+ 1, a#0 and is constant for a given graph. According to
& well-known theorem of Lebesgue [5, p. 325, the valences of each vertex will be

2 S
P =~ p and, as Brown proves, this graph never contains a K2(3,3). Let us join 3
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points x , ¥y , 2 in the graph of Brown by a triple if

2
(xi iy zi) =a,

(5)

Il 4w

i=1

This hypergraph contains some 3-pyramids of very special "position". We omit a

few triples and prove that the obtained hypergraph does not contain 3-pyramids. Let
us denote the graph of Brown by B , the hypergraph defined above by A and let U
be the hypergraph obtained from A by omitting all those vertices x = (xl, Xp 5 x3)

for which

6) at least one of x. , X, , X, vanishes .
Lo Ty

Of course we omit all the triples at least one vertex of which has already been

omitted, Since in U each coordinate can be chosen in p - 1 different ways,

U has
(7) (p - 1)3
4 .
vertices. For every edge (x , ¢) of B , there are ?»5-»- vairs (y , z) such

that y + z 5“5 » ¥ # zZ,Y # X052 7 X . These (E > ¥ s 2z) triples will belong

to A and each triple of A can be counted only 3 times this way, so A has
8 5
% + O(ﬁ?) triples and each vertex of A has the valence - O(ph) . Since we

g

omitted only O(pg) vertices, the number of triples in U is

8
(8) 2+ o(p')

We shall prove that U does not contain 3-pyramids.

Let us suppose that the vertices X5

define an L3 s in U . The triples of this L3 , k are the triples (gi, lj s

¥j+1) . Let w, = - (Xﬁ By, 1) - According to (4) and (5) the vertices x;

(i=1:2.\ 3) and 13 (‘j‘_‘l.’--uk)

are Jjoined to the vertices Ej in the graph B . We know that the vertices X,

are all different and that the graph B does not contain a complete bipartite
graph with 3 vertices in each class. Hence there are at most 2 different ver-

tices among w. On the other hand

l J...,Ek .

(9) (o=, S mp iy ey y, =

. = e - - '.Ot
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This gives that the set {Ej t J=1,40., K} has exactly 2 elements and every

second element of it is the same. Therefore

(10) k=2m and w,, =u

_23 —-’wej-l= (vj:ll"',!m)’ll_#x‘

I<

Let us notice that from (9), (10) and follows

Som+1 74

Oalyy =) = 5) $oeed W, 3~ Moy - q) * Won - 1770 ) 212)
and, since u % v , m must be a multiple of p . Until now we considered the
larger hypergraph A . It is easy to see that A can contain 3-pyramids. However,
U cannot contain these subgraphs. Indeed, the vertices éﬁéi e form an arithmetic
progression of vectors with increment u - v . Hence at least one coordinate, e.g.
the first of u - v , is different from O ; therefore, the first coordinates of the
vectors &j 21 form an arithmetic progression of residues mod p . Since the num-
ber of elements in this progression is at least p , at least one of them must be
0 ; hence the corresponding é#gj 4 7 does not belong to U . Thus, (7) and (8)
complete the proof of our theorem if n = (p - 1)3 . Since ext(n ; L) is monotone
increasing in n and the primes are fairly dense among the integers (i.e. for every
€> 0 the interval (n - en , n) contains a prime if n is large enough), our

theorem follows for every n .
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