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ON COLOUR-CRITICAL GRAPHS

by
M. SIMONOVITS

Notations. Since this paper deals with colouring problems, the graphs, considered
by us are undirected graphs without loops and multiple edges. If G" is a graph, »
denotes the number of its vertices. y(G") is the chromatic number of G”". Let x be
a vertex of G", st x denotes the star of x, i.e. the set of vertices, joined to x; o(x) is
the valence of x. Let e be an edge (or x be a vertex) of G", then G"—e (or G"—Xx)
denotes the graph obtained from G" omitting e (or omitting x and the edges, incident
with it).

Introduction

The concept of the critical graphs was introduced by G. DIrRAc, [1], [2]. Let
G be a k-chromatic graph and e be an edge of it. e is said to be critical, if y(G—e) =
= k—1. The graph G is critical, if each edge of it is critical. In our case G is called
a critical k-chromatic or shortly a k-critical graph.

The following two problems of T. GALLAI are investigated in this paper:

(A) For given k, n and m how many independent vertices of valence =m can
be contained by a k-critical graph of n vertices?

The maximum will be denoted by i(k, n, m).

(B) a(G) denotes the minimum valence in the graph G. For given k& and n how
large can o(G") be if G" is k-critical.

The first part of this paper contains the following results:

THEOREM 1. Let 4 =k =m+1 = n, then

k—1 1

(1) n—i(k, n, m) z% Vk—2)!nm .

Clearly i(k, n) = i(k, n, k—1) is the maximum number of independent vertices
a k-critical graph of n vertices can have. Theorem 1 implies

1=

) , n—ilk,n) = 5 Vk—1)!n.

This result is not too far from the best possible in the following sense:

: Clearly, this theorem gives an estimation for every k-critical graph, while theorems 2, 4, 5
are constructions ,,only“‘.
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68 M. SIMONOVITS -

THEOREM 2. Let k=4. Then for infinitely many values of n

1
3) n—i(k,n) = 0[n2[£_3_1]].
If k=4, one can improve Theorem 1 in the following way:
THEOREM 3. Let n = m+1 = 4. There exists a constant ¢, >0 such that
4) n—i(4, n,m) = c,(nm)?>.

The technique applied to prove Theorem 3 gives also some sharpening in the
case k=4, but the value of k is greater, the obtained result is relatively the worse
and the proof becomes very complicated ; therefore this case will not be investigated.

The second part of the paper contains a construction of a 4-critical graph
W" depending on some parameters. Choosing these parameters in two different
suitable ways we obtain the following theorems: '

THEOREM 4. Let n be an even integer, large enough. Then

) n—i(4,n,m) = 20y nm.

THEOREM 5. Let n be an even integer, large enough. Then there exists a 4-critical
graph W*" such that

3
(6) o(W") = g
This result can be sharpened. Let ec (G) denote the edgeconnectivity of a graph
G, i.e. the least integer 9 such that omitting 3 suitable edges of G we may obtain a
disconnected graph from it. Clearly ec (G)=0c(G).
I. JACOBSEN asked, what can be said about the edge-connectivity of a 4-critical
graph? The example, proving Theorem 5 also proves

THEOREM 6. Let n be an even integer, large enough. There exists a 4-critical graph

W*" such that
i 3

@) ec(W") = Vg—

Here I have to make some remarks on the history of these results. W. G. BROWN
and J. W. MooN gave a construction [3] which proved for infinitely many » that

n—i(4,n) = 0Wn).

Applying Lemma 1 to a 6-critical graph, constructed by G. DrAc, which had 2n
vertices and n?+2n edges, I could prove only :

(3% n—i(6,n) = 0(Vn)

(for infinitely many ») but this result is essentially weaker than the result of BROWN
and MooN. Last September (1969) B. Tort constructed a 4-critical graph I' ()
which had 4n vertices and ~~n? edges. Applying Lemma 1 to TorT’s graph I could
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ON COLOUR-CRITICAL GRAPHS 69

already prove (3*). T. GALLAI pointed out that the set of many independent vertices
in both proofs consists of vertices of valence 3. This note led B. Torr and me to
Problem (A). We solved this problem and besides Problem (B) as well independently
from each other at the same time and in very similar ways: both our proofs apply
my splitting method (i.e. Lemma 1) in a modified form to the original graph of
B. Torr. The most important differences between our constructions are that

(1) Instead of Lemma 1l B. Torr applies two similar lemmas and applying
them succesively to the graph I'(n) he builds up the desired graphs. In my proof
no splitting method is used explicitely, I construct a graph W” directly and prove,
that it is 4-critical. (I used the splitting method only to find the graph W".) From
this point of view B. Torr’s proof is algorithmic, while mine is more direct, con-
structive.

(2) My graph consists of 3 similar parts, each of which is very similar to the
graph of B. Torr corresponding to Problem (B). From this point of view my con-
struction is a little more complicated. The reason, why I had to “stick’ together
three such blocks is, that I split the vertices of TorT’s original graph into vertices,
having disjoint stars, while B. TorT did not.

Both the methods have their advantages and thus B. TorT and I decided to
publish both of them and almost together: the next paper of this journal contains
a short description of B. TOFT’s results [4]. The reader can also find the description
of B. ToFT’s original graph in it. An other source to find I"(m) is [6]. Finally, one
can obtain I' (n) from the block Q constructed in the second part of this paper taking
p=g=1, a=d=n.

I recommend the reader to think over, that this graph is 4-critical, because this
will help to understand many things, connected with my construction.

Final]y I remark that in the proofs I shall never verify that a given colouring
of a given graph is good or not. The reader can easily prove in this cases, that no
two vertices of the same colour are joined.

Added in proof. (February, 1973.) Last Summer I gave a lecture on a ,, Working:
Sminar on Hypergraphs” (Columbus, Ohio, USA) the bases of which was the hyper-
graphtheoretical part of this paper. It tumed out, that W. G. BRowN, P. ERDGs
and V. T. S6s [AP 1] also proved Lemma 2 for the special case s=2. At the same time
I succeded to prove that Lemma 2 is sharp for s=3 as well (AP 2]. Finally, what
is perhaps the most important, L. LovAsz [AP 3], improving the methods of this
paper and the construction of [3] recently has proven that there exist two positive
constants ¢; and ¢, such that

eyn'*-2 = n—i(k,n) = cyn'/*-2
(The corresponding 3 papers are sumbitted but not published yet.)
[AP1] BrowN, W. G., ErDOs, P., S6s, V. T., On the existence of triangulated spheres in 3-graphs,
Periodica Math. Hung.
[AP2] StmoNoviTs, M., Note on a Hypergraph Extremal Problem, Proc. of Working Seminar on

Hypergraphs, Columbus, Ohio, 1972, Springer Verlag, Lecture Notes.
[AP3] LovAsz, L., Independent sets in critical chromatic graphs. Studia Sci. Math. Hungar 8 (1973)-
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70 M. SIMONOVITS

§ 1. The upper bounds

First T introduce the concept of splitting a vertex x into the vertices Xy, ..., X,.

Definition. Let G and G be two graphs and x€G, x;, ..., X, € G be vertices given
in them such that x
G—x=G—X,—X;,— - —X,

and st x = |J st x; hold. We shall say that G can be obtained from G by splitting x
i=1
Tht04 Xt % 6
The following lemma is of great importance in our investigations:

LemMA 1. Let G be a k-critical graph and x be a vertex of it. There exists a k-critical
graph G, which can be obtained from the graph G by splitting x into v = }j—?% new

vertices Xy, ..., X,. Besides o(x;) = k—1, i=1, ..., v.
o(x : :
PrOOF. Let s = [k( 1)] and let us consider s new vertices X, ..., x,. Let us

join x; to k—1 vertices of st x in the graph G—x so that st x;7st x; unless i=j.
Thus we split x into x,, ..., x,. This procedure does not increase the chromatic
number, since X, , ..., x, are independent. Thus the obtained graph G is at most
k-chromatic. We prove that y(G*)=k. _

If (G* =k—1 held, we could colour G* by 1,2, ..., k—1. Since each
subset of G—x consisting of k—1 elements is joined to an x;, it must be coloured
by at most k—2 colours. So st x is coloured by at most k—2 colours. Restricting
this colouring of G* to G—x we can extend it to G giving to x the colour
from {1, ..., k—1} which does not occur in st x. This implies 7(G) = k—1 contra-
dicting ¥ (G)=k. Hence x(G*)=k.

Each k-chromatic graph contains a k-critical subgraph and this subgraph con-
tains all the critical edges and vertices of the graph (where a vertex is called critical
if omitting it we obtain a k— 1-chromatic graph).

Let G be a k-critical subgraph of G*.

a) G contains G—x. In order to prove this it is enough to prove that each edge
of G—x is critical. If e is an edge of G—x, y(G—e) = k—1 since G is k-critical.
G* — e can be obtained from G — e by splitting x into x4, ..., X, therefore y(G™—e) =
= v(G—e) = k—1, i.e. e is a critical edge in G*. Thus e belongs to G.

b) If y is a vertex of st x, then there exists an x; joined to y (in G ). Otherwise
G could be obtained from G —(x, y) by splitting x into xy, ..., X, and then omitting
some vertices and edges from the resulting graph. This would imply 7(G*) = k—1.
But this is a contradiction showing that stx = |J st x; where the stars st x; are

X EG
counted in G.

¢) Now the proof is completed. Indeed, we know that G is k-critical. a) and b)
together state that G can be obtained from G by splitting x into some x;’s. Since
a k-critical graph does not contain vertices of valence < k—1, thus o(x) = k—1
if x;€G. According to b) 6(x) = > a(x;), i.e. the number of x;’s, belonging to G,

o (x) x;€G

is at least o Q.e.d.
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Proor of Theorem 1. We have to prove that if G is a k-critical graph and x,, ...
..., X, are independent vertices of valence =m in it, then

k—1

= n—-—lz— V(k—2)!mn .

Let us split the vertices x,, ..., x, into the vertices {x; ;};=, successively: the
; jévi
graph, obtained in the (i—1)th step contains x; and x; has the same valence in it
as in the original graph. We split x; into x; ;, ..., x; ,, so that the resulting graph is
k—1

o (x;)
remain untouched.
In the last step we obtain a k-critical graph G*. Since GV is k-critical, st x; ;
#st x; ; unless (i, j)=(k, I). Further, st x; ; is a subset of G"—x; —--- —Xx,, consisting
of k—1 elements. Hence

also k-critical and v; =

.Since x, ,..., X; are independent, the vertices x;, {,..., X;

(8) [z:i] Ll e

M

) n—t= Yk—2)mt

follows immediately from (8) and if n=2%"1¢, (8) implies (1). If n=2"1¢, then

s BRS ket Jeim k=2)!
n I——u—zk_l =1 > nm Sk—1.> 1M =1 nm o1

which gives (1) also in this case:

k=1 1

n—t::*nl[l*zkl—_l]:* Vn_m(krz)z'--z- Q.e.d.

Since (8) is a very rough estimation, one can try to improve it. As we mentioned
already in the Introduction, this can be done, though for k=4 it is rather complicated.
Thus we shall improve Theorem 1 only for k=4 and only later, since first we prove
Theorem 2, showing, that Theorem 1 is sharp in a certain sense.

PRrOOF of Theorem 2. Let G™ be a k;-critical graph of n, vertices for /=1, ..., T
and /;={x; ;};=¢, be a set of independent vertices of valence k;—1 in G™. We con-
struct a 2 (k;—1)+1-critical graph GY.

Let G be the following graph: we join each vertex of G'—1I, to each vertex
of G'—1, for 1=/<m=T. Then we consider II¢, new vertices P (i, ..., i) where
n=1,2,...,¢. The vertices P(i;, ..., ir) form a set of independent vertices ‘of
valence 2(k,—1): P(iy, ..., i) is joined to a vertex u€G™—1, if and only if x; ; is
joined to u in G™:

T
SUP (1,5 ir )=" 1) sty
1=1
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72 M. SIMONOVITS

1. x(G,) = Z(k,—1)+1. Indeed, G—1, is a k;—1-chromatic graph and each
vertex of G— I, is joined to each one of G"=—I,, if /#m. Thus the subgraph G*, span-
ned by the graphs G™—1I, must be coloured by at least X(k;—1) colours. If G* is
coloured by exactly X (k;— 1) colours, then each G —1I, is coloured by k;—1 colours.
Since y(G™)=k;, there exists an x,, ; such that st x,, ; is coloured by at least k;—1
colours. Hence st P(z,, ..., T7) is coloured by exactly Z (k,—1) colours, i.e. x(G") =
= Y(k,—D+1.

2. Nowwe prove that each P(i;, ..., i) is critical. Let us consider a P(ty, ..., T7)-

We have to prove that 3
1(GY—P,(25 .o tp)) = 3 (a—1).

Since x(G™—x,,;) = k;—1, G"—1I, can be coloured by k,—1 colours so that each
st x; ; but st x,; is coloured by = k;,—2 colours. Let us fix such a colouring for
each Gn—1I,. Now st P(i, ..., iy) is coloured by at most X (k;—1)—1 colours unless
i1=74,...,i, =77. Thus the colouring of G* by X (k;—1) colours can be extended onto
G¥N—P(ty, ..., T7) 1. Y(G¥—P(1y, ..., Tp) = Z(ky—1).

3. Let now G™ be a X (k,—1)+1-critical subgraph of G¥. According to 2 G™
contains all the vertices P(i,, ..., iy). This proves

(10) M—i(Z =D+, M) = 3 (5= 6.

Let now G" be a 4-critical graph with n"—O(Va independent vertices. According
to [3] or according to Theorem 4 there exist such graphs for infinitely many ». Set-
ting Gn=G" and k,=4 we obtain a 37+ l-critical graph G™. Here

m—& = 0(/m) = 0(Vn)
and from this and (10) we get A

M—i3T+1, M) = 0(Vn).
Since M = [] & ~nT,

1

M—i(3T+1, M) = O(M?T).

This proves Theorem 2 if k = 3T7+1. In order to obtain Theorem 2 in the other
cases we apply the trivial inequality

(11) itk+1,n+1) = i(k, n)
Q.e.d.

Remarks. 1. If we apply our construction to an odd circuit, we get for infinitely
many M

(12) M—i(k, M) = O [M[L;_l]]

which is only slightly weaker, than Theorem 2; on the other hand we do not need
BrowN and MooN’s result in this case.

2. The graph G~ in the proof of Theorem 2 is a critical graph, i.e. GE=GX,
This can be proved very easily. '
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Now we give the mentioned sharpening of Theorem 1. As we have mentioned
in the introduction, we consider only the case k=4. In this case Theorem 1 gives.

3

(13) n—i(4,n,m) = —;w 2mn

while Theorem 4 gives only
(14) n—i(4, n,m) = O(Ynm)
(where n is even and sufficiently large). Improving (8) we shall prove
THEOREM 3. Let 4 = m+1 = n, then there exists a constant ¢=0 such that
(4) n—i(4,n, }ﬁ) = c(nm)?/>.

Proor. I shall not introduce the concept of triangle-graphs but refer to [5]..
Some parts of the proof will be omitted.

Definition. C;,5,¢ denotes the following triangle-graph: the vertices of Cs.s.¢
are uy, ..., Us, vy, ..., 0, and the triangles of it are the triplets (u;v;v;,,), where
Cai=vy and i=1,....s5 j=1, ...t

LEMMA 2. If G™ is a triangle-graph of m vertices which does not contain a B
Jor t=3,4, ..., then G™ has at most

1
(15) [%+o(1)] m s
triangles.
The proof of Lemma 2 will be given later. Now let us consider the vertices of
G"™" = G"—xy— - —x, in the proof of Theorem 1 and the triplets st Xpsii=l,o. 00

J=1, ..., v;. These vertices and triplets define a triangle-graph of Xv; triangles.
We prove that this triangle-graph does not contain a C3 51> thus Lemma 2 gives
Zv; = O((n—1)5/?) instead of (8). From this we obtain Theorem 3 by the same way
as we obtained Theorem 1 from (8). We call a triangle-graph “good” if for each
triangle of it we can colour its vertices by 3 colours so that this triangle is coloured
by 3 colours but all the others by at most two ones. The reader can easily prove
that C; ;, is not “good”. Since a subgraph of a “good” graph is also “good”, a
““good” graph cannot contain C; , ,, thus a “good” graph of m vertices has at most
O (m>?) triangles, (Lemma 2). Thus it is enough to prove that the triangle-graph,
constructed on the vertices of G"—x,—---—x, is “good”. Since GV is 4-critical,
it has a 4-colouring, such that the colour of x; ; is not used in G¥N—x; ;. In this
case st x; ; is coloured by 3 colours and st x;; is coloured by at most two colours,,
if (k, 1)#(i, j). G*—x, —--- — x, is coloured by 3 colours. Thus the considered triangle-
graph is “good”. Q.e.d. :

ProOF of Lemma 2. The Lemma is similar to Theorem 1 in a paper of P. ERDGs
[5] and the proof is also almost the same. '

Let G™ be a triangle-graph, 1, ..., m be its vertices and 7 denote the number of
its triangles; let A(Z, j) denote the set of vertices k such that {i, j, k} is a triangle of
the graph. Clearly
(16) 3= 2 4G

l=i<j=m
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A setu,, ..., u,and a pair (i, /) will be called a “flower” if u;EA(i,j) (I=12,8)

- . . - 4 = A i j (13 )
‘Since (7, j) is contained in [‘ (S’_‘] )‘] flowers™,
|4 @, D)
(17) F= > [ i
l=i<j=m )

is the number of “flowers’ contained in G™.

On the other hand, if u,, ..., u, are given, at most n pairs (i, j) form a “flower”
with u, , ..., u,, otherwise there would be a cycle (v;, ..., v, v4) such that u;, ic i
formed a “flower” with each pair (vv;4+,) when /=1, ..., ¢, v, =v;. Thus the

vertices u; , ..., Uy, Uy, ..., 0, would determine a Cj  , in G™. This is a contradiction
and hence

n
(18) n [s] = F.
(16), (18) and the convexity of [J:] for x=s imply
1/s it
t = {26 +o(1)]n3 s Q.e.d.

Remark. One can prove that Lemma 2 is sharp for s=2:if c is a positive, but suffici-

‘ently small constant and we select each triangle-graph having m vertices and cm” 2
triangles with the same probability, then the selected graph will not containany C; , ;
with probability, tending to 1 (when m tends to infinity). I do not know, whether The-
.orem 3 is sharp or not.

Now we construct a graph proving Theorems 4, 5, 6.

§ 2. The lower bounds for i(k, n, m)

We restrict our investigations to the case k=4, because

a) If G" is a 4-critical graph and we join the vertices of a complete (k—4)-graph
to each vertex of G", then we obtain a k-critical graph. Hence our constructions give
also some lower bounds for the general case.

~ b) The problem (B) is not too interesting for k=6: Let y(n) denote a circuit

of n vertices. If we join each vertex of a y(n) to each vertex of another y(n) and n is
odd, then we obtain a 6-critical graph of 2n vertices with minimum valence n+2.
(This construction is due to G. DIRAC.)

The desired results will be obtained by a construction: we construct a 4-critical
graph depending on many different parameters and consisting of 3 or more similar
blocks.

The block Q.

The vertices of the graph Q can be divided into four parts, which will be called
the stories of the block. Let a, d, p, ¢ be given odd integers. '

The second story consists of apg independent vertices, denoted by B, J, x),
wvhereid—1, i r=lo i imas =1
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The third story consists of dpq vertices, denoted by C(k, /, y), where k=1, ..., g;
I=1,...,d; y=1, ...,p. B(i, ]}, k) is joined to C(k, I, i) for every i, j, k and I The
set {B(z I x)} will be called a class and denoted by C;. Slmllarly, {C(k l, y)}l -
is the class C,. "The sets {B(i, j, x)}, will be called groups and denoted by G; .. Sim-
ilarly, {C(k, 1, y)}, is the group G,,.

The first story consists of the vertices A(i,j); i=1, ...,p; j=1, ..., a. These
vertices form a circuit y(ap): A(i, /) is joined to A(i’,j’) if i=i" and |j—j’| =1
or if i” = i+1, j=a, j’=1 (or conversely) and A(p, a) is joined to A(1, 1). Fixing
i we obtain the arcs o; of the circuit y(ap). The vertices of the first story are also
joined to some vertices of the second one: A(F, j) is joined to B(i, j, x) for x=1, ..., q.
The fourth story is similar to the first one: it consists of the vertices D(k, [);
k=1, ...,q; I=1, ..., d which determine the circuit 7(dg) consisting of the arcs &,.
D(k,I) and C(k,/, y) are joined.

This is the block (graph) Q. First we investigates its 3-colourings. We need the
following definition:

Definition. If y is an odd circuit, a 3-colouring of it is called elementary if one
of the three colours is used only once. This colour and the corresponding vertex
are called the CXLCp'[lOI‘ldl colour and vertex respectively. If y is divided into arcs,
a 3-colouring of it is called periodic if each arc is coloured by two colours.

LemMA 3. Let be given a 3-colouring of Q. Then either y(ap) or 7(dq) is coloured
periodically.

Rema:k In the case p=¢g=1 a=d=n we obtain B. TorT’s graph of 4n vertices
and ~n? edges. Since neither y(a) nor 7(d) has perlodlc colourings, x(Q)=4. It is
easy to prove that Q is a 4-critical graph.

ProoF of Lemma 3. If neither y(ap) nor y(dg) is coloured periodically, then
for an 7 and a k both y;(a) and y,(d) are coloured by 3 colours. Hence both the sets
{B(,j, k)}; and {C(k, [, i)}, are coloured by at least two colours. These sets span
a complete bipartite graph, therefore the colours, used at the two sets are different,
L.e. Q is coloured by at least 4 colours. This contradiction proves Lemma 3.

Lemma 3 concerns with the question, how Q can not be coloured by 3 colours.
The next question is, how it can.

LemMA 4. For given i, j and k, if g=3, then Q can be coloured by 1,2 and 3 so
that the only vertex of vy(ap) coloured by 1 is A(i,j) and if D(k’,1) is coloured by
2, then k'=k.

Proor. Let us consider the following colouring of Q:

a) y(ap) is coloured by 1, 2 and 3 elementary: A(i, j) is the only vertex coloured
by 1.

b) B(i,j, k) is coloured by 2, B(i,j, x) by 3 (xs¢k) and B(i*, j* x*) by 1 if
@*, 7N =G, 7).

c) C(k*, I*, y*) is coloured by 3 if k*=k and by 2 if k*#k.

d) Finally we have to colour §(dg). Let us colour D (k, [*) by 2 if I* is odd and
by 1 otherwise. The other vertices of 7(dq) span a path, which can be coloured by
1 and 3 since the vertices of the third story, joined to the vertices of this path are
coloured by 2. The obtained 3-colouring proves Lemma 3.
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Now we turn to the
Problém: How can Q—e be coloured by 3 colours if e is an edge of Q?
LEMMA 5. Let e and f be two edges of Q:

e=(B(i,j, x); Ck,1y), (i=y,x=k)

f=(4G,5): BG,J, x))-
Then both Q—e and Q—f can be coloured by 3 colours so that y(ap) and j(dq) are
coloured elementary, A(i,j) and D(k, 1) are the exceptional vertices.
If g is an edge of y(ap), then any given 3-colouring of 7(dq) can be extended onto
Q —g so that the path y(ap)—g is coloured by two colours.

and

PROOF. A) Let us consider the following colouring of Q—e: 7y(ap) and A(dq)
are coloured elementary, the exceptional vertices are A(i, j) and D(k, /) which are
coloured by 1 and 2 respectively. G; ; and G,..: are coloured by 3, all the other vertices
of the second story are coloured by 1 and all the other vertices of the third story are
coloured by 2. Trivially this is a good 3-colouring of Q—e. If we colour B(, J, x)
by 1 instead of 3, we obtain a good colouring of Q—/. This proves the first part of
our lemma. '

B) Let be given a 3-colouring of 7(dq) by 1, 2 and 3. Now we colour the second
sto:ry by 3, the first one by 1 and 2. Up to now no edge joins vertices of the same
co our. This 3-colouring can be extended onto the third story, since each C(k, [, )
is joined to some vertices of the second story, coloured by 3 and to one vertex of
the fourth story. Thus C(k, [, y) can be coloured either by 1 or by 2. Q.e.d.

We need also the following trivial lemma:

LEMMA 6. Let y(ap) be coloured periodically. Then the vertices A(i, 1) and A(i, a)
are coloured by the same colour and the set {A(i, 1)}; is coloured by exactly 3 colours.

PROOF. Since @ is odd and the arc {4(i, j)}; is coloured by 2 colours, A4(i, 1)
and A(i, @) have the same colour. Let us consider an odd circuit y(p) and colour
its ith vertex by the colour of A(i, 1). Since A(i, @) has the same colour as A(i, 1)
and is joined to A(i+1, 1), thus A(7, 1) and A(i+1, 1) have different colours. Thus
we obtained a good 3-colouring of y(p) and therefore {A(i, 1)}; is coloured by exactly
3 colours. Q.e.d.

Graphs with many independent vertices of high valence.

Let Q be a block, defined above, where
p=1, d=m, a=gqgm.

Let E be a new vertex and let us join each D(k, 1) to it. Thus we obtain a 4-chromatic
graph 5" which contains a 4-critical subgraph S”.

1. x(8™=4. Indeed, if Q is coloured by 1, 2 and 3, y(dg) must be coloured.
periodically, since (@) has no periodic colouring. According to Lemma 6 {D(k, 1)},
is coloured by 3 colours, hence E must have another, fourth colour.

2. Let e=(B(1,, x); C(x, I, 1)) and I>1. Then x(S"—e) = 3. Indeed, accord-
ing to Lemma 5 Q—e can be coloured by 1, 2and 3 so that only D(k, /) is coloured
by 2 in j(dq). Thus E can be coloured by 2. Similarly, one can prove that (8" —f) = 3
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and y(§"—g) = 3 if f=(4A(1, j); B(1,j, x)) and g is an edge of y(a) or 7(dg). (The
last two assertions will not really be needed.)

3. Since y(S")=4, S" contains a 4-critical subgraph S which contains all the
edges of S" mentioned in 2. This and y(Q)=3 imply that S contains all the vertices
of S". The vertices B(l,j, x) are ag independent vertices of valence =m. Thus
i(4, n, m)=aq. Here a=qm. Therefore

(19) n—i(4, n, m) = (a(g+1)+2mg+1)—dq = a+2mg+1 = 3mg+1 = 3Ymn.

This proves Theorem 4 for every m for infinitely many'n. Later we shall prove Theo-
rem 4 for every even and sufficiently large value of #.

The 4-critical graph W*".

First we define a 4-chromatic graph W” which has a lot of critical edges and then
we select a 4-critical subgraph W™" of it which will be just the desired graph. (L.e. W™"
will prove Theorems 5, 6.)

Let ¢ be an odd integer and let us consider # blocks Qg, ..., Q, with the para-
meters

il I =101

These blocks will be connected to each other in the following way:
E(i), F.(G), G.(k), Hi(k)

are new vertices. E. (i) is joined to 4.(i, 1), F.(i) is joined to A4.(i, a), G, (k) is joined
to D,(k,I) and H,(k) is joined to D,(k, d). (Here e.g. 4,(1, a) is the abbreviation
of A.(i,a,); generally the index showing, which block is meant will be omitted
where it causes no confusion.) Let us join each E.(i) to each F,,;(j) and each
G.(k) to each H_,,(l) for t=1, ..., t, where t+1 = 1. The obtained graph will be
denoted by W™

Investigating the colouring properties of the graph W" first we shall colour
the blocks Q. by 3 colours and then extend this colouring onto the whole graph.
The following assertion deals with the possibility of this extension:

(+) Let us suppose that some vertices of W" are coloured by 3 colours and
no edge joins vertices of the same colour. Let us also suppose that for a fixed 7 the
vertices of y.(ap) and 7,.,(ap) are coloured, the vertices of {E,(i)} U{F.,(j)} are
not. We can extend this colouring onto {E (i)} U{F,.,(j)} if and only if either
{4.(, 1)}; or {4.+1(J, @)}; is coloured by (at most) two colours.

Indeed, if both {4,(i, 1)} and {4..(/,a)} are coloured by 3 colours, then both
{E.(i)}and {F,.,(j)} must be coloured by at least 2 colours. Since each E.(i) is
joined to each F,. (), the set {4.(i, D}U {4, ,(j, @)} U{E,()}U{F.+(/)} must
be coloured by at least 4 colours.

On the other hand, if e.g. {4.(i, 1)} is coloured by 1 and 2, then we colour
E.(i) by 3. Since each F,.,(j) is joined to exactly one vertex of y .4 (ap), it can
be coloured either by 1 or by 2. This completes the proof of (+).

2. Now we prove that y (W™ =4. If we colour the blocks by 1, 2 and 3, then
at least ¢ circuits y,(ap) and 7 (dg) must be coloured periodically. Without the loss
t+1

2
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periodically and therefore there exists a = such that y_(ap) and y., ; (ap) are coloured
periodically. According to Lemma 6 both {4.(i, 1)} and {4.,(/, @)} are coloured
by 3 colours and this and (+) give that y(W")=4.

3. Now we show that almost all the edges of W" are critical. Because of the
symmetry of W” we may assume that the considered edges belong to the first block
or are of the form (G,(k,), H; (ky)) or (H,(ky), D, (k,, d)). Let us colour the blocks
Q;,Qs, ..., Q, by 1, 2 and 3 so that y.(dq) be coloured periodically and the colour
2 be used only on the arc @, ,,; 7.(ap) be coloured elementarily and only 4.(1, 2)
be coloured by 1. Q; is coloured similarly: in y, (ap) only 4 (1, 2) is coloured by 1
and in j,(dg) only some vertices of &, ,, have the colour 3. Q,, Qq, ..., Q,—, are
coloured conversely: in 7,,(dp) only D,,(k,, 2) has the colour 1 and only on «, ;,
is used the colour 2. According to Lemma 4 these colourings do exist. The following
scheme illustrates the situation:

R L T iR e B B X e T E e Tk e 1111 it | i © et M el | T o m ST 1T B IR

\ | "\ Here only Dy (k;d)is colored by 3
is coloured by2 ) | The 1stblock
{6:)} {HW)}

Fig. 1

Now we try to extend the given 3-colouring of the blocks onto the whole graph.
(+) quarantees that the sets {E.(i))U{F..,(j)} and {G.(k)}UH_ .,(])} can be
coloured by 1, 2 and 3 except in the case of {G,(k)}U{H,(k)}. Now we colour
{G,(k)}i 21, Y 2 and {H, (k)}; i, by 3 and colour G,(k,) by 1. The only vertex of
W which is not coloured yet, is H,(k,) and no edge joins vertices of the same
colour. If we colour H,(k,) by 1, then only (G,(k,); H, (k;)) has endpoints of the
same colour; if we colour H, (k,) by 3, then only (H, (k,); D, (k,, d)) has endpoints
of the same colour. Thus both (G,(k,); H, (k,)) and (H, (k), D; (k,d)) are critical
edges in W™

Because of the symmetry all the edges, not belonging to the blocks are critical.
(Besides, y(W"—(Go(ko); H, (k,))=3 implies x(W")=4. This and 2 give y(W")=4.)

4. Now we turn to the following question: which edges of a block, say of Q
are critical? !

Let 4 be an edge of Q, and the blocks Q, be coloured as in 3 if t1. The block
Q, — 4 is coloured by 1, 2 and 3 in the way, described in Lemma 5. Because of (+)
all the vertices of W” but the vertices of {E,(i)}U {F,(/)} and {G,k)}U {H, ()}
can be coloured by 1,2 and 3 so that no edge joins vertices of the same colours.
This colouring can be extended onto {E;(i)}U{F,(j)} and {G,(k)}U{H (D)} if
and only if both {D, (k, d)}, and {4,(, 1)}; are coloured by two colours. According
to Lemma 5 this can be achieved if

a) h is an edge belonging to 7y, (ap) or to y,(dq).

b) h:(Al (I).])a Bl (!a]a x))’ J¢1
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¢) h=(B(i,J, k); C,(k, 1, i)), j#1 and I#d,. Thus the edges described in a),
b), ¢) are critical. Because of the symmetry the following edges are also citical:

b’) /?:(AI(I’]); Bl (13.}5 JC)), J'#dl

¢) h=(B,(,J, k); C,(k, 1, i)), j=a, and I>1. Thus all the edges of Q, are:
critical except perhaps some edges of form (B, (i, /, k); C, (k, I, i)) where either j=/=1
orj=a;, l=d,.

5. Let W" be a 4-critical subgraph of W”. 3. and 4. give that W" contains all
the edges of W" except a few one of form (B.(, ), k), C.(k, 1, i)) where j=I=1 or
j=a_l=d . Thus

(20) c(W") = a(W")—1 = minmin(p,, q,, a,,d) =:m+1.

Here we applied that the valence of vertices E, (i), 4,(i, /), B,(i, j, x) are at least
p,+1, g,+2, d, +1 respectively and the valence of the other vertices can be estimated
from below similarly because of the symmetry.

If ec (G) denotes the edge-connectivity of the graph G, then trivially ec (G)=a (G)..
In our case

(21) ec(W") = a(W").
For the sake of simplicity we prove only
(217 ecW=oc(W")—1 = m.

To prove this we need the following trivial notice:

(++) Let G be a graph and omit m—1 edges of it. Let G* denote the obtained.
graph. If K is a connected component of G* and 4 is a vertex of G, joined by m
independent paths to m vertices of K in the graph G, then 4 also belongs to K.

Let us omit m—1 edges of W" and denote the obtained graph by W*. Let
K. be the component of W* containing E,(1). In order to prove (21*) we have to
prove, that K contains all the vertices of W*.

The paths E (1)—F,,,(i)—E.(i,) are independent in W?", thus E.,(i,)€K..
The paths F.,(iy)—E, (i) are also independent, hence F,,,(i,)€K,. Considering
the paths

Dr(k') !)_ Cr(’lca la i)'_”Br(fa 2’ k) _Ar(z.i 2)_At(ls 1)_ Er(i)

for i=1, ..., m we obtain that D,(k, [)€K..

Because of the symmetry D, (k, I) belongs not only to the component of E,(1)
but to the component of F,(1), i.e. to K,_,; as well. Thus K,=K,_,, i.e. the com-
ponents K. are identical with each other. This common component will be denoted
by K hereafter. The paths G.(ko,)—H,,,(k)—G,(k)—D,(k, 1) for k=m, k#k, and
G (ko) —D.(ko, 1) show that G, (ko)€ K. Similarly H,(k,)€K, i.e. each vertex not
belonging to the blocks belongs to X and the same holds for the vertices of the fourth
stories. Because of the symmetry the vertices of the first stories also belong to K.
The only assertion we have to prove is that C,(k,, [,, iy) €K too.

Since the paths C.,(ko, ly, io)—B,(ip j, ko) —A.(iy, j) and C.(kq, Iy, is)—
—D_(ko, lo) are independent, C,(k,, /y, i;) € K and this completes the proof of (21*).
(If I,=1 or ly=d,, one of these paths is not contained by W"!)
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Proor of Theorem 6. Let us consider W* with the following parameters:
=3, p.=q.—a.—d=V.
"Trivially the number of vertices of W" is
(22) n=6(>+v+2v)

while ec (W")=n. This proves Theorem 6 for infinitely many integers.

If we wish to prove Theorem 6 for every sufficiently large even integer, we can
-do it in the following way:

First we suppose that z is not divisible by 4. Let us consider a W" with 19 blocks

.and let
p‘l'=v+st’ q-;:v-_at’ ar=dt:v

for 1=t=4, where ¢ is odd, ¢_ is even,
P.=V. g.=v+2, a+d =2
for 5=1=19. Since W" has
(23) 1= 3 pde(@+d)+(p.a,+q.d) +2(p.+47)

“vertices in the general case, now it has

4 19
(24) (38v® +98v2 +76v+60)—2v > e2+2 3 d,
t=1 =5

vertices. Here the first and second terms are divisible by 4 while the third one is not.
“Therefore (24) is not divisible by 4. :
Now we fix the least odd integer such that 38v?=n. Clearly

98y2 = 38v3 + 9812 +76v—60—n = O(v2).

:Since every integer is the sum of four square numbers, we can achieve
4
n—20v = 38v3+98v2+76v+60—2v > &2 = n—12v.
1
Finally we select d, from [i—g v, %—;— v] so that (24) be equal to n. Since ¢, = o(Vv)

10 :
.and at,d,%-i-g v thus Theorem 6 (and Theorem 5 too) is proved.

The case, when » is divisible by 4 can be treated similarly. The only change
is that we take 5 blocks of the first type and 14 blocks of the second type. Thus
W™ has

5 19
n =38y 4942 4+76v+60—2v > ei+2 > d,
=1 =6
“vertices, what is divisible by 4. This completes the proof.
A second proof of Theorem 4. We consider a W" with 21 blocks. The first block

‘has the parameters
g1=q, di=m, a;=gm and p;=3.
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Let Qr denote the subgraph of W" spanned by Q, and the vernces E.(D), F.(J),
G,(k), H,(]). The number of vertices of Q (18

(25) 3g(gm—+q)+3gm+qgm+4(q+3) = 3¢*°m+Tgm+4q+12 =: f(q, m)

The proof of Theorem 6 shows that if n, is a sufficiently large even integer: n,>n,,
then the other parameters can be chosen so that the number of vertices of the blocks

Qz, s 620 is exactly n,. Let us choose g so that

Y f(q,m)én—noéf(q-{—l,m)
In this case

0 = (n—no)—flg, m) = flg+1, m)—f(q, m) = 6mq+10m +4.

If the parameters of the other blocks are chosen su1tably, the graph W" has exactly
n vertices. Since the second story of Q; contains 3¢?m independent vertices of
valence =m, we conclude

(26) n—i(4, n,m) = O(gm)+ny, = O(Ynm)
(here we applied gm = Vg?m-Vm = OV nm .)

Final remarks. Theorem 4 holds not only for even integers, e.g. the first proof
contains a construction having odd number of vertices. If we consider the same
block Q as in the first proof of Theorem 4 and E, E,, ..., E,, Fy, ..., F,, G4, ..., G,
are new vertices, where {G}}; span an odd circuit, F; is joined to one of the vertices
G, and each F; is joined to each E;, finally E; is joined to D(i, 1), then we obtain
a graph S” containing a 4-critical subgraph S, which proves Theorem 4 for every
sufficiently large n.

It would be interesting to have some non-trivial upper bounds for (B). Finally
I remark that the multiplicative constants can be improved in many statements of
this paper. Since the order of magnitude of the upper and lower bounds are dif-
ferent, I was not interested in the constants.
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