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Abstract: \We show that if Gis a Ramsey size-linear graph and x,y € IG)
then if we add a sufficiently long path between x and y we obtain a new
Ramsey size-linear graph. As a consequence we show that if G is any
graph such that every cycle in G contains at least four consecutive vertices
of degree 2 then G is Ramsey size-linear. © 2002 John Wiley & Sons, Inc. J Graph Theory
39: 1-5, 2002
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If G is a graph, write n(G) = |V(G)| for the number of vertices and ¢(G) =
|E(G)| for the number of edges of G.

It is well known that the Ramsey number (K3, T) = 2¢(T) + 1 for any tree T.
In the early 1980s Harary asked if r(K3, H) < 2e(H) + 1 for every graph H. An
upper bound was given in [4], later improved by Sidorenko [6], and then in 1993
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the “Harary bound” was shown to hold by Sidorenko [7]. This motivated the
following definition, which is equivalent to the one introduced in [5].

Definition 1. A graph G is Ramsey size-linear if there is a constant Cg such
that for any graph H the Ramsey number r(G,H) is bounded above by
Cge(H) + n(H).

Note that this implies r(G,H) is bounded above by the linear function
(Cg + 2)e(H) when H has no isolated vertices. In [5] the following results were
proved.

1. Any connected graph with e(G) < n(G) + 1 is Ramsey size-linear.

2. Any graph with ¢(G) > 2n(G) — 2 is not Ramsey size-linear.

3. Any graph of the form K; + 7T is Ramsey size-linear, where T is a tree
(or forest) and K| + T is the graph obtained by joining a single vertex v to
every vertex of 7.

4. Any (bipartite) graph with extremal number ext(G,n) = O(n*/?) is Ramsey
size-linear.

5. If G is obtained from G; U G, by identifying a vertex of G with a vertex of
G, and if G| and G, are Ramsey size-linear then so is G.

It is also clear that any subgraph of a Ramsey size-linear graph is also Ramsey
size-linear.

As a consequence of Property 2, the graph K4 is not Ramsey size-linear.
In particular it has been shown that

C(n/log n)*"* < r(Ks4, K,) < C'n®/(log n)>.

The lower bound is due to Spencer [8] using the Lovasz Local Lemma, and the
upper bound is due to Ajtai et al. [1]. Erdds [3] asked for a proof or disproof that
r(K4,K,) > n?/(log n)° for some c, offering US$ 250 for a solution.

It is therefore of interest whether any graph G which is a topological Ky is
Ramsey size-linear. In particular, is the graph G formed by subdivision of an edge
of K4 one or more times Ramsey size-linear? In this note we show that if G is any
Ramsey size-linear graph and x,y € V(G) then we can join x and y by a path of
suitable length so that the resulting graph is Ramsey size-linear. Hence for any
graph G it is possible to subdivide the edges so that the resulting graph is Ramsey
size-linear. In particular, for K4, subdividing one of the edges four times is
sufficient. It is an open question as to whether K4 with an edge subdivided just
once is Ramsey size-linear.

Assume T is a tree (or forest) and G is any graph. Let x and y be vertices of G
(possibly equal) and define a graph Gy as follows. Let x, . . ., x; be the vertices of
T. Take ¢ copies of G and fix in each of them a vertex corresponding to x and a
vertex corresponding to y. Now join x in the ith copy to the x in the jth copy if
xixj € E(T). Join y in each copy to a single new vertex w. The resulting graph will
be G7 (see Fig. 1).
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FIGURE 1. The graph Gr.

Theorem 1. Assume T is a forest, G is Ramsey size-linear, and x,y € V(G)
(possibly equal). Let Gt be defined as above. Then Gr is Ramsey size-linear.
Indeed we can take Cg, = Cg+2+2(n(T) — 1)n(G).

Proof. We prove the result by induction on n(H). The result clearly holds
for n(H) =1 since then r(Gr,H) = 1. Adding an isolated vertex to H can
increase r(Gr, H) by at most 1. Hence we may assume H has no isolated vertex.
Let v € H be a vertex of minimum degree 6 = 6(H) and assume the result
holds for H — v. Hence if we have a 2-coloring of K, without a red Gr, and
n> Cg,(e(H) — 6) + (n(H) — 1), then it must contain a blue H, isomorphic to
H — v. Let N be the set of vertices of H; corresponding to the neighbors of v in
H. Let S be the set of vertices of K, that do not lie in H;. If a vertex u € S is
joined to all the vertices in N by blue edges then adding u to H; gives a blue H,
hence we may assume every vertex of S has at least one red edge to N. For each
u € § pick one such edge. This partitions S as a disjoint union U,,enS,, according
to the rule that u € S,, if uw is the chosen red edge incident to u.

Now use the fact that 7(G,H) < (Cg + 2)e(H) to find many vertex disjoint
copies of red Gs in S. We can find by induction a total of at least
s =(|S] = (Cc +2)e(H))/n(G) such copies since S spans no blue H. Let X,,
be the set of the xs of these Gs, such that the corresponding ys are in S,,. Hence
> wen 1 Xuw| = 5.

If s> (r(T,H)— 1)|N| then there must be some w € N such that |X,,| >
r(T,H). Since the subgraph spanned by X,, contains no blue H, it must contain a
red T. This red T together with the graphs G it meets and the vertex w form a
red Gr.

Now r(T,H) < r(T, Kyx)) = (n(T) — 1)(n(H) — 1) + 1 (see [2]). Hence it is
sufficient if s > (n(T) — 1)(n(H) — 1)|N|. However, n(H)|N| < 2e(H), so it is
enough that s > 2(n(T) — 1)e(H), or |S| > (C+2+2(n(T) — 1)n(G))e(H).
Since n = |S| + n(H) — 1, the result follows with Cg, = Cg +2+2(n(T) — 1)
n(G). m

Corollary 2. If G is Ramsey size-linear and x and y are two vertices in the
same component of G (possibly the same vertex), then the graph G' obtained by
adding a path (cycle if x =y) of length r between x and y is also Ramsey size-
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linear provided r > d(x,y) + 3, where d(x,y) is the distance between x and y
in G. If x and y lie in different components of G then G' is Ramsey size linear for
any r > Q.

Proof. Let T be a path of length r — d(x,y) —2 > 1. Then Gr contains a
subgraph isomorphic to G’ by taking one copy of G joined to one end of 7, with x
and y joined by 7, a path of length d(x,y) in the copy of G at the other end of T
and then a path of length 2 via w. The result follows since a subgraph of a
Ramsey size-linear graph is Ramsey size-linear. If x and y belong to distinct
components of G then the graph obtained by identifying them is also Ramsey
size-linear. Adding a path x . ..x" of length r to x first and identifying x’ and y now
proves the second part. O

The graph K, with an edge deleted is Ramsey size-linear by Property 3 above.
Taking xy as the deleted edge and applying Corollary 2 shows that K4 with an
edge subdivided four times is Ramsey size-linear.

Corollary 3. If G is a graph such that every cycle in G contains at least four
consecutive vertices of degree 2, then G is Ramsey size-linear.

Proof. By removing suspended paths of length 5 from G we can obtain a
graph T without cycles, i.e., a forest. Now K| + T is Ramsey size-linear and
given any x,y € V(T) there is a path of length at most 2 joining x and y in
K, + T. Applying Corollary 2 we can add paths of length 5> d(x,y) +3 to
Ki + T, thus replacing the suspended paths we removed from G. (Note that x may
be equal to y.) Finally, removing the vertex of K; gives the graph G. O

It is an interesting question as to how much Corollary 2 can be improved. As a
special case, we have the following important question.

Question 1. [Is the graph G obtained from Ky by subdividing one of its edges
once Ramsey size-linear?

Also one can ask a more general question.

Question 2. Is it always the case that if G is Ramsey size-linear and G' is
obtained from G by joining two vertices by a path of length 2 then G’ is
necessarily Ramsey size-linear?

If the answer to this last question is Yes, then any graph is Ramsey size-linear
unless it contains a subgraph H with no cut vertex and 6(H) > 3. On the other
hand, any graph H with no cut vertex and 6(H) > 3 cannot be constructed by
joining vertices of a smaller graph by paths of length 2 or by identifying vertices
of two smaller graphs as in Property 5 above. We can therefore also ask the
following question.

Question 3. Is it always the case that if G has no cut vertex and the minimum
degree of G is at least 3 then G is not Ramsey size-linear?



A NOTE ON RAMSEY SIZE-LINEAR GRAPHS 5

If the answer to the last two questions is Yes, then we would obtain a complete
characterization of Ramsey size-linear graphs.
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