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One of those few people from whom I learned a great deal in mathema- 
tics, Paul Turin,  died on the 26th of September, 1976, after being ill for 
several years. In this paper, written in his memory, I will endeavor to give 
a picture of his influence on graph theory as well as his views on 
mathematics. 

Today most mathematicians specialize in one narrow field of mathema- 
tics. Perhaps the most evident reason for this is that only the best can 
excel in more than one branch. Turin was one of these. His ideas and 
results deeply influenced the development of graph theory. However, his 
main work, his most important results, concern other topics of mathema- 
tics, primarily number theory, interpolation and approximation theory, 
the theory of polynomials and algebraic equations, complex analysis, and 
Fourier analysis. And one additional item should be mentioned: Turin 
discovered (created) a new method in analysis, called the method of 
power sums, which gave results interesting in themselves and applicable 
in many branches of mathematics, for instance, number theory, numerical 
analysis, and stability problems in the theory of differential equations. 
Hence the picture given here is just a fragment of the whole picture, 
reflecting Paul TurBn’s personality in some cases but not in other ones. 
The deep knowledge and great proof power of TurBn, for example, is 
reflected more in his theorems and proofs from analysis and number 
theory. On the other hand, I hope that the survey given hzre on Turin’s 
graph theoretical work and on the theory developed around his work will 
clearly show that Turin had a very good eye for finding interesting 
mathematical problems and could create starting points for mathematical 
theories. 
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The reader may have read Paul Turin’s “Note of Welcome” [17] 
published in the first issue of this journal. This note and the preceding 
paper by Erdos on Turdn are very interesting. I tried to avoid overlap- 
ping them wherever it was possible, but in many cases it was unavoidable. 
I hope the reader will excuse me for this. 

1. DETERMINANTS OF MATRICES WHOSE ENTRIES 
ARE *l 

First I would like to mention some joint work by P. Turin and Gy. 
Szekeres [ 2 ] .  Let A = (aii)  be an n x n matrix with aii = f 1. How large 
can det A be? A theorem of Hadamard yields a trivial upper bound: 

det A 5 nni2. 

This upper bound is attained if and only if A is an orthogonal matrix, that 
is, A is an Hadamard matrix. Sylvester 1411 proved the existence of 
Hadamard matrices for n = 2 k ;  Paley [36]  did the same for n = p + 1, 
where p is a prime of the form 4t -  1. Others attempted to provide lower 
bounds for the maximum of det A. Szekeres and Turiin showed that the 
square sum of all possible such determinants is (n!)2”’, i.e., the average of 
det2 A is n!, while the average of the fourth powers is (n!)2f(n),  where 
f(1) = 1, f(2) = 2 ,  and 

2 
fb )  = f(n - l)+- n f(n - 2 ) .  

These assertions imply that the maximum of det A is at least (n!)”’ and 
(n!)’”f(n)”“, respectively. Why is this result extremely interesting for 
me? Nowadays in extremal graph theory (and in many other cases, e.g., in 
information theory) we obtain lower bounds by using so-called probabilis- 
tic arguments. What Szekeres and Turin did was the same only much 
earlier: namely, they obtained a lower bound by calculating the average 
and standard deviation (?!) of the square of the determinant of a random * 1 matrix. Later Turin developed this method and extended the above 
given results in [3], [8]. 

(Though it is not graph theory, let me remark that in [l] Turin proved 
the famous Hardy-Ramanujan theorem in a very elegant way,‘ by using a 
probabilistic argument. Without really noticing it, he calculated the 
average and the standard deviation of the number of prime factors of an 
integer k E [l, n ]  and applied the Chebychev inequality, thus giving a 
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much shorter proof, showing the essence of the Hardy-Ramanujan 
theorem much better and probably providing the first example of applica- 
tions of probabilistic methods in investigating the value distribution of 
number-theoretic functions.) 

2. TURAN'S GRAPH THEOREM 

Erdos and Szekeres [33] established a theorem from geometry in 1935, 
and without knowing it, rediscovered and proved Ramsey's theorem. 
Turin changed the original formulation of the problem by asking [4], [5 ] :  
For given n, let G" denote a graph with n vertices (loops and multiple 
edges excluded). Ramsey's problem asks that if G" does not contain a set 
of r independent vertices, how large a complete graph K, must occur in 
G"? We may replace the condition that G" does not contain t indepen- 
dent vertices by other conditions and try to ensure that the graph contains 
a large complete graph K,. This is how Turin arrived at the question: 
How large can e(G") be if G" contains no Kp, where e(G) denotes the 
number of edges of G? T u s h  proved the following theorem: Let 
Kd(nl, . . . , ad) be the complete d-chromatic graph with n, vertices in its 
ith class: the n = n l + .  * * +nd vertices are divided into d classes 
C1, . . . , c d  where C, has n, vertices and two vertices are joined if and 
only if they belong to different classes. Let us define the ni's so that 
\ n , - - ( n / d ) I ~ l ;  then &(nl,  . . . , nd) is determined uniquely up to an 
isomorphism. This graph will be denoted by Pd. 

T U R h ' S  THEOREM. For given n and p any graph having more 
edges than PP-' or having exactly as many edges as PP-' but being 
different from it must contain a complete p-graph K p  as a subgraph, while 
Tn.p-1 

As T u r h  remarks, from this one can easily verify that the maximum 
number of edges G" can have without containing a K p  is 

does not contain K,. 

n = r (mod p - 1). 

A lesser known, but equally useful form of TurLn's theorem can be 
obtained by switching to the complementary graph G" = H": If H" has 
no p independent vertices, then e(H")? e(i;"*P-') and the equality im- 
plies that H" = r?ln*p-l. 
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3. THE THEORY DEVELOPING AROUND TURAN'S 
THEOREM 

Since 1941 a wide theory has developed around TurAn's theorem and the 
framework of this paper is too narrow to give a survey on this theory. 
Beyond any doubt, Turin's most significant influence on graph theory was 
the creation of an "initial point" for this theory, not only by finding a 
single theorem and proving it, but by putting it in an appropriate 
surrounding. I shall return to this point later. Here, instead of giving a 
survey, I shall attempt to illustrate a few chapters of this theory by 
selecting one or two theorems from them. I shall select those theorems 
which are either the most significant or the easiest to explain. 

(a) Hypergraph Problem 

For given r, p ,  and n let us consider the r-uniform hypergraphs in which 
no loops or multiple hyperedges are allowed. How many hyperedges must 
an r-uniform hypergraph have if it has n vertices and no p independent 
vertices, where xl, . . . , x p  is said to be independent if no ( x i , ,  . . . , x i , )  
belongs to the hyperedge set of the hypergraph? Obviously, this is a 
direct generalization of Turin's problem on the complementary graph, 
given above. This was the original form, as Turin posed the question in 
his paper. The question is still unsolved, though many people have 
attempted to solve it. The simplest unsolved problem here is the 
following one: Let r = 3, p = 4 and let T"*3*3 be the 3-uniform hypergraph 
with the vertices xi,i(i = 1 , 2 , 3 ;  j = 1,2, . . . , [ n / 3 ]  or [n/3]+ 1) and with 
the edges (xi,j, x , , ~ ,  xiVi-) for i = 1,2, 3 and (xi,i xi,jr, where x ~ , ~ =  xl.i- 
by definition and we take these hyperedges for all the ( j ,  j ' ,  j") when the 
three vertices are different. Prove, that if H" is a 3-uniform hypergraph 
with fewer triples then Tn,3.3, then it contains 4 independent vertices. (It 
is easy to see that Tn*3*3 does not contain 4 independent vertices.) 

(b) General Problem 

Let 2' be a finite or infinite family of graphs and let e x ( n , 9 ) =  
max{e(G"): G" has no subgraph Lee} .  Further, let Ex(n,Y) denote 
the family of extremal graphs, i.e., E x ( n , 2 ' )  consists of those graphs S" 
having ex(n,  9) edges and not containing any L E 2. The general problem 
is stated: Given a family 9, determine ex(n, 9) and E x ( n ,  2)! 

It is useful to introduce the following notation: If x ( G )  denotes the 
. chromatic number of G, let 

p ( 2 )  = min {x(L): L E 21. 
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Turin asked many questions in connection with his theorem, some of 
them in his paper, others in letters to Erdos. One of them led to the 
Erdos-Gallai theorem [28]: Let P' be a path of t vertices. Then 

t - 2  
2 

ex( n, P') 5 - n, 

and the equality holds if and only if n is divisible by t - 1, when there 
exists exactly one extremal graph S" E E x ( n ,  P ' )  consisting of vertex- 
disjoint complete ( p  - 1)-graphs. (Later Faudree and Schelp [34] proved 
that Ex(n,  P ' )  always contains an S" consisting of vertex-disjoint com- 
plete graphs, each of which but at most one is a K,-,.) A nice unsolved 
question of Erdos and V. T. S6s is whether (2) remains valid if P' is 
replaced by any other fixed tree of t vertices.) 

(c) Degenerated Problems 

If p ( 2 ) = 2 ,  we shall call the problem degenerated. When there exists a 
forest or a tree in 9, the problem could be called very degenerated: a 
necessary and sufficient condition for ex(n, 2) = O(n)  is that the family 3 
contain a tree or a forest. 

Another nice result concerning the degenerated case is a theorem of T. 
Koviri, V. T. S ~ S ,  and Turin [7]: If p s q ,  then 

The inequality ( 3 )  is sharp for p = q = 2, and it is sharp but for the value 
of the multiplicative constant for p = 2 , 3 ,  q z p .  I am unaware of any 
counterexample to the following conjecture: ( 3 )  is always sharp. (Inde- 
pendently from Koviri and the Turans, Erdos also proved ( 3 ) . )  

An easy consequence of (3) is that ' i f  p ( 9 )  = 2, then ex(& 3) = o ( n 2 ) :  
there exists an L E 2 with x(L) = 2 and a K,(p, q )  z L ;  hence 

(d) Asymptotic Results in the General Case 

Turin's theorem reflects the general situation much better than one 
would think: Given a family 9 &:id p = p ( 2 ) ,  then ex(n, 2') and Ex(n, 9) 
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behave nearly in the same way as ex(n, K,) and Ex(n,  Kp). More pre- 
cisely: 

(This theorem of Erdos and Simonovits [31] is a trivial consequence of 
the Erdos-Stone theorem [32] asserting (4) for 3= {Kp(r, r, . . . , r ) } . )  
Further, as Erdos and Simonovits independently proved [27,28,40], if S" 
is an extremal graph for 3, then we may omit and add o ( n z )  edges to it so 
that the newly obtained graph is Pp-', which is the extremal graph for 
K,. Here I would like to point out that the most important conclusion of 
these theorems is that the maximum number of edges and the extremal 
graphs do not really depend on 3;  they depend first of all on p ( 2 ) ,  which 
contains only very poor information on 2 itself. A further interesting 
conclusion is that for any 3 we can find an L E ~  such that 
ex(n, 2) - ex(n, L )  = o(n2) ;  there is not much difference whether we con- 
sider just one prohibited graph or a family of such graphs. (Observe that 
for the degenerated case, these assertions follow from ex(n, 9) = ~(n').) 

(e) Problem of Oversaturated Graphs 

For the sake of simplicity, we restrict our consideration to the case where 
3 = { L } .  By definition, if e ( G " ) =  ex(n ,  L)+ 1, then G" contains an L. It 
is surprising that, generally, e ( G " )  = ex(n, L )  + 1 ensures much more than 
just one L c G". To illustrate this, I will mention two theorems. First let 
L = K3. As Rademacher proved (unpublished, 1941), if e(Gn) = 
ex(n, K3)+1, then G" .contains at least [n/2] copies of K3.  Erdos 
generalized this result [24] by showing that there exists a constant c > 0 
such that if 1 5  k s c n  and e ( G " ) = e x ( n ,  K 3 ) + k  (where 
ex(n, K3)  = [n'/4]), then G" contains at least k[n/2] copies of K3.  One 
can easily check that this theores  is sharp, but for the value of c ;  namely, 
if we add k independent edges to the larger class of T".', we obtain a G" 
with [n2/4]+ k edges and k[n/2] triangles. Many further results of this 
type were proved later by Erdos, Moser, Moon, BollobBs, LovBsz, and 
Simonovits. Let me mention just one theorem of G. Dirac [22]: Let 
e ( G " ) > e x ( n , K , )  but G"# Fp-' and let rE[p,2p-2]. Then G" con- 
tains a G' with at least ( ; ) - ( t - p )  edges, i.e., a K, from which ( t - p )  
edges have been deleted. (For t = p ,  we return to Turin's theorem.) 



108 JOURNAL OF GRAPH THEORY 

(f) Problem of Multigraphs and Directed Graphs 

Here I formulate only the directed graph problem, which includes the 
multigraph problem. Let r be fixed and consider digraphs in which for any 
two vertices at most r arcs of the same orientation can join them, so that 
the number of arcs joining them in the two directions is at most 2r. The 
problem is obvious: For a given family 2 of digraphs what is the 
maximum number of arcs which a digraph fi” can possess without 
containing an LE p? The concepts ex(n, 9)  and E:x(n, 2) are defined in 
the obvious way. Brown and Harary [21] started the systematic investiga- 
tion of such problems. Some general theorems were proved for r = 1 by 
W. G. Brown, P. Erdos, and M. Simonovits, showing that the situation is 
much more complicated than for (ordinary) graphs. 

(9) Extremal Hypergraph Problems Again 

The extremal hypergraph problems are generally much more complicated 
than the others. Here I would like to mention a theorem of Erdos, which 
is a direct generalization of (3) and often very useful in the theory of 
graphs [25]. 

Let K‘”(p, . . . , p )  denote the hypergraph whose vertices are divided 
into r p-tuples C1, . . . , C, and whose hyperedges are obtained by choos- 
ing one vertex from each C, in all the possible p‘ ways. Then 

(h) Other Problems 

Many other problems occur in this extensive theory, which I choose not 
to mention. References are given at  the end of this paper, though this list 
is certainly incoaplete. Let me mentiop just a few topics not considered 
above. The theory of random graphs has a strong connection with 
extremal graph problems [29].’ The problem of topological subgraphs is 
motivated partly by TurBn’s theorem, partly by Kuratowski’s theorem. 
Nice applications of finite geometrical constructions can be found in [19] 
and [30]. Finally let me mention what I call “problems with parameters,” 
i.e., cases where the prohibited graph depends on some parameters as 
well [18]. As a matter of fact, the Erdiis-Stone theorem is such a 
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theorem; it asserts that if, e.g., p = 2 ,  e (G“)rcn* ,  then 

G“ 2 K2([c’ log n], [c‘ log n]), 

where c is arbitrarily fixed and c’ depends on c, (c,  c’>O). 

4. SOME APPLICATIONS OF TURAN’S THEOREM INITIATED BY P. 
TURAN 

Turin’s theorem can be applied to graph theory in many ways. However, 
what may be surprising is that there are many situations in which Turin’s 
theorem helps in proving theorems from other branches of mathematics 
as well. Here I mention applications of Turin’s theorem in potential 
theory, geometry, and the theory of conformal mappings which were 
initiated by Turin.  

As I mentioned, graph theory was not the main field of TurBn. During 
1954-1969 he did not publish graph-theoretic papers. However, in 1968 
he lectured in Budapest and then in Calgary, and published his results in 
the Calgary proceedings [9]. The same volume contains another paper on 
applications of graph theory to potential theory by V. T. S6s [40], 
inspired by the work of Turin. She gave upper bounds for some poten- 
tials, estimated by Turin from below. Soon a fast-developing theory 
emerged from this topic, mostly contained in a sequence of three papers 
written by P. Erdiis, A. Meir, V. T. S ~ S ,  and P. TurAn [lo-121. Let us 
see how graph theory was applied to potential theory, geometry, and 
theory of complex capacity. 

Let M be a metric space and F a family of finite subsets of M with the 
properties that: 

(i) There exists a constant C such that each A E F has diameter at most 

(ii) If A ’ G A E F ,  then A’cF.  
(iii) For any A E F, P E A, and E > 0, there exists a P‘ such that A U {P‘} E 

(The typical examples are (a) all the finite subsets of a bounded domain 
D C  M or (b) all the finite subsets of a bounded and closed domain D E M 
with diameter at most C.) 

1. We are interested in the distribution of distance d(Pi,Pi) for an 
n-element set (PI, . . . , Pn) E F. In characterizing these distributions, we 
find a useful tool to be the notion of the “packing constants” defined as 

C. 

F and ~ P ‘ < E .  
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follows: 

Clearly, di 5: di+l. If M is a subset of the m-dimensional Euclidean space 
R", then d, + 0 as well. Let il = 1 and i 2 , .  . . , ii be defined by 

Now we can formulate T u r h ' s  theorem on the distance distribution: 

THEOREM. For each k 2 2  and n L i2 the number of distances d(Pl, Pi) 5 
d i k + , ( i #  i) for any set ( P I ,  . . . , pk) E F is at least 

nz n 
2ik 2 '  

This theorem is sharp in a very strong sense. As a matter of fact, the 
theorem remains valid under more general conditions; (ii) and (iii) are 
needed to ensure the sharpness. 

This theorem is interesting in itself and has consequences for very 
ancient geometrical problems as well [lo], [13]. Namely, Newton and 
Gregory had a discussion on whether there exist 13 pairwise nonintersect- 
ing unit spheres in R 3  which are tangent to a 14th unit sphere. This 
problem is equivalent to the following question: Let H be the property 
that each Pi from (PI, . . . , P,,) is on the unit sphere of R 3 .  Then which of 
the following two relations is valid: d12 = d I 3  or dI2 < dI3? As we have 
seen, this is strongly dependent on the possible distance distribution on 
the surface of the unit sphere in R3.  

11. Perhaps the following application of the above theorem is even more 
surprising. Let f (r)  be a decreasing function, rxVy be the distance of x and 
y in R" and D E. R" be a closed subset in R". If p is a mass distribution 
( =  measure) on D, the generalized potential of this mass distribution is 
expressed by 

DXD 
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(Note that f ( r )  = rm-* is generally used in the classical physics for rn 2 3, 
while f ( r )  = log ( l / r )  is used for the plane.) Turan gave a lower bound on 
I<f) by using the above theorem on the distance distribution: If dk is the 
kth packing constant of D (more precisely, of the family of finite subsets 
of D) ,  and if f ( r )  is monotone decreasing and bounded from below in 
(0 ,  &I, then 

and dk is its k t h  packing constant, then the divergence of 1 ( l / k ’ )  log d k  

where ID1 is the measure of D. Another nice application of this distance 
distribution theorem is the following theorem: If D c R 2  is a compact set 
and dk is its kth packing constant, then the divergence of 1 (1/k2) log d k  

implies that the so-called complex capacity of D is 0 and this condition is 
sharp; an example of Erdos shows that it is insufficient to assume the 
divergence of (l/k*-‘) log dk (for any fixed c>O). (Here the complex 

capacity is an important tool to measure whether a set in the plane is 
small or not in a certain sense.) 

I have finished the list of the interesting results Turan and his co- 
authors have established by using Tur An’s graph theorem. Perhaps I shall 
mention just one result from another family of applications, due to G. 
Katona [35]: Let 6 and p be vector-valued independent random variables 
with the same distribution; then 

k 

k 

k 

Probably most people wishing to verify this inequality would not even 
imagine that graph theory yields the solution. 

Finishing this part of the paper, I would like to emphasize once again 
that in the preceding two sections I made no attempt to give a systematic 
account of what Turin and others did in graph theory and its applications; 
the theorems above were primarily illustrations. 

5. SOME FINAL THOUGHTS 

Here I will try to provide answers for the following two exciting ques- 
tions: 

(1) What was Turbn’s urs rnathernutica; what were his most important 
views guiding him in his mathematical work? 
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(2) What was the secret of Turin’s great ability to create initial points 
for interesting mathematical theories? 

Let me begin with the second question. Above we have seen two cases 
where Turin created starting points for completely new theories. His 
theorem led to the theory of extremal graphs and his applications of his 
theorem to the distance distribution of points in a metric space again 
yielded a vast field to investigate, with many results of a completely new 
type. In the introduction I have mentioned his proof of the Hardy- 
Ramanujan theorem and that this proof was one starting point for 
investigating number theoretic functions by probabilistic methods. Also I 
mentioned one of his most important contributions to mathematics: the 
creation of the so called “method of power sums,” so useful in many 
different fields of mathematics. These and other examples show that 
TurBn had some particular ability of creating new, interesting theories. How 
and why? I think the answer to this question is that one of the most 
characteristic features of TurAn was that he was constantly searching for 
new phenomena: problems, theorems different in type from those already 
existing. He searched for phenomena which were interesting and reflected 
a possible new area of mathematics. To find beautiful and interesting 
theorems was important for Turin. To prove them in their most general 
form was never important for him. 

On the occasion of TurBn’s 50th birthday, RCnyi wrote a thorough paper 
on TurBn’s mathematical work [37]. In this paper RCnyi formulated his 
opinion on the question above as follows (translated by myself): 

In spite of his great knowledge, which should be called encyclopedic, 
when scrutinizing a problem, he never was influenced by how this 
problem usually was approached. He never made a step on the 
beaten track without checking, whether this path was the only or 
most expedient one. Clearly, if one proceeds like this, he will often 
discover new paths, some of which will grow into the highways of the 
science in time. 

(Of course, I wrote about the way of finding the problems, and Rknyi 
wrote about solving them; but there is really no difference.) 

Let me give just a few more problems found by Tur in  which became 
important later. The problem of the crossing number of a K2(p, q )  asks: 
Embedding a graph G, say G = K2(p, q),  into a plane, how can we find 
the minimum number of intersections of the different edges, among all 
embeddings? As TurAn explains in [17], he arrived at  this problem during 
the war, transporting bricks from certain places to others by trams. They 
had no problems while pushing these trams on the rails; however, at the 
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intersections of different rails, the trams often went off the rails, causing 
additional work. This is how he found the question: How should the rails 
be built so that the number of intersections is minimum? (Today, in the 
age of IC and printed circuits this problem becomes really important: to 
produce inexpensive electronic circuits one must solve crossing number 
problems.) 

A famous problem of Erdos and Turin (connected with a theorem of 
van der Waerden) is the following one: Is it true, that if a l ,  . . . , a,, . . . is 
a sequence of integers, A ( n )  is the number of ai’s in (0, n )  and 
lim inf A ( n ) / n  > 0, then a , ,  . . . , a,,, . . . contains, for any k, an arithmetic 
progression of k terms. This longstanding and famous conjecture was 
finally proved by E. Szemertdi. Just to give a last example of Turin’s 
“good questions,” I mention that in a private conversation with L. Babai, 
who was investigating the automorphism groups of graphs, Turin asked 
him whether he could characterize the groups which are automorphism 
groups of planar graphs. As a result, L. Babai worked almost two years 
on this problem and finally developed a nice new theory on the deeper 
connection of the structure of graphs and their automorphism groups. 

I think these examples give a “new proof” of what RCnyi wrote on 
TurBn. Of course, Turin had some luck in finding his sufficiently general, 
though simple and elegant, graph theorem, and it was also fortunate for 
him that h e  was surrounded by the members of Konig’s graph school, 
who could reflect on his theorem and further questions. Evidently, Erdos 
had enormous influence on this theory. However, it was not a matter of 
luck, it was necessary, that a mathematician and personality like Turin 
created starting points, new paths, and had a very deep influence on many 
parts of mathematics. 

Though it may seem a secondary thing at first sight, let me mention that 
I enjoyed Turin’s lectures very much as well as talks with him, because 
he had the exceptional ability to make things interesting: theorems and 
problems, which thought initially uninteresting, could become exciting 
after Turbn’s explanations. He told us how one problem is related to 
others, which interesting results could be obtained from its solution and 
how one arrived at this question in the first place. 

Let me return to the first question. I think, answering the second one, I 
have partially answered the first one as well. Perhaps I would like to 
emphasize one final thing: Turhn loved mathematics passionately. Of 
course, any real mathematician loves mathematics, but for Turin 
mathematics was much more: Mathemutics was one of the most important 
things in his life. In the most difficult periods of his life mathematics was 
his help; he could forget about everything around himself and escape to 
mathematics. 
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