Studies in Pure Mathematics
-~ To the Memory of Paul Turan

On tlle number of complete subgraphs of a graph II
oy
L. LOVASZ and M. SIMONOVITS (Budapest)

Abstract '

Generalizing some results of P. Expos and some of L. Moser and J. W. MooN we give lower boundson
the number of complete p-graphs K, of graphs in terms of the numbers of vertices and edges. Further, for
some values of n and E we give a complete characterization of the extremal graphs, i.e. the graphs Sofn
‘vertices and E edges having minimum number of K,’s. Our results contain the proof of the longstanding -

- conjecture of P. ERpOs that a graph G" with [n?/4]+k edges contains at ieast k[-;] triangles if k&n/Z.

‘0. Notation
The graphs in this paper wnll be denoted by capital letters We shall exclude loops
~ and multiple edges, and all graphs will be non-oriented. :
LetGbea graph ¢(G) will denote the number of edges of G, (G)=n the number of
vertices. If x is a vertex, st(x) will denote the set of neighbors of x, that is the set of
vertices joined to x. a(x) will denote the cardinality of st(x), that is, the degree of x and if
we consider more graphs on the same set of vertices, stg(x), 4(x) will denote the star
and the degree in G. If G is a graph and A'is a set of vertices of G, then G(4) will denote-
the subgraph spanned by A. For given ny, ..., ng K,(nl, ..., ng) is the complete d-
partite graph with n; vertices in its ith class. K, = KA1, ..., 1)is the complete d-graph
and k/G) denotes the number of complete K;'s of G. If A is a set of vertices and edges of
G, G— A denotes the graph obtained by deleting the vertices and edges of A from Gand |
~ deleting all the edges incident to a vertex in A. If (x, y) does not belong to G, G +(x, y)is
the graph obtained by addmg the edge (x, y) to G.

L Introduction
' Let f(n, E)=min {k(G):&(G)=E, uG)=n}.
Problem 1. Determine the function f,(n, E)

Problem 2. Characterize the extremal graphs for givenn and E, l e. those graphs ! S for
which v(S)=n, &(S)=E and k(S)= f4n, E)
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The history of Problem 1is the followmg.
In 1941 TurAN [7] proved that if n=r (mod p— 1) and 0<r$ p—2 and if

, |
rn(np) 2(p 1)( 2)+(2>

" then every G onn vertices having at least m(n, p)+ 1 edges contains at least one K ,. For

- E=m(n, p) there exists exactly one graph T"~ ! having n vertices and E edges and

containing no K. This T*?~'isa K,_,(n,, ..., n,-,) Where Y m=nand in;=n/dl<1..
RADEMACHER proved (unpublished) that any G w1th n vertices and >m(n, 3) + 1 edges

contains not only one but at least [—] Ky’s. ErDOs [2 3], (first only for p=3, then -
for any p> 3) proved the following.

. Theorem A. Let U} denote a graph obtained from ™F"1 by addmg k edges toit so that B
the new edges belong to the same class having maximum number of vertices (i.e. [n/d}+1
" if n/d is not an integer, n/d otherwise) and the new edges do not form triangles, if this is

possible. Then there exists a constant c,> 0 such that for k<cyn, Ut is an extremal graph |
ofProblemI ie if _ S .

,, oG)=n e(G);e(Uz)='nrn;p—1)+k,
then o
n+i

k,,(G)Zk,,(U") —k TI —_—1]

0si §p -3
Problem 3 (ERDOS) How large can c, be in the theorem above"
Remark L Ifwe add k + 1 or more edges to the ﬁrst classof G=K,_,(k+1, k, k, .

'k, k—1), then each new edge will be contained only in (k — 1)k?~3 K s and it is easy to
see that this construction is better than. U Mp-1) Thus Théorem A does not hold for

cp>
p— 1 ' _
This paper contains an 1mprovement of Theorem A (see Theorem 4 below) which
ylelds that in Problem 3 the answer is ¢ =1/(p—1). For p=3 the proof of this was given
in [5]. The result will follow from a much more general theorem characterizing the -

~ extremal graphs of Problem 1 for many values of n and E. Before statmg our results we

introduce some notation. : .
Let p, n and E be 1ntegers such that p>3 and m(n, p)SES( 2) We write E in

the form
E=[1=-}—
=03

_m(n,d+l)§E<m(n,d+2)'.

and set d= Led. Thus




On complete subgraphs of a graph I 461

We set k=E— m(n, d+ 1). The numbers p and d will be considered fixed and n large
relative to them.

The first theorem we state was proved for p=3 by GoopMan [4] and it readily
follows from results of Moon and Moser [6]. We shall give a self-contained proof
because some steps in the proof will be used later.

Theorem 1. Let v(G)=n, e(G)=E, then

: - : ' P
o - kp(G)g(;) (g) .
Theorem 2. "Let C be an arbitrary constant. There exist positive constants & and C’
such that if 0<k<dn? and G is a graph on n vertices for which

(2) o k(G)=s (;) (g)p+ Chn=?

then there exists a K{ny, ..., n) such that Zn_,='n, ‘ni _4 Sl < C’\/ic_ , and G can be

obtained from this K n,, . . ., n;) by adding less than C'k edges to it and then deleting
less than C’k edges from it. SR o ‘ -

Remark 2. Theorem 2 is a “stability theorem” in thefollowmg sense: Let U? be the
gra ph obtained from T™¢ by adding k edges to it (see Theorem A), then the k “extra edges”

d 1 -2
' “are contained in (approxzmately) k@_ 2) (2) K s and the graph T""’ has

N(;) (’:) K, s. Thus (2) means that G does not have much more K ’s than an extremal

graph. Theorem 2 asserts that in this case G" is very similar to T™. This theorem is -
interesting only if k/n? is sufficiently small. |

Remark 3. Theorem 2 is Sharp C’\/E 'cannot be feplaced by 'o(\/- ) Ck can-
not be replaced by o(k). Indeed if we add 3k edges to and delete k edges from

K,( + f - \/_ ) then for the resulting graph G
wos I

eoG)=m(n,d+1)+k.

while

. To formulate our main result we need to describe some classes of graphs.




462 - | | L. LovAsz and M. SIMONOVITS

Definition 1. Let Uy(n, E) denote the class of those graphs with n points and E edges.
which arise from a complete d-partite graph S, by adding edges so that these new edges
form no triangles. Let U, (n, E) denote the subclass where all new edges are contamed in

~ the same colorclass of So :

Definition 2. Let U z(n, E) denote the class of those graphs S with n points and E
edges which have a set Wof independent points such that S— W is complete d-partite,
and every point in W is connected to all points of all but one color-classes of S— W.

Tlleorem 3. There exists a pos:twe constant 6= J(p, d) such that if 0$k<6n then

every extremal graph for Problem 1 is in the class U,(n, E) if p24 and is in the class

Uo(n, E) U Uy(n, E) if p=3. In this latter case there exists at least one extremal graph
~in Uy(n, E). . R o v

 Weregard this theorem as a complete solution of Problem 1 for the valuésofnand E
-under consideration. However, this interpretation requires some explanatlon, sincenot -

all graphs in the classes Uo, U, or U, have the same number of K,’s and hence, not all

of them are extremal. But once we know that our graphisin U,, Ul or U,, its structure |

C s simple enough to determine the best ch01ce by snnple anthmetlc Some remarks are

 in order here:

" Proposition 1. Let S € U,(n, E) be extremal. Let So=K/n,, ...,nn =...2n,.
 Then all edges in E(S)— E(S,) are spanned by the largest ciass F urthermore, In —n jl <1
fori,j22. :
Given a sequence n, = . .. 2n,, all graphs with the above structure have the same - .
number of K,’s. Hence thelr structure is completely determined if we know the valueof =
"~ ny.Thiscan be done by simple arlthmetlc whxch is not discussed here. We remark thatit

turns out that - -
| d-1k [k aom Lk _k)
AT M _dn" n)"

Proposition 2. If S € Uq(n, E) is an extremal graph, then (for k< on?) by moving all
~ edges of E(S)— E(S,) to the largest color-class we can construct an 5 € U,(n, E) for which
K/8)SkAS). If we moved edges from a smaller cldss to a larger one, or if p=4, then
k(S)> k,,(S’) which contradicts that S is extremal. Thus if S ¢ U,(n, E), then p=3 and all
the edges of E(S)— E(S,) belong to color-classes of maximum size in S. .

@ o oom=

als

Proposition 3. Let S € U,(n, E) be an extremal graph. Then every x € W is connected -
to all points of all but a possibly smallest color-class of S— W. Let B, be a smallest color-
class of S— W. Then, if we change the graph S by connecting every x € W to all points of
S — W — B, and an appropriate number of points in By, we get another extremal graph S
This graph S isin U,(n, E)
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These remarks make the following conjecture plausible:

Conpcmre For everyn and E (n2ng(p)) there is an extremal graph in Ul(i_z,v E).

Let us consider the case when p=d+1andk < [3] Let S be an extremal graph in

Ui, E). Let So=Kn,, ..., nj and n, 2 ... 2n,. If the choice of § is not unique,
choose one with n, minimal. We claim that nySng+1, ie. So=T"“ Suppose that

2ny+2. Let r denote the number of edges in E(S)— E(S,). Then simple computatlon
and (3) yield that .

o
@ | r<k+ Y (g - n,-) < S+ 0().

i=1

 We have " | o
o 'k,,(S)=r'_n2_...n-,-,,
butifweaddr+n;—n, + 1 edgesto K,,(nl'.— L,n,,...,n5_4,n,+1), then we get a graph

- §' with the same number of edges but, by the extremality of S and n,, with k(S) 2 k(S).
- Hence - - .

ren,.. .n,,§(r+‘n,,—'n1'-'!-l)nz. . (ng+1),
or ' :

G : ‘ rZ(nl—na—l)(né+l) :

Now, elther nl sn;+1 and hence So=T"4, whlch we wish to prove, or by (3), N
Ny = 2 + 0(1), by 4) and (5) |

(ry —na— 1) (nast 1) < 3 +0(1),

and therefore n, =n, + 2, if nis sufficiently large. By Proposition 1 n;<n,+1=n, —1for
i22. Thus, if Sy is the complete d-partlte graph of §', then Sp = T™4 and sok=r+n,—

-n+1=r— lBy(S), |
. . :
k2 121]- -
2nriz ]
a contradiction. -

, Thus, assuming Theorem 3, we have proved

Theorem 4. If E=m(n, p 1)+k,wherek<[;)——}thenforp>3theonly,forp =3

one possible graph with n points and E edges, containing the least number of K,’s is
obtamed by adding k edges to a largest class of T™*. ‘
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- Theorem 4 is clearly a sharpening of Ernos’s Theorem 1.
- Weinvestigate one more special case. Let 0<x<1 and Exx - (;-), n—oo.Let Sbea

‘graph in U,(n, E) with minimuinnumber of K,’s. Then
ki(S)= f(x) );

where f(x) can be determmed as follows If1 — ‘11 =xs1- 2—1—1 and S is obtamed'

from So=K4n,, nz, ..., ng), then we put n,-(l o)n and for 1—2, ..., d, by

In nj|<1n ~ ———n. Clearly,

) () )
+“"“’"(d l)(d 1) *(d l)(d )

- (Here {. ;2.} is the number of e_dges in the first class of Kny, ..., ny {...}.
. 4 ' , | ,
(__an 1) (d 1) is the number of K, ’s containing such an edge. The next two terms

*

\d \p—2
are the numbers of K s contammg 1 or O vertices from the first class.) Thus

o

where A= A(x, p,d), B=B(x, p,d), C=C(x,p,d) are con.stants, easily calculated. -

~ {Aa 2+Bm+C} af” 2—F(az,x)

diF (o, x)=0 yields a quadratic equation, from which the optimal a can easily be

determined. Substltutmg thls o in (*) we obtam f(x). | C -

Deﬁne o : - .
2(x) =.1im.inf{ Z( @) e(G)_ ()}

Figure 1 shows what we know about the function g(ﬁc), The dotted line shows the

, Goodmén bound. This is equal tog(x)whenx=1— -‘li, dinteger. The brek_en line sho_ws
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g00)

the improvement given by BoLLoBAs [l‘]. This proves that bétWeen these points g(x)is
“above the chords. Finall§, the continuous line shows the function f(x). This is concave
between the points x=1— 7 If the conjecture formulated above is true, it follows that
g(x)= f(x). Clearly g(x)< f(x) and Theorem 3 implies that for each d there exists an

1 1 o .
g >0suchthatif 1— 7 Sx=1- 7 + g4 then f(x)=g(x). Unfortunately, ¢, is so small

in our proof that we did not even dare to estimate &,.

2. Preliminaries: an in'equalilty for the number of complete subgraphs

Let G be a graph with n points and E edges. Set k;=k{(G). For each complete (p—1)-
subgraph U, let ¢, ;denote the number of points connected to exactly p—i— 1 points of
U. Let t; denote the number of induced subgraphs which consist ofa K,_, and a point
joined to exactly p—i—1 points of this K,_,. Clearly, for every U

p-1
Y tiy=n—p+1
i=0
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and ;
| Y tou=p to=pk,, Xt u=2t,
U o v.
th,"u"—'ti‘ for ig2.
7] » _
So |
(6) ket =pH D) =plot 2y F ey

Denote, for each complete (p 2)-graph ” by ry, the number of complete (p—1)-
graphs contalmng V. Then - o R

N0 | ! Yrv=@-1k,_y,
o v e

since each K,_, contains exactly p—1 K, _,’s.
Moreover : L

8 . : V=t + ,

since any two K,_l’s containing a given 4 yield a graph counted in to=k, or t,
depending on whether or not they are joined or not. Those subgraphs counted in ¢ arise
this way uniqueiy, and those counted in t, arise this way (;) times.

~ Introducing the “deviation from average”

ky-1 o
= —1)—=ry,
k,__z(P ”)'_/ ’

we have by 0 . | - | _
Y av=kper-@—1) = Try=0, S
% _ - ' _
'~ and hence | |
| k | o |

o k" -(p—1)—qv | e

22( V) 22 bX P l(p 1)2+qu (p l)kp 1°
: v , '
This, to=k,, (6),.and (8) yield that

'nk;_l =pk,,+2(2 (;V)—<Iz’>lo)+tz+-; oAt +(p—Dk,o =

2

k2
=pk,+ &

i (p 12+ g}~ p(p Dk, +(ty+ ... +t,21)
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whg_nce
) I
p(p 2)k —p—;;(—p-—?—v—l"—nkp_li' Z‘q%/+(t2+...+'tp_l).
P4 . :
Thus o
o ' kp 1 kp-1 2 |
—np+R
® T 2){ ooy
~ where |
* R=—r— ? ceett,—q)).
n particular, , - .
' : k 1 k,
e S m 2){ =1}

This formula was remarked by Moo~ and Moser [6].

3. Proof of Theorem 1
First we give a lower bound on k;/k;_,. We shall Vprove, that

—]+1 n
t

kz/kl =E/n = (l - ?> .
By induction on j we obtain that |

1 (t—j+1n, ) t—j+2n
kisi/k; 2 na_ n.
’“/”'(i 1)0’—1){ it "} jHl ot

-y o kyfky- ,z
For j=2 '

(we have used (10) for p=j here) This proves (11). Since

| k,=k (kz/k)(ka/kz) (kplky-1), (ky=n),
we have,'by (11), .

5 >(n)""(t-—p+l)(t—p+2)...(t—l) -_(n)"(;)
PEN -0p-2...21 " \t)\»)

Thus Theorem 1 is proved.

s
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4. Proof of Theorem 2

The basic inequality we shall use to prove Theorem 2is (under the condltlons of the
theorem and with the notatlon of the previous proof

1 T+t +tym1) = Olkn?™ =

To establish (12) we shall carry out the proof of Theorem Ia httle more carefully :
By Theorem 1 we know that , . __ -

' 't n\r~1
13) - k,-12 '
( ), . o ‘-‘(p—l)(t)
By (9), '(9*),' (11) (applied with j=p-—1) and (13) We Obtairr that

| 1 -
_ (14) k ‘p( {kp 1 ((kp 1/kp- 2)(17 1)2"")+Zqzv+(tz+ o)) 2

1 t Polft_(p—1)+1n S\
’Z'p(p—z){(p—.l)(t)' ( p1 jr‘.”"”z"”)*

+ Y g+ .. +tp—0}=(;>(¥)f+ wp—2 {Z‘I%"f(‘z"‘:- SRS VE

- This proves (12)

The method we shall use is the followmg By an averaging process we show that

- there must be a complete d-graph K, in G such that.

(i) almost all the vertices of G— K are joined to exactly d—1 vertices of K,;: -
(ii) dividing the vertices of G — K into the classes C,, . . ., C4, where C;containsthe =~
vertices joined to each vertex of K, except the ithone (i=1, ..., d)and C¢ containsthe
" remaining ones almost all the pairs (x, y) (xe C;, ye C;, r#;) belong to G. o
It is convenient to reduce the proof first to the case p 3.If p’<pand we know that
(2) holds for p, then by (11)

Vkp/kp"::(k'.’/kp—l)(kp ._'./k“’:’?) " ',(kP"+'1/kp')§ .
Jt=p+1)(t=p+2)...(t—p) (2>p—p‘ |
S _P(P—’la)..'.(p'-i-']) 7 s

| and hence (by (2))

- - . . ‘ . ‘p’ .
| - ky < (3) ( ’,>+ Ckn? -2,
~ » | \t)\p)

In particular,

(15 | 'k3(G),§<;>(g-> +Cn. I
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&

" On the other hand,'by (14),

C .
e .. k_aé(3)(§-)» SN AN

where (14) is appiied with p=3, V is a vertex of G, ry (of (7)) reduces to the degree
of V, and t, is the number of (3,1)-graphs: of subgraphs of 3 vertices w1th 1 edges.

2E
Fmally, q,,—(p—l)-— —ry= e o(V) measures how near is the valence of the

~ vertex Vis to the average valence. By (15) and (16)

Y 0= Otkn), t;= O(kn)

" Let W bea complete d-graph of G and let A w denote the number of vertlces Jomed to

- at most d — 2 vertices of W. If z is a vertex joined to at most d— 2 vertices of Ay, then

there is an edge (x, y) in W forming a (3,1)-graph with z. A gnven 3, l)-graph is counted
only O(n?~ 2) times in ) 4y, hence | S

an ZAW Otkn) - One~ 2)—0(kn‘ ).

Let By, be the number of pairs (x, y) ¢E(G) such that either both x and yare Jomed to
exactly d—1 vertices of W but these d — 1 vertices are different for x and y, or x is joined
to all vertices of W and y is joined to exactly d— 1 ones. We can find a z € W joined to x
“but not joined to y and this triple (x, y, z)is a (3, 1)-graph Fora glven (3,1) graph we can
find only O(n?~!) W from which it Can be obtained in the way glven above Hence

g 2 Bu= O(kn)cxn‘ 1)==0(kn")
Let Qy=: Y 7. (Here Visa t/ertex " Trlvmlly, o |
vew
BT N 5. Qu=0(kn)- Otn*~!)=Ofhn).
| By (.17), (18)‘an<.i (19) | |

Y (rAw+By+ Qw)»v'—‘o(knd) .

By Theorem 1 applied with p=d=Lt] we know that the number of summands on
the left, k(G) 2 c,n’ for some positive constant c, . Therefore the average of (n4,, + B,
+ Qy) is O(k). Thus there exists a W in G for which

200 Ay=0(k/m), By=0(K), and q,=0(/k) if VeW.
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 Fig. 2

LetC,(i=1, . .., d) be the set of vertices of G joined to all the vertices of W but to the
ith one denoted by V; . Let C be the set of vertices joined to W completely and Cy,, be
. the set of vertices joined to at most d—2 vertices of W. By (20), |Cysy|=Ap= "

' k - o : 2E S A '
=0<;)=0(ﬁ), and for every Ve W o(V))=ry=——qy= (lv — ?)nfl-O(\/E).
- Thus, for j=1, 2, cend, o _ o
ICl=1(\stV)l 2 5 + 0(/k)
‘ Y ’ d
and therefore (by Y|C/|<n) |

=2+ 0k, and |Gl = 0(/B).

A short’ computation gives that if n,=n/d+ O(ﬁ), then | e(Kydng, .. , ng)=
=m(n,d + 1)+ O(k). Let us consider the following classification of the vertices of G: C;is

the ith class for i=2,3, ...,d and CouC,UC,,, is the first one, n; is the number of
vertices in the ith class, i=1, 2, ..., d. o

By (20), more precisely, by By =0(k) aiid IC,+1|=0(k/n), the number of pairs
(x, y) not belonging to G where x and y belong to different classes is only O(k)+
~ +O0(k/n)O(n)=O(k). Since S ' v, o
|  dKdny, ... n)=min,d+1)+0(k),

(i.e. it is not too small!), by (3) the number of edges of G the end vertices of which belong
to the same class is at most ' .

E—(Kdm, ., nd)~ By=niCas)=0(K).

 This completes the proof.’
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5. Proof of Theorem 3

The proof is rather long and subdivided into steps '(AHU); Occasionally we shall
insert some remarks telling our plans for the next few steps. In steps (A) and (B) we
approximate the extremal graphs with complete d-partite graphs and introduce some

notation. In (C) we show that if K;(n,,...,n,) is the graph approximating our
extremal graph S, then n;—n; is small.

All the inequalities below are stated only for the sufficiently large values of n.
(A) Let S be an extremal graph for Problem 1 for some n, E, and let

d=max {t:m(n, H‘- N<E},

while k= E —m(n, d+1) :
It is clear that we may assume that k= =0(n?). Indeed, if the theorem is true for all

possible functions k= k(n) such that k=o(n) then there exists an ¢>0 such that the
theorem is true for k <en? (p and d are ﬁxed throughout). :

(B) We can apply Theorem 210 S. Let Z be a graph obtained from Turan’s graph

~ T4 by adding k edges to it. Then e(Z)=E and_ so by the extremality of S we have

'k,xs) < ky(2) = (z) (§)+ Okn?~2).

“Thus Theorem 2 applies and we conclude that there is a constant c; such that S can be
" obtained from a K n,, ..., n) by deleting and adding at most cok edges. The
-+ construction of S this way is not unique. Let us choose the graph K(n,, . . .,n,) in such

a way that the number of edges to add is minimal. Let 4,, . . ., 4, denote the classes of
Kdn,, ..., ny),|Aj|=n;. Call the edges to be added to K/n,, ..., n,) horizontal edges;

~ the edges to be deleted from K(n,, . . ., n,), missing edgeS' the edges which occur in both

S and K{n,, ..., ny) vertical edges.

Let hand m denote the number of horlzontal and mlssmg edges, respectlvely Clearly,
hScok and msShScok. Moreover, m<h—-k:

_k=-_-’E._—m(n,d+,l)-{-—-{e(K¢(n,, ooy r_t,))+h—vm}‘-v-4m(n,d+1)§hfm . |

Set S ;
' 6/ (x)=|A;nst x|
| a7 (%)= |A;—st x|
If x € A; then let
o*(x)=0f (x)
and ' '

o)=Y 67 (x).
i#j
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67 (x) ey ()

" Fig. 3

Thus 6 *(x) and ¢ 7(x) denote the mimbcrs of horizbt_ital and missing 'ed_ges adjacent to- |
x, respectively. o : o
Finally, set A o
| o’ =maxo*(x), -
. . X . ’

- 6" =maxoc (x).

Note that the choice of the partition {4,, ..., Ay} implies that =

ey Wzt G=L....d.
Hence " - L
| e
ot)< 7

for all x, so -
22 o - t< -
@ > <3

Introduce the numbers

d—1\ (n\*~? C(d=2\[n\"'
T e

These will occur fredueritly,in 'various approximations.
Let ' . ‘

Sény, .. .,ng= Z 3 n n;,.

L S...Si0, j=1

If ny, ..., n; are integers, clearly,

Sg(nla LS nd)=kp(Kd(nlo .. , nd)) .




Oh complete subgraphs of a graph II ' © 473

(© ‘We show that n; —-+0(\/_) For let eg. n,—max (ny, ..., ng), ny=

=min (nl, c iy M) Then

A9 SeKdm, ..o md) ik = S, . m) ek =

~_n,+n, n +n : : 1
=S§( 12 2’ ‘2 2&"33--;and)+clk—_4'(nl—n2)2é

n n ' 1 -
§s3(2,-...,2) +c,k—z(nl-—n2)2.
On the other hand,

ds)—.-Sd (d, “._’d)+k+0(l)',_

which yields that n, —n, = 0(/K).

(D) Let u, v € V(G). We denote by ag(u, v)=a(u, v) the number of K,’s in S+ (u, v)
containing the edge (u, v). We can obtain quite accurate estimations on these numbers.
| . The first part of the proof consists of steps (A}(M). In steps (D){(M) we obtain

| step by step more and more information, sharper and sharper inequalities for
quantities like '
(i) a(x, y), when (x, y) is an edge, i in partlcular, a horizontal one

(i) a(u v), where (u, v)isa rmssmgedge

(iii) 6 * =max ¥ (x)

(iv) t=1£{x)=: min (¢ (x), 6 " (x))

(v) a*(x)+ ¥ (y) for the edges (x, y) and for the missing edges (x, y)

Let ﬁrst (u, v) be a horizontal edge. Then '

(23) alu, )2 R, [0 (W) + 0" (v)]R3+0(f n? ).

Indeed, let us count the K,’s contalmng (u, v), as follows Lete.g. u, ve A, and § denote |

the graph obtained from S by filling in all the missing edges. The number of K,’s in 5

contalmng (4, v) but no other honzontal edge is
n
If(nz, ._..,n,)=S§If(2 )+O(ﬁn"‘ﬁ R,+O(ﬁn" 3.

Let us delete now the missing edges which we have filled in. A missing edge disjoint
from (u, v) destroys at most O(n?~*) K,’s and since there are only O(k) mlssmg edges,

this way we destroy only O(k) - on*~ 4) < O(ﬁ n?~3) K ’s. If we delete now a missing -
edge incident with u or v, say one connecting u to a pomt w € A,, then we destroy at
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most - o ‘ .
$323(n3, . ., m)=Ry+0(/kn*~%)
K,’s counted above. So deleting all such missing edges we deStrOy at most
(0™ (@)+0~ ()" Ry+(0~(w)+o~ () 0(/k n"*‘))e—;
=(g" (u)+a (v)) R3+O(ﬁ nP~ 3)

K,’s counted above. This proves (23)
Smnlar computation yields that if (u v)is a mlssmg edge then

4 a(u, v)< Rz+[a+(u)+o+(v)]R3+a+(u)a+(v)R4+0(\/-IE ne- 3)

(E) The extremality of S implies that if x, y)e E(S) but (u, v) ¢ E(S)‘ then

@)  dxysawo.

‘Indeed filling in (u, v) creates a(u, v) K S, and then deletmg x,») destroys at least a(x, y)

of them :filling in (4, v) may create K s containing (x, y), this is why the deletion of (x, y)

- may destroy more than a(x ) K s By the extremahty of S

B ,.(S)ék,,(SHu, D)= (%, ) < k,lS)+alu, v)—a(x,y).,

'provmg (25).

Now (25) will be applied in the followmg way: knowmg more and- more about the‘
structure of the graph we shall be able to obtain always better and better bounds on

a(x, y) and a(u, v); then (25) in turn gives more information on the graph Another o
inequality, similar to (24) and (25) is that o

(26) D a(x, y)SR1 |
if (x, y) € EJ(S) For usmg mductlon on k, we know that
k,.(S) k(S —(x, y))+a(x y)>k,(G)+a(x, y)

for some Ge U (n, E—1). Let G’ € U,(n, E) be obtained from the same K,(n,, . N
as G. Let ny2n;. Then . , -

| kfG)=kfG)+ S5, ..., m)SKG)+ Ry
and hence | - .

ki(S)ZkAG) +alx, )2 kG +alx, )~ R, .
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(F)Let(x, y) bea honzontal edge and (u,v)a mlssmg edge Then (23) (24) and (25)
imply that

~ Ri-R, é[oi(x)+o'(y)+a_‘.‘(u)_+c*(v)] ‘Rs+
| | oWt ) Re+ 0k W)
or, dividing by R, |

<o (x)+o (y)+a+(u)+a+(v)+

RS

(27) » |
p-3 ot +
+ - m u)-o (v)+0(\/_)

(G) The previous 1mportant mequahty is used ﬁrst to bound the number o* from
below. Using that ‘

o'W ot e <3,

we obtam for each horizontal edge (x y) that

(x)+a () +20* +d ++O(\/_)

&.I:

Summmg for all honzontal edges (x, ) we get

p+1+0(fh)s

v_ h- —SZG’+()C)0' (x)+ho i=pt

: &.

: Sa*ia (x)+ha 2: 0(fh)_ |
'. ‘Sa+h(2+%dd—p+l) 0(fh),__ |

 since za - —2m<2h. Thes

@ o a+z4:_’3’+2 2 0(f)_ . +0(/R).

(H) Our next aim is to show that for every x, one of gt (x), 0 (x) must be small :
More precisely, let

t=t,=min (o (x), 67(x)).
-) -
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| We waxtt to show that _
29  t=o(n).
Set a}‘(k); o;. By the choice of the pértition,’ more precisely, by (21), |
ajga+(x)gt G=1,...,d).
The number of K,’s containing x is | -
‘ kp_l(K,,(al, e )+ OknP~3)=82" (g, .. .,ad)+0'(kn""3') :

where the second term accounts for the K ’s containing a horizontal edge not adjacent -
to x and also for those p-tuples consnstmg of x and p— 1 neighbors of it which spana
missing edge (since h, m<cik, see (B)).

Suppose that e.g. x € A;. One of the numbers P 2 (x), . a; (x) say 03 (x), is at
least t/d.

Replace s=t/d] edges connectmg x to A, by Lt/d| edges connecting x to A4,. Then
the K,’s not containing x remain the same while the number of K,’s containing x
becomes .

ky-1(K4(01 =5, 02 + Sy 035 ...y a,,)+ O(k nP- 3‘) =
=SE"Y(g, =5, 0,45, 0, .. ., 0)+O0kn?3).
The number of K p S cannot decrease by this operation, hence
ss_.l (ala se ey ad)_sg—-l(al -S, 0"2+S, G35 -0 0'4)§ O(k np—3) .

But the left hand side is

' | 1
6o . $(02—01+5)8573(03, . .., 0 >s7P” 3>_2d_2t,, .

whence . =3

t= O(kp P=T. P~ T)= o(n).
@ Let Xo€A; be a pomt wnth
a*(xo)=0".
Then by (28) and (29), |
o~ (xg)=0ln).
Clearly x, has a neighbor y, € A; with

6™ (yo)Sm/o* =O(k/n)=oln).
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Hence, by (23), | | | |
| d(x‘o,‘)’o) 2R, +o(n""?).
~ So, by (25), for. every pair (u, v) ¢ E(G) we have
(31) a(u,. V)= R, +o(n?~ 2)

- Applying (27) to the horizontal edge (x,, yo) and any missing edge (4, v) we obtain tﬂha‘t_ i

_ - d p—3"
+ + ¢
(32) 3 o' (W)+o (v)+nd—p+2

fmmanmgg+qm.

(J) Now we cari easily show that o -—fO(\/E). First We prove the weaker
(33  eT=om).

Indeed, let v be a point with

'a°(v)=a'".

Forc=

) .
2dp—3) elther a*(v)>cn, and therefore (33) follows from (29), or a*(v)Scn. |
~ In the second_ case for every missing edge (u, v) (by ct(W)=s -‘-1-)

d_p-3 *() ()z'
nd— p+2 W ol 4d

By (32)
o (u)= > J + o(n) cn 2

Therefore the number of such pomts u (ie. o~ (v) is at most

- h/a—0<) o(f)

{

Now we lmprove (33). It 1mp11es that in (30) (in (H)) o, *(x)— 7 + o(n), hence :
p—3

s3t?~3 can be replaced by s? ( an) . Hence in (H) we can improve t=o(n)v to

(= 0(\/-1::), in (29), thus a‘(x0)=0(ﬁ), which, in turn, yields that | :

(34 o~ =0(/k).
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"~ An important consequence of (34) is that for any vertex x € V(S) .

- (39) | .a(x)=(1—- E)n+a+(x)+0(\/;).

(Here we use n;= Z— + 0(\/;), ‘t'oo'.> Another consequence is that if u€ 4; ve 4; and :
i#j, then o |

(36)  alu,0)=Ry+[0" W)+ @)IRs+0* () o* (@) Rat+ OGSk n?~?).

| Indeed if we fill in all the missihg edges adjacent to u or v, by (34), we create only |

O(ﬁ nP~3) K ’s containing (4, v). In the resulting graph an argument, similar to the
proof of (23) works . -

(K) Let (x, y)e E(S) (where (x y) may be a horizontal or a vertlcal edge) We '
claim that

67 | o a+(x)+a+(y)s - +0(\/E) .
By (35) an equivalent form of (37) mdependent of the partmon is
6™ dta)s (2"_* z) n+0W/B.
Fef let us assume first that. Ix; y ere in }differenAt classes. Then, by (26) and (36)
| | Ry 2a(x,y)ZR, +.[G_+(.JC)‘-*'G+()’)']R3 + 0(\/76 ), |

proving (37). (Here we use that R, — R2'=R_3 . -3 JIf x, y € A,, (say) then they have at |

least ¢ *(x)+ ¢ *(y)—|4,| neighbors in 4, in common and thie yields

RiZa(x, )2 Ry +0(/k- 1)+ (0" (9 +07 ()~ 1)

S (fd=1\[n\P"? |
. - p—4
((p— 3> (d) +0L/Mn )> .
This proVes (37), for horizontal edges, too;

(L) An important consequence of (35); (36) and (37) is that there exists a ¢y >0 such
, 1 _ ‘ T
that if a(x)g<1 - -ﬁ) n+c, \/l_c, then the neighbors of x span no missing edge. For




On complete subgraphs of a graph II : | 479

suppose that (4, v) is a missing edge whose endpoints are.adjacent to x. Let

| | o) = (l-.—-z—la)nfr, >0,

Let xe 4, ana ugA; i;y (25) and (36)' | |
0Salu,0)—atw, ) =[0*(0)= * (] Ry +
+o W00 —c IR+ OK =

=[O0 @+ ORI Ry + o WR,].
' Therefore I
| )20 (M+0/k).
* This and (35) yield that | P
| o) 40" 2 7 +2r+0/R).
 Since .(u, v) € E(S), by (37), applied with y?v{ ]
| r=0/B.
(M) Let us fix a c;>c;. Set -
. .YV={xe V(G): &+($)> —2”2 +c2v\‘/l;}, |
| B=dV,

" b=|B.

L&t, further, hi denote the number of horizontal edges spanned by B;and m;;thenumber
of missing edges between B, and B;. ' ‘
Note that if (u, v) is a missing edge, ue B, ve B then, by u¢V, -

0’+(u)§—"."+C2\/E _

and hence (32) implies that there is a constant c;>0 such that

ot (v)>csn.
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Hence there are at most h,/c3n O(h /n) vemces in B; incident w1th mlssmg edges of ,
S—V. This in partlcular implies that :

'(38)-, o mu=0(lh—h‘j)

n2

(N) We shall carry out nbw a number of transformations which finall y.lead toagraphQ

- with (@) =u(S), Q) =e(S) and k,(Q) <k,(S) unless S is of a ver y simple structure. (By the - o

extremality of S the second one must be the case)
(i) First construct S-V=§'. .
(i) Second, fill in the missing edges in §', to: get S '
(iii) Third, rearrange the honzontal edges in §" as follows. Let B span h horlzontal

,. ,edges Fmd the least number ¢; such that t,{lBI—ti)>h Clearly,t =0 (E ) =o(n).
n .

Further h; iStn. Let F,< B, |Fi|—t and D,=B;— F,. Connect t; -1 points of F, to all
points of D;, and the remaining point y; of F;to h;— (ti—— 1)(|Bil —t,) points of D;. This
yields the graph S'. (See Fig. 5.) '
(iv) Delete m;; edges spanned by B; UB,;. The precnse way of selecting these edges
depends on the values of m;;, t;,t;, h;and h; and will be given below, when these cases will
be distinguished. To be able to.start the general discussion, ﬁrst we assume only the
following. : - o

Condition (*) '
Ifve B and t;>1, then we delete at most

[ ]
t,' - 1 b_ .
edges (v, w), we B;.

The resulting graph is S™. (See Fig. 5)
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"oo.ooo\..j

% e e e o o e

=
N
o

~ (v) Connect each x € ¥ to a7 (x) pomts of B, which span the fewest edgesin S™. The
resulting graph is Q. Clearly Q)=u(S) and &(Q)=e(S). .

(O) We first analyse the effect of (iii). Call a K, regular, if it contains at most two
points of each B;. Clearly, every K, in §"" is regular On the other hand, it is easily seen
that $"” and S'” have the same number of regular K ’s. Thus k,(S")>k ().

Another property of S’ we need is that for every r (0<r < b;) the minimum number of
edges spanned by a set X of r points of B, is for S"" less than or equal to that of S”. Thisis
clear for r< b, —t,, since then X < B; yleldmg the minimum is an lndependent setin 8",
Mrab—t+1, then X spans

39) : : .; h;— (bi—r)(bi—ti)

. edgesof S"’: we take all points of B;but b;—r onesfrom F;—u. If | X|=r, X < Bi, then X
_ spans at least
' n
h;—(b;—r) (-Z_d- +?2 \/;) _

7 edm of §”, since B;— X represents at most |B,— X |( +c;3 \/_ ) edges. By b;—t;=

- ; + o(n) the minimum is smaller for S",’ :
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(P) We use the previous considerations to show that
(40) KAQ) —kiS™) Sky(8)— kfS).

The left-hand side is the number of K’s in. Q containing any point in V. The right-
hand side is the number of such K’s in S. (Thus the meaning of (40) is that-the
transformations do not increase the number of K,’'s meeting V) It suffices to prove that
each x € V is contained in no more K,’s of Q than of S. Let xe V and set X =stgx.
Without loss of generality we may assume that st,x = X (this only means relabelhng of
the points). Let Sy and Q x be the subgraphs of Qand S respectlvely, mduoed by X
What we want to show is that -

@) ke l(sx)Zk, (02

Set C;=B;nX,and let y; and d; denote the numbers of horizontal edges induced by C;in
S and Q, respectively. Let us compare the numbers of K, _,’sin S and Q, containing one
horizontal edge from, say, each of C,, ..., C, and no other horizontal edge. o

By (L) and the definition of ¥; X spans no missmg edgesin S. Thus, i in S, the number
of these K,-1’s is exactly

“42) Vi oo By SBT3 *(lc,+1|, L Cd.
| The corrresponding numbetf in Q is at most.
43) - 8y...8, 85221 (ICyriby .., ICA).

Since §;<7; by (O) and the construction, and furthermore, every K, -, in Qy, being
regular, is taken into consideration in the terms (43), the inequality (41) follows. (S may
contain K,_,’s not counted in the terms (42), namely those containing three or more
points of a C;.)

(Q) The previous section and the extremality of S imply that
@ o k(S™M2kLS). |

Since every K, in S™ is regular, the number of regular K,’s in S™ is at least as large as
the number of regular K,’s in §'. Since step (iii) did not change the number of regular
K,’s, it follows that the number of regular K’s created in step (ii) is at least as large as
the number of regular K,’s destroyed in step (iv).. .

Let &Y/ denote the number of regular K s created when the missing edges between B,
and B; are filled in; let ¥¥ denote the number of regular K’s destroyed when the m;;
edges correspondmg to the missing edges between B; and B are deleted in step (iv).
Note that ¥ and ¥ depend on the order in which the edges are filled in and deleted, so
such an order must be fixed. However, this order will have no importance.
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Thefollowing (unfortunately, rather tedlous) analysis w1]l show that thereisac*>0
such that

@ wme_e i
and the stronger_'inequa.lity
46) o Wii2¢ii+d2 '»c* knP-3.

holds, unless either m;=0 or t i=ti=my=1. :
The assertion above that “the number of regular K ’s created in step (ii) is at least as
large as “the number of K ’s destroyed in step (iv)” means that

T gi< T gl

Y i

_Thetefore, by (45) and (46),
| mu=0 i Orb ti=tj=mu=l

~ for every i and j. '
~ Solet i+ j be given such that m,ﬁéO @if m,,-O we have nothmg to do) Let us call a
regular K, to be of type (u=0, 1, 2) if it meets both B; and B, and contains u horizontal -
edges in Biu B;. Let &, denote the type H K,’s created in step (ii) and let ¥, denote the
type u K,’s destroyed in step (iv). B
' Below we shall first establish some upper bounds on ®, and (lower) bounds on ¥ ,.
Then, using some case distinction, we shall specnfy, how to delete the m;; edges in step'
- (iv) of (N) and show that in each case. :

P — @l =(P, + Wl’ +¥;5)—(Do+ P, +P,)

is “too large”, proving (46) or (45). What is an annoying but natural feature of our case

distinction that we shall have the most trouble with the cases, when t;andt; are very small
(1 or 2).

When an edge between Bi and B is filled in, the number of type 0 K,’s created is at
R,+0(/k-n*-3).
The corresponding numbers of type 1 and type 2 K ’S are

[ay(u)+ag(v)]R3+0(\/' st R3+0(f k-n?=3)

and

o*(u)a*(v)R4+_O(\/I°n"'3)§ %R.‘+0(\/l_€ nP~3),
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(we have used the definition of V). So

@ ¢o<m.;R2+0(\/E )
(48) | S 2 ému‘}R-’r*‘ O/k- n- *my)

v | : . nz o '
(49) ' | _¢2_S.mij‘4—dR4+.o(\/’; 'np_smij) .

On the other hand, the numbers of K,’s of types 0, l and 2 destroyed by deletmg an |
edge (u, v) in step (1v) are

o R,z+o<s/l?-nf-’)f"
S N (- CR QL N
> | T
L o) o R+ Ok 1P,

respectively. This would be trivial if we counted the K,’s in §" containing (u, v).
However, we fixed an order of deleting the edges between the classes B; and B;. More
- precisely, we fixed an order on the pairs (i, j), and if (i*, j*) preceeds (i, j), then we should
not count here the K,’s containing (u, v) but at the same time containing a (u*, v*),

u*eB,, u*e B, already deleted. The number of such K’s is O(m - n*~4)=0(k -n?~4%), |

- for the edges (u* v*) disjoint from (u, v). Let us estimate the number of those destroyed
- by the removal of an edge (u w). If ti-l ie. Fy={u} then h;<b, and so, by (38),

hh\ - (n-k (k
wro)-o(s)o()
n n /] \n
for every l. Thus only 0( ) edges adjacent to u are removed at most and'so the number‘
. of K,’s contammg (u, v) and an edge adjacent tou and removed prevnously is at most
| O(L': )—O(k nf- ‘) Ift,22then by Condmon (®of (N)/(lv), the number of edges |
adJacent to u and removed prevnously (by (38) and h,St, n)i is at most

2o 28)- o) -o().

~and we conclude as before. Thus (50), (51) and (52) are proved
Now we need some case distinction. In the cases below we can always satlsfy .
‘ Condltton *) of step (iv) in (N)
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Case (Q1). m;; <(@t—-1)(-1). Then we can remove m edges connecting F; —u; to
Fj—u. For such an edge (u, v)

«ﬁ@mﬂﬂ=§+d¢5,
| whence by (50), (51) and (52),

'Pﬁ 2 muRz + O(m,,\/l_c n- 3)

‘Pl g mij-dzl'R3+0(mij k'n"'s)

WZ = m,jdz R4+O(m,j\/’z “nP~ 3).

| Comparlng with (47), (48) and (49) it follows that :

R PU_@zc a2,

| proving (46) and therefore (45), too.

Case (Q2). (ti—l)(t —<m;=4t; —-1) (t;—1). Then we can remove all edges

between F;—u; and F;—u; and m;;—(t;—1)(t;—1) edges between F;—u; and B;—F;.
_ For the ﬁrst t-1) (t,— 1) edges

ot )t 0) 2 - +aJ3

for the rest still |
aﬂwg§+aJB.
Hence, as befcv)re,v
o " 9’0—4’92 O(ﬁ' n?~>my),

P -, 26— 1) (4-1) s Ry+0(/k- 1 "*my),

. = .A— —m.. 2 . » . . v ’ .
‘Pz‘—¢2 g«ti l)(t14 1) mus_iR‘t+O(ﬁ,np—smij);o(\/ic—_np-—smij).
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By m;s4t;—1)(¢;—1) we have-
T‘f—di‘f;(t,—l)(t,—-1)2R3+0(\/E~.ﬁ"‘3mu)=
—(t:—l)(t;—l)[ R3+0(f " ’)]Zc T,

broving (46) (and also @),

Case (Q3). my;2tt;, t;22, t,23 In this case remove the m;; edges so that all edges
between F; and F; are removed. Then no type 2 K,’s remain and hence

Y,-9,20. ' : oL

'We have, s1m11ar1y as before,

020(\/_ "nP” smu),

~ andsince (t;—1) (¢, 1) of the removed edges satisfy af S(u) o0 2n/d+ o(f k), and all
“but at most one of the rest has at least one endpomt u with og(u)z + 0(\/_ k),

Case (Q49). t‘ =t;=2,m;;24. By (38), my; = O(1). First we try the same constructlon as .

in case (Q3). As before we have
V,—b,= 20

¥, eozqﬁ - 3)

*

\

. we have
| m—dn;«n—l)(tj—l)—1)§R3+O(\/E-n'"3mg). |
. By (38), - - . '. : S
mu=0 7‘2" = O(t(tj)=0((ti—l)(tj—l)—'l).
We conclude as before - v |

and looking also at the edges connecting u; to F j—u;and y;to F —u; we get, similarly as

- above,

v, - >[°'s"(“i)+as'(“j)] R3+0(\/_ k-n?~ 3)

Now we are home, unless

| o
o3du)+o5du;) < Yk-n® 3.+‘2 .
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(Here and below we shall use Ykn? as a quantrty whrch is o(n) and for which

\/_ = o(4/kn?))) In the latter case we modify the rule used to delete the edges in step (iv).
We do not delete (u;, u)), but delete an edge between F/—u, and B;— F j»instead. Putting
(u;,u)) back creates at most .

[0t (“i)"‘a's(“j)]Rs"‘Us'(“i)a's(“j)&+0(\/— WP~ =o(n~2)

K’s, while deleting the edge between F;—u; and B;— —F ; destroys at least

o . .2R3‘+0(\/E'n"3) : R
K,’s. Thus | o N

provmg (46). So we are ﬁmshed agam The cases treated so far cover all cases with t;> 1

and tj>l

Case (Q5) ti=1,1¢22, mi,St,—l The argument is basically the same as in case |

QD). However, we have to improve (48) and (49). Now a;(u)Smm( + czf hi)
for any u€B,. Thus for any missing edge (4, v) (ue B;,ve B) '

ag.(u)+a§(v) < 24 mln( —, h;)-'i—O(ﬁ).

: 2
| .Hence' ' ., _ o
(53) g ¢r é mij(% + mill (—ZnZ’ h:))'(a'_+-0'(,\/l: ‘nP '3mu),
(54 | ' | 'Qéém;, 2—'; mm(; )R"*'.O(ﬁ-»np-sm‘f)'

On the other hand, deleting i’ni ; edges connecting u; to F j.-u ; We obtain that
Y, %mi(g + hi)R3 + 0(\/’: w7
¥, zm;;"—';f hiR4+0(\/’:'"p—3) .
By (47),(50), (53) and (54), °

P2 +cmP 2,
We are home. '
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Case(Q6).t;=1,m; = 2 ;2 2 2.By(38)m;;= 0(1), again. Then we delete all lines between u;
and F; and m,,—tj other lines between F;—u; and B;—u;. Then, as above, we have

Tx [(tj_l)( +h) (Gs(“j)+h.)+(m.j—tj) ]R3+O(ﬁ nP” 3)

and by the same argument as in case (Q3), Y, ><b2 Hence we - get in the case .

h 2 —2-&, using (53),

w‘f—di"fg[t,hﬁa;.(u; QS]Rs.*;O(\/E.npes)g o :
{t; n ‘ _ 'n 1 . ’ _‘
R S
and in case h; £ —,

i _ gy 2 [mij% - (mij—tl)hll'"a;';(uj) - g]ks +.0(\/’_‘-' n? —3)3. -

[(4- o i

' Hence (46) is proved, unless t,—2 ag(u,)S,‘/kn , 5—22 + ‘kn Even in
thls latter case

P dWZO(ﬁ o3,

Put the edge (u;, u;) back.and delete a line between F;— uj and B; —y; mstead This way
we destroy at least _

2_d R3 + o(n" —.2) .
more K ’s than before. This settles this case.

Case (Q7) t=t;=1,m;22, and ég. hiZh e Agam, my= O(l) Now we delete (u,, u,)
and my—1 honzontal lines. As before, o

. | P>,
Note that in this case we deleted only one vertical edge. Thus

Wo=R,+0(/k-n*3).
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For @, we of course still have (47). Moreover,
Tl g(h, + hj)R3 +(mu — l)Rl + 0(\/.,; “nP~ 3) =

=[h,.+hj'+'(m,.,.-i) 3]33+(mi,—1)xzf+ o /k 3.

. We have to estimate &, a little more carefully than before. Consider two missing
lines (4, v) and (w, ?) in §', uwe B;, vt € B;, where, say, u#w (we allow v=t). Then -

[o3i0)-+ o 00)] + [o 0w} + o 30 <

Hence , -
§(hi+hj + En& + (m;j—’2) 3)R3+0(\/E' n";s) .
Thus | I S
P9V z =Ry +0G/kw73),
proving (46) again.

Observe that the cases (Q1){Q7) prove (46) unless either m;;=0 or m, y=ti=t;=1.
. Thus we have proved that for every (i, j) m;=0 or mj;=1,=t;=1. Let us consider the -
latter case. '

Case (Q8).my;=t,=¢; =1.0f course, we remove (i;, u j)'.lDenoting the missingedge of
S’ between B; and B; by (v;, v;) we have, by the same type calculations as above,

WY~ @42 [(h,— o0+ (hy— o0 )IRs + Ok -n2) .

Hence indeed ¥-02(/k-w%) and it also followsthat

odv)2h;— ,/ 2 edv)zhj—Ykn?

As we have seen at the end of (M), 6 *(v)= csn. Thus h; ~o*(v), which 1mphes that v;is
the unique point in B; with the largest horizontal degree Hence we may assume that
v;=u; and v;=u;. Hence §' and S™ have the same missing edges. Therefore step (ii) and
(iv) can be ignored: Q is obtained from S by steps (i), (iii) and (v).

Let us consider step (iii) again. If step (iii) is applied to S’ (instead of S”), then the
numbser of regular K's remains the same, if B; meets no missing edge (v;, v;), then the
number of regular K s decreases when a horizontal edge in B;-non-adjacent to v; is

E replaced by a honzontal edge adjacent to v;. (40) is not mﬂuenced by omitting stepsii)
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and (iv) Thus we get that k (Q) 2 k(S). By the extremality of S k,(Q) =k ,(S) and if (v;, v))

. isamissing edge (v; € B, v; € Bj), then all the horizontal edges of B; are adjacent to v;. It
' also follows that no B, contains a triangle in S. Hence, if x € ¥, we must have equality in
(41), which implies that then either x isjoined to all points of B; or the nelghbors of xin B,
are mdependent in S. ' ,

(R) We study now Q. Since Q is another extremal graph, it follows that there is at
most one i such that ¢;22. Indeed, if ¢;, t; 2 2 (i #j) then, by (Q), m;;=0. Considering an
edge connectmg F;—u; to F;—u; we would get a contradiction with (37). So suppose
that ¢,, ..., ;<1 and thus F ={u;} or F;=0 for i22.
. Consnder now a pair of points xe B;, ye B;. By x,y ¢V

(55) : o (x)<b;—t; .
and “ - |
(56) | o; (y)<b,—t,

If o (x), a{' (»)>0, we define the shifting of edges from x to y as follows. Replace ¢
horizontal edges of form (x, u) by ¢ horizontal edges of form (y, v). Clearly, the number of
K,’s of the resulting graph Q(t) is a quadratlc function of t: At?> + Bt + C, where A<0.
Therefore elther O(1)or O(—1) has less K s than Q, unless 4 =0, which means that

(57) | ~ either p= 3 or (x, y) is a missing edge

In botlf cases no K, is containing honzontal edges of type (x, u) and (y,v) at the same
time. Now k,(Q(t)) is lmear A ’

k QW) =kAQ)~ (a(x u) aly, o)t ,

(where a(x, u) and a(y, v) are independent of the chonees of u and v).
Since k,(Q) <min (k,(Q(— 1)), k(Q(1))), thus

- (58) - a(x, u)=a(y, v)

and taking ¢ as large as possible we obtain a Q' =Q(r) for which either

(59 . S ~ Stg{x)nB;=9
(60) | ~ stgG)nB,~F

This operations called shifting of edges fromxtoy. We shall useitto prove that there is
at most one missing edge in Q—V (i.e. in S-V). :
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First we prove that

NG R CELNCE
@ o="sok,
~and 7
©) | o=ogx) = -;-1 + ok .
Fidally,
(64) | X, y are not ‘adjacent to any poidt inV.

Indeed, if (x, y) is a missing edge, then (Q8) descnbes the situation: x =u;, y =u;and
all the horizontal edges of B, are adjacent to x in Q, and in S. Hence ‘

6 of=0ins z—d +0/k)- and aqy)=a-;(y) < ﬁ +0(/H).

Thus (60) implies

) o = o) + o) agm - - ag<y)+0(f CELNCE

* This proves (61) in the second case and it is trivial, when (59) holds. (62) is tr1v1al,

~ when. (60) holds If we know only (59), then we apply (32) more precxsely (to have

d -
0(\/_)), (34).and (27), yielding ot(x)+at(y)+ - dp Y ot (x), a*(y)< +O(\/E)
obtaining (62) again. (63) follows from (65) and (66), where we have equahty
Finally, if we V, then, by (62), aQ(w)+aQ(y) 2 % +.0(\/— ), therefore, applying

(37) to (w, y) in Q' we obtain that w and y are not adjacent in »Q, proving (64).

Let now (x, y) and (x y') be two missing edges and assume that y and y' are in B;
and 'B;, where j#j'. By shifting the edges into y and y we can achieve that o*(y)+

2n ,
+a+(y’) —+o(n) in the obtained Q”. |
By (35) and (37*), (, y) ¢ E(Q"), hence (y, y') is a missing edge in Q and S as well.

(Since the optimal partition may change during shifting the edges, we used (37*%).) Now

we shift the edges from y to x in Q but leaving csﬁ edges at y, where cq is a'sufficiently
large constant. This will ensure that the arguments used to establish' (32)in S work in

Q- as well However, the missing edge (3, ¥) contradicts (32): o*(y)= O(\/— k) and
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o (y’) = — + 0(\/_ k). Thns we have proved thatQ—VandS—V contain at most one

missing edge

| (S) Below, in (S), (T)and (U) we complete the proof. In (S) we mvestlgate the case,
when Q — V has no mrssmg edges and at least two B;’s contain (horlzontal) edges. In (U)

we observe that the remaining case, when Q — V has (exactly) one missing edge, can be

reduced to the cases (S), (T). Case (S) will-be subdivided into (S1)(S4) according to the -

distribution of the horizontal edges in B;’s. The basic method is to shift the edges so that

. the resultmg graph contains an edge contradlctmg (37) of (K). Most of the difficulties -

occur when p=3. _ .

~ First we prove the

- Saturation principle. Every x € V is joined to all vertlces of all but one sets Bi —F, I
where for ;=0 F;=:0. :

Indeed, if there area B;— F;and a B, F ;not all the vertices of whlch are Jomed to x,
then delete an edge (x, u), u € Bj F; and add an edge (x, v), v € B;—F;. One can easily .
check that the number of K,’s of the resulting graph Q' decreased if a; (x)<a, (x):

All B;— F;and B;—F; are mdependent sets, and therefore the number of K’s either
not contalmng x or containing x and only one vertex from B;u B; remains the same,

‘while the number of K,’s containing x, a ue B,— F, ‘and a ve B;—F; is proportional
to g/ (x) - o} (x), that is, decreases This contradiction proves the saturation principle.

Now we describe the structure of S in the case when Q —V (or S — V) has no missing
edges and at least two sets B; contain horizontal lines. Assume that the indices are
chosen so that h, >h2 co.2h>0, hyyy=...=h;=0. So we deal with the case
“when f2 22 . [ s

Case (Sl) Suppose that |F{|=2 and aau,)<b, -—t, It follows by (Q) that
|Fal=...=IF/]= l Also note that p=3 by (57). Shift as many horizontal edges of @
incident withu,, . . ., u,_, tou,as possible. Since u; is adjacent to F, —u, whose points

have degree b, —t, =; + ‘O(\/l—c), by (37) its horizontal degree cannot grow too big‘
_ during this shift, ie. . | |
: : o'au,)+ +dau,)=0(\/l;)

We shall prove that eachx eV is joined to each vE Bzu .UB,. Here we need the

Strong saturation principle. If f > 2, then each x € V is joined to all the vertices of all
but one sets Bl Bl Fl +u,, Bz, . B‘ Indeed, fix a u; € B‘ St(x) When h;—o Ifeg
xeVis not_;omed toave B;and aw € B;, then it is neither joined to 4; € B; and u; € B;.
Assume that o;' (x) 2 o (x). First shift all the h; edges incident with u; to some u, (where
- I=jis also allowed if h > 0). This does not change the number of K;’s. Thén replace an
- edge (x, 2) € E(Q) by (x, u;): now the number of K3’s decreases. This is a contradiction

proving that x is joined completely to each but one of B,, Bz, ....Bs A srmrlar argument -

works if B, is replaced by By ~F+u,.
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We show that x € V cannot be joined to all points of B, — F, +u, . As we have seen
at the end of (Q8), any x € V is joined either to all the vertices of B; or the neigh-
bors of x are independent in S. If x is joined to all the vertices of B, — F, +u,, then
st(x)n B, contains edges in Q, thus in S as well. Therefore st(x) contains au € Fy —u,,

too. But oju)+agx) g-z—z + o(n), contradicting (35) and (37*). Hence x must be

adja(:ent toall points of B,u...uUB,in Q and in S as well. So considering the partition
D,=B,uV, D,=B,, ..., D;=B,, every edge between different classes will be in S.
Thus S € Uy(n, E). , o R .

Case (S2). o'aul) = ﬁ (We may have |F;|=1 or >1.) By the saturation principle

each x e V is connected to all points of all but one sets B, — F, B,, . .., By. Suppose
that x misses a point in B, . Consider S. Since x is joined to all the vertices of B, — F, and
by (37*) to none of F, it is joined to exactly b, —t, vertices of B, and these vertices are
" independent by the results of (Q8). Hence every horizontal edge of S in B, contains one
~ of the t, points of B, non-adjacent to x in S. Thus for at least one of these vertices, say,

3n
2 ad + O(f ) contradrctmg the definition of V. This proves that every :

xe V is connected to every y in B,u.. uB, ‘We conclude as above.

‘ for u, o5(u) =

; o 3 o |
Case(S3).|F4|=1 end hi+...+h; £ ﬁ We know by the saturation principle that

~ every x € V is adjacent to all points of all but at most one sets B;. If x is not adjaeent to.
all points of B;, then it is not adjacent to u; either. Also we have p=3 again.
First let us assume that there exists an x € ¥ not joined to u,. Shift all but one
- horizontal edges of B, to B,. (We know that B,, B, contain horizontal edges!) This
shifting results in another extremal graph Q'. Replace this last-horizontal edge in B,
(incident with u,) by (4, , x). This does not increase the number of triangles, moreover, it
decreases, whenever at least one y € V is joined to u, . This proves that no vertex of V'is |
joined to u, . Thus each x € V is joined to each w € B,u .. . . U B,. We conclude as in (S1).
So we may suppose that every x € V is adjacent to all points of B, ~and similarly to
all points of B;, ..., B,. If every x € V is adjacent to all points in B,u...UB, then -
~ we can again conglude as before. So suppose some x € V is non-adjacent to some point.
in B, ., (say). Then ¥ ={x};infact, if there exists another vertex y € V, then we can shift
edges connecting‘x to By, to B, until the degree of u, becomes greater thann — %
But then, being connected to y, it contradlcts (37%). The case V {x} can be handled
again in the same way as case (S1).

Case (S4). |Fy|=1and hy+ ... +h; > 5, but ou) < bi—1 (=1, ..., f). Again,

we heve p=23.Itfollows then (as before) that every xeVis joined to all points of all but
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at most one of By ~uy, ..., By~uy, B}y, ..., B,. Furthermore, since by shift we can

. 3
increase the degree of any u; (i=1, ..., f) to more than_ﬁ, nooneofuy, ...,upis -

‘adjacent to any point in V. :
Since the horizontal edges incident with uy, ..., 4y must be contained in the same '
- number of triangles (by (58) in the definition of shrft), it follows that

| ,|B,|=~...=|B,|.

Shift now as many -horizontal edges to B’s with the smaller indices as possible.
Even after this shifting each B; (2<i< f) must contain horizontal edges, otherwise
replacing an edge (x, ), ue B, by (x, u) we could diminish o (x)-o;'(x), hence
decreasmg the number of K 3’s of the resultrng graph Q'. Thisis a contradiction, smce o
is extremal. Thus :

hy+ .. .‘+h,g(f—1)(|B,|'—1)+lg|B,I

G'Q(ur)— |Bx|"
and -
aq(uz)z l

Since u, and u, are adjacent, by (37) 6 (u;)=o(n). Thus we can replace (uy, uz) by an
edge connecting u, to B, —u,. This decreases the number of K’s, a contradiction.

(T) Suppose _strll that -V has no missing edges but let now h2= oo =hy=0.
The argument in (S2) works unless |F1|¥2 and h, £ + O(\/— ) or |[F,|=1 and

h, § — + 0(\/—) Thus aau1)<b,—t1 Assume ﬁrst hl >0.

As above, each x € V is joined to all ‘points of all but at most one sets B,—F,,

Bz y+ + ., By4. Our aimisto show that no x € V is joined to u, . This implies (by (Q8)) that no
x e V is joined to F, atall. Thuseach x € V is joined to each ve B,u. .. UB,. Hence S
satisfies Definition 2 with W = VUF,: SeU,(n, E). .
: Let us assume (indirectly) that an x € V is joined to u, . By (Q8) x must be connected

- to all points of B,. Hence, by (37*), F, —u, =9, that is, F, = {u,}.-

We showthat eachy € V — x isjoined to eachve Q — V —~u,.Supposeye ¥V — xlsnot
connected to some v e B; (1 22), or some v € B, —u, . Then we can shift edges from y to
u, and achieve a"(hl) 2 —22 + ¥/ kn?. This contradicts (37*) since u, is adjacent to x.

| There are two cases: x is joined to all vertices of B,u. . . UB, or not. In the first case
the vertices of Q can be partitioned into the classes VUB,, B,, ..., B, so that vertices
belonging to different classes are always adjacent. Unless h, =0, the first class contains
a K, therefore we can rearrange the edges in V'UB, ruining all the Ky’s and
(consequently) diminishing the number of Kj’s. This is a contradiction.
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In the other case there is & ve B; (i22) not joined to x. We can shift edges from x

to u; until (u,) ,‘/ kn is achleved This proves (by (37*)) that no ye V —x

is adjacent to u,. :

~ Also we can shift edges from u, to x. If this fills up x, i.e., in the resultmg extremal
. graph Q' x is adjacent to all points of @— ¥ and there is still a horizontal edge in Q'
incident with u,, then replacing (u,, x) by a horizontal edge (u;, w) we decrease the
number of K,’s. This is a contradiction. Thus @'~V contains no horizontal edges.
Carry out the same shifting of edges from u, to x but stop, when only one horizontal
edge (u, ;w)is left. If V —x # @, we can replace (u,, w) by (4,, y), decreasing the number
+of K's, a contradiction. If ¥ = {x}, then put x into the class B; containing the v. Since x
is Jomed to all the vertices of all the other classes, we are home: Qe U o(n, E), which
implies for p=4 that Q € U,(n, E). The same holds for §, too.

The case h; =0 is fairly simple, and left to the reader

(U) We are left with the case when Q | 4 has a missing edge (4, u,) with, say, u;€ B;.
Then we know that uy, U, are not adjacent to any point in V. Then replacing V by
V+u, and B, by B, —u,, the arguments in (S4) and (T) can be apphed

- The proof of Theorem 3 is complete.

References :

[1] BoLiosas, B, Relatrons between sets of complete subgraphs. Proc of the Frfth British Combinatorial
Conference (Aberdeen), 1975, 79-84. v

[2] ErpOs, P., On a theorem of Rademacher-Turén, llinois Journal qf Math., 6 (1962), 122-127.

* [3] Ezpos, P, On the number of complete subgraphs contained in certam graphs, Magy. Tud. Akad Mat.
Kut. Int. Kozl., 7 (1962), 459-474.

[4] Goopman, A. W,, On sets of acquaintances and strangers at any party, Amer. Math. M onthly, 66 (1959)
778-783. :

[5] Lovasz, L. and SIMONOVITS, M., On the number 'of complete subgraphs ofa graph Proc. of Flfth Brmsh' _
Combinatorial Conference (Aberdeen), 1975, 431-442.

[6] Moon, J. W. and Moskr, L., On a problem of Turan, MTA Mat. Kut. Int. Koazl, 7 (1962), 283-286.

[7] TurAn, P, An extremal problem in graph theory (In Hunganan), Mat. és Fiz. Lapok,48(1941), 436—452

EOTVOS LORAND UNIVERSITY
H-1088 BUDAPEST, MUZEUM KRT. 6—S8.
HUNGARY




	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23
	page 24
	page 25
	page 26
	page 27
	page 28
	page 29
	page 30
	page 31
	page 32
	page 33
	page 34
	page 35
	page 36
	page 37

