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Abstract

Szemerédi’s Regularity Lemma is an important tool in discrete mathematics. It
says that, in some sense, all graphs can be approximated by random-looking graphs.
Therefore the lemma helps in proving theorems for arbitrary graphs whenever the
corresponding result is easy for random graphs. In the last few years more and more
new results were obtained by using the Regularity Lemma, and also some new variants
and generalizations appeared. Komlés and Simonovits have written a survey on the
topic [96]. The present survey is, in a sense, a continuation of the earlier survey.
Here we describe some sample applications and generalizations. To keep the paper
self-contained we decided to repeat (sometimes in a shortened form) parts of the first
survey, but the emphasis is on new results.
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Preface

The Regularity Lemma [127] is one of the most powerful tools of (extremal) graph theory. It
was invented as an auxiliary lemma in the proof of the famous conjecture of Erdos and Turan
[63] that sequences of integers of positive upper density must always contain long arithmetic
progressions. Its basic content could be described by saying that every graph can, in some
sense, be well approximated by random graphs. Since random graphs of a given edge density
are much easier to treat than all graphs of the same edge-density, the Regularity Lemma
helps us to carry over results that are trivial for random graphs to the class of all graphs
with a given number of edges. It is particularly helpful in “fuzzy” situations, i.e., when the
conjectured extremal graphs have no transparent structure.

Remark. Sometimes the Regularity Lemma is called Uniformity Lemma, see e.g., [61] and

[4].

Notation. In this paper we only consider simple graphs — undirected graphs without loops
and multiple edges: G = (V, E) where V = V(G) is the vertex-set of G and E = E(G) C (})
is the edge-set of G. v(G) = |V(G)| is the number of vertices in G (order), e(G) = |E(G)|
is the number of edges in G (size). G,, will always denote a graph with n vertices. deg(v)
is the degree of vertex v and deg(v,Y) is the number of neighbours of v in Y. 6(G), A(G)
and t(@) are the minimum degree, maximum degree and average degree of G. x(G) is the
chromatic number of G. N(z) is the set of neighbours of the vertex z, and e(X,Y) is the
number of edges between X and Y. A bipartite graph G with color-classes A and B and
edge-set E will sometimes be written as G = (A, B, E), E C A x B. For disjoint X,Y, we

define the density
e(X,Y)
d(X,)Y)= ——.
(X1 -1Y|
G(U) is the restriction of G to U and G — U is the restriction of G to V(G) — U. For two
disjoint subsets A, B of V(G), we write G(A, B) for the subgraph with vertex set A U B

whose edges are those of G with one endpoint in A and the other in B.

For graphs G and H, H C GG means that H is a subgraph of G, but often we will use this
in the looser sense that G has a subgraph isomorphic to H (H is embeddable into G), that
is, there is a one-to-one map (injection) ¢ : V(H) — V(G) such that {z,y} € E(H) implies
{¢o(z),0(y)} € E(G). ||H — G| denotes the number of labelled copies of H in G. The
cardinality of a set S will mostly be denoted by |S|, but sometimes we write #S. We will
be somewhat sloppy by often disregarding rounding.

1. Introduction

1.1. The structure of this survey

We will start with some historical remarks, then we state the Regularity Lemma. After that
we introduce the basic notion of the Reduced Graph of a graph corresponding to a partition
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of the vertex-set, and state a simple but useful tool (Embedding Lemma). The much stronger
version called Blow-up Lemma is mentioned later. The latter has found many applications
since [96] was published. (For a short survey on the Blow-up Lemma, see [87].)

We will also touch upon some algorithmic aspects of the Regularity Lemma, its relation to
quasi-random graphs and extremal subgraphs of a random graph. We also shortly mention
a sparse version.

The results quoted here only serve as illustrations; we did not attempt to write a compre-
hensive survey. An extended version is planned in the near future.

1.2. Regular pairs

Regular pairs are highly uniform bipartite graphs, namely ones in which the density of any
reasonably sized subgraph is about the same as the overall density of the graph.

Definition 1.1 (Regularity condition). Let ¢ > 0. Given a graph G and two disjoint
vertex sets A C V, B C V, we say that the pair (A4, B) is e-regular if for every X C A and
Y C B satisfying

|X|>¢e|lA| and |Y]|>¢|B]|
we have

d(X,Y) — d(A, B)| <.

The next one is the most important property of regular pairs.

Fact 1.2 (Most degrees into a large set are large). Let (A, B) be an e-regular pair with
density d. Then for any Y C B, |Y| > ¢|B| we have

#{z € A1 deg(z,V) < (d— )Y} < ]A]

For other basic properties of regular pairs see [96].

We will also use another version of regularity:

Definition 1.3 (Super-regularity). Given a graph G and two disjoint vertex sets A C V,
B C V, we say that the pair (A, B) is (e, d)-super-regular if for every X C Aand Y C B
satisfying

| X|>e|lA| and |Y]|>¢|B]|

we have
e(X,Y) > 6|X|[Y],

and furthermore,

deg(a) > 0|B| forall ae€ A, and deg(b) >4|A| forall be B.
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1.3. The Regularity Lemma

The Regularity Lemma says that every dense graph can be partitioned into a small number
of regular pairs and a few leftover edges. Since regular pairs behave as random bipartite
graphs in many ways, the Regularity Lemma provides us with an approximation of a large
dense graph with the union of a small number of random-looking bipartite graphs.

Theorem 1.4 (Regularity Lemma, Szemerédi 1978 [127]). For every € > 0 there ex-
ists an integer M = M (e) with the following property: for every graph G there is a partition
of the vertex set into k classes V =V, + Vo + ...+ Vi such that

e k<M,

o [Vil < [elVI] for every i,

o ||Vi| = |Vil| <1 foralli,j (equipartition),

o (V;,V;) is e-regular in G for all but at most ek? pairs (i, j).

The classes V; will be called groups or clusters.

If we delete the edges within clusters as well as edges that belong to irregular pairs of
the partition, we get a subgraph G’ C G that is more uniform, more random-looking, and
therefore more manageable. Since the number of edges deleted is small compared to |V|2,
the Regularity Lemma provides us with a good approximation of G by the random-looking
graph G'. Of course, if we have a sequence (G,,) of graphs with e(G,,) = o(n?), the Regularity
Lemma becomes trivial: GG, are approximated by empty graphs. Thus the Regularity Lemma
is useful only for large, dense graphs.

Remark 1.5. A drawback of the result is that the bound obtained for M(e) is extremely
large, namely a tower of 2’s of height proportional to ¢°. That this is not a weakness of
Szemerédi’s proof but rather an inherent feature of the Regularity Lemma was shown by

Timothy Gowers [70] (see also [9]).

The Regularity Lemma asserts in a way that every graph can be approximated by generalized
random graphs.

Definition 1.6 ([118]). Given an r x r symmetric matrix (p;;) with 0 < p;; < 1, and
positive integers ni,...,n,, we define a generalized random graph R, (forn = n; +
...+ n,) by partitioning n vertices into classes V; of size n; and then joining the vertices
xz € 'V;, y € V; with probability p;;, independently for all pairs {z,y}.

Remark 1.7. Often, the application of the Regularity Lemma makes things transparent
but the same results can be achieved without it equally easily. One would like to know
when one can replace the Regularity Lemma with “more elementary” tools and when the
application of the Regularity Lemma is unavoidable. The basic experience is that when in
the conjectured extremal graphs for a problem the densities in the regular partition are all
near to 0 or 1, then the Regularity Lemma can probably be eliminated. On the other hand, if
these densities are strictly bounded away from 0 and 1 then the application of the Regularity
Lemma is often unavoidable.
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1.4. The road to the Regularity Lemma

The following is a basic result in combinatorial number theory.

Theorem 1.8 (van der Waerden 1927 [131]). Let k and t be arbitrary positive integers.
If we color the integers with t colors, at least one color-class will contain an arithmetic
progression of k terms.

A standard compactness argument shows that the following is an equivalent form.

Theorem 1.9 (van der Waerden - finite version). For any integers k and t there exists
an n such that if we color the integers {1,...,n} with t colors, then at least one color-class
will contain an arithmetic progression of k terms.

This is a Ramsey type theorem in that it only claims the existence of a given configuration
in one of the color classes without getting any control over which class it is. It turns out
that the van der Waerden problem is not a true Ramsey type question but of a density type:
the only thing that matters is that at least one of the color classes contains relatively many
elements. Indeed, answering a very deep and difficult conjecture of P. Erdés and P. Turan
from 1936 [53], Endre Szemerédi proved that positive upper density implies the existence of
an arithmetic progression of k terms.

Theorem 1.10 (Szemerédi 1975 [126]). For every integer k > 2 and € > 0 there exists
a threshold ng = ng(k,€) such that if n > ng, A C{1,...,n} and |A| > en, then A contains
an arithmetic progression of k terms.

Remark. For k£ = 3 this is a theorem of K.F. Roth [103] that dates back to 1954, and it
was already an important breakthrough when Szemerédi succeeded in proving the theorem in
1969 for k = 4 [124]. One of the interesting questions in this field is the speed of convergence
to 0 of rx(n)/n, where r¢(n) is the maximum size of a subset of [n] not containing an
arithmetic progression of length k. Szemerédi’s proof used van der Waerden’s theorem and
therefore gave no reasonable bound on the convergence rate of r4(n)/n. Roth found an
analytical proof a little later [104, 105] not using van der Waerden’s theorem and thus
providing the first meaningful estimates on the convergence rate of r4(n)/n [104].

Szemerédi’s theorem (for general k) was also proved by Fiirstenberg [66] in 1977 using ergodic
theoretical methods. It was not quite clear first how different the Fiirstenberg proof was
from that of Szemerédi, but subsequent generalizations due to Fiirstenberg and Katznelson
[68] and later by Bergelson and Leibman [7] convinced the mathematical community that
Ergodic Theory is a natural tool to attack combinatorial questions. The narrow scope of
this survey does not allow us to explain these generalizations. We refer the reader to the
book of R.L. Graham, B. Rothschild and J. Spencer, Ramsey Theory [71], which describes
the Hales-Jewett theorem and how these theorems are related, and its chapter “Beyond
Combinatorics” gives an introduction into related subfields of topology and ergodic theory.
Another good source is the paper of Fiirstenberg [67].
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2. Early applications

Among the first graph theoretical applications, the Ramsey-Turan theorem for K, and the
(6, 3)-theorem of Ruzsa and Szemerédi were proved using (an earlier version of) the Regu-
larity Lemma.

2.1. The (6,3)-problem

The (6, 3)-problem is a special hypergraph extremal problem: Brown, Erdds and T. Sés asked
for the determination of the maximum number of hyperedges an r-uniform hypergraph can
have without containing ¢ hyperedges the union of which is at most & [17, 16]. One of the
simplest cases they could not settle was this (6, 3)-problem.

Theorem 2.1 (The (6, 3)-theorem, Ruzsa-Szemerédi 1976 [111]). If H, is a 3-uniform
hypergraph on n vertices not containing 6 points with 8 or more triples, then e(H,) = o(n?).

(Since the function M (e) grows incredibly fast, this would only give an upper bound r3(n) =
O(n/log* n), much weaker than Roth’s r3(n) = O(n/loglogn), let alone the often conjec-
tured 73(n) = O(n/logn). The best known upper bound is due to Heath-Brown [80] and to
Szemerédi [128] improving Heath-Brown’s result, according to which r5(n) < O(n/ log'/*~* n).)

The (6,3) theorem was generalized by Erdés, Frankl and Ro6dl as follows. Let g.(n,v,e)
denote the maximum number of r-edges an r-uniform hypergraph may have if the union of
any e edges span more than v vertices.

Theorem 2.2 (Erdés-Frankl-Rédl [38]). For all (fized) r, g,(n,3r —3,3) = o(n?).

For another strengthening of the (6, 3) theorem, see [32].

2.2. Applications in Ramsey-Turan theory

Theorem 2.3 (Ramsey-Turan for K,, Szemerédi 1972 [125]). If G, contains no K,
and only contains o(n) independent vertices, then e(G,) < $n* + o(n?).

Remark. Since most people believed that in Theorem 2.3 the upper bound n?/8 can be
improved to o(n?), it was quite a surprise when in 1976 Bollobds and Erdés [10] came up
with an ingenious geometric construction which showed that the constant 1/8 in the theorem
is best possible. That is, they showed the existence of a graph sequence (H,) for which

K,¢ H,, «(H,) =o(n) and e(H,) > %2 — o(n?).

Remark. A typical feature of the application of the regularity lemma can be seen above,
namely that we do not distinguish between o(n) and o(m), since the number & of clusters is
bounded (in terms of € only) and m ~ n/k.
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Remark. The problem of determining max e(G},) under the condition
K, ¢ G, and «o(G,)=o(n)

is much easier for odd p than for even p. A theorem of Erdés and T. Sés [51] describing the
odd case was a starting point of the theory of Ramsey-Turan problems. The next impor-
tant contribution was the above-mentioned theorem of Szemerédi (and then the counterpart
due to Bollobds and Erdds). Finally the paper of Erdés, Hajnal, T. Sés and Szemerédi [45]
completely solved the problem for all even p by generalizing the above Szemerédi-Bollobas-
Erdos theorems. It also used the Regularity Lemma.

One reason why the Regularity Lemma can be used here is that if we know that the reduced
graph contains some graph L, (e.g., a K3), then using the o(n)-condition we can guarantee a
larger subgraph (e.g., a K4) in the original graph. According to our philosophy, one reason
why probably the use of the Regularity Lemma is unavoidable is that the edge-density in
the conjectured extremal graph is 1/2; bounded away from 0 and 1.

There are many related Ramsey-Turdn theorems; we refer the reader to [43] and [44], or to
the survey [121]. The very first Ramsey-Turdn type problem can be found in the paper [122]
of Vera T. Sés.

2.3. Building small induced subgraphs

While the reduced graph R of G certainly reflects many aspects of GG, when discussing induced
subgraphs the definition should be changed in a natural way. Given a partition Vj,...,Vj
of the vertex-set V of G’ and positive parameters ¢, d, we define the induced reduced graph
as the graph whose vertices are the clusters Vi,...,V; and V; and V; are adjacent if the pair
(Vi, V) is e-regular in G with density between d and 1 — d.

Below we will describe an application of the regularity lemma about the existence of small
induced subgraphs of a graph, not by assuming that the graph has many edges but by putting
some condition on the graph which makes its structure randomlike, fuzzy.

Definition 2.4. A graph G = (V, E) has the property (7,9, 0) if for every subset S C V
with |S| > |V the induced graph G(S) satisfies

(o — ) ('g') < e(G(S)) < (0 +6) ('g').

Theorem 2.5 (R6dl 1986 [107]). For every positive integer k and every o > 0 and § > 0
such that § < o <1 — 4§ there exists a v and a positive integer ny such that every graph Gy,
with n > ng vertices satisfying the property (v,0,0) contains all graphs with k vertices as
induced subgraphs.

R6dl also points out that this theorem yields an easy proof (see [101]) of the following
generalization of a Ramsey theorem first proved in [28, 42] and [106]:

Theorem 2.6. For every graph L there exists a graph H such that for any 2-coloring of the
edges of H, H must contain an induced monochromatic L.
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The next theorem of Rodl answers a question of Erdés [8, 36].

Theorem 2.7. For every positive integer k and positive o and ~y there exists a 6 > 0 and a
positive integer ng such that every graph G, with at least ny vertices having property (7, J, o)
contains all graphs with k vertices as induced subgraphs.

(Erdés asked if the above theorem holds for %,4, 1 and Kj.)

The reader later may notice the analogy and the connection between this theorem and some
results of Chung, Graham and Wilson on quasi-random graphs (see Section 8).

2.4. Diameter-critical graphs

We shall need a notation: If H is an arbitrary graph with vertex set {zi,...,zx} and
ai, . ..,a are non-negative integers, then H (a1, ...,ax) denotes the graph obtained from Hj
by replacing z; by a set X; of a; independent vertices, and joining each x € X; to each
' e X; for 1 <i<j<kexactly if (z;,2;) € E(H).

If a1 = ay = ay = t, then we use the shorter H(t) *

Consider all graphs G,, of diameter 2. The minimum number of edges in such graphs is
attained by the star K(1,n — 1). There are many results on graphs of diameter 2. An
interesting subclass is the class of 2-diameter-critical graphs. These are minimal graphs
of diameter 2: deleting any edge we get a graph of diameter greater than 2. The cycle
Cs is one of the simplest 2-diameter-critical graphs. If H is a 2-diameter-critical graph,
then H(ay,...,ax) is also 2-diameter-critical. So T, 5, and more generally of K(a,b), are
2-diameter-critical. Independently, Murty and Simon (see in [21]) formulated the following
conjecture:

Conjecture 2.8. If G, is a minimal graph of diameter 2, then e(G) < |n?/4|. Equality
holds if and only if G, is the complete bipartite graph Ky 2] [n/2]-

Fiiredi used the Regularity Lemma to prove this.
Theorem 2.9 (Firedi 1992 [65]). Conjecture 2.8 is true for n > ny.

Here is an interesting point: Fiiredi did not need the whole strength of the Regularity
Lemma, only a consequence of it, the (6, 3)-theorem.

3. How to apply the Regularity Lemma

3.1. The Reduced Graph

Given an arbitrary graph G = (V| F), a partition P of the vertex-set V into V3,...,V}, and
two parameters €,d, we define the Reduced Graph (or Cluster graph) R as follows: its

*¥*k% Jancsi,tk. nem szeretem ezt a roviditest, mert nem eri meg, inkabb ki szoktam irni: H(t,...,t), itt
most teljesen Rad hagyom.
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vertices are the clusters Vi,...,V, and V; is joined to Vj if (V;,V}) is e-regular with density
more than d. Most applications of the Regularity Lemma use Reduced Graphs, and they
depend upon the fact that many properties of R are inherited by G.

The most important property of Reduced Graphs is mentioned in the following section.

3.2. A useful lemma

Many of the proofs using the Regularity Lemma struggle through similar technical details.
These details are often variants of an essential feature of the Regularity Lemma: If G has a
reduced graph R and if the parameter ¢ is small enough, then every small subgraph H of R
is also a subgraph of G. In the first applications of the Regularity Lemma the graph H was
fixed, but the greedy algorithm outlined in the section “Building up small subgraphs” works
smoothly even when the order of H is proportional with that of G as long as H has bounded
degrees. (Another standard class of applications - embedding trees into dense graphs - will
be discussed later.)

The above mentioned greedy embedding method for bounded degree graphs is so frequently
used that, just to avoid repetitions of technical details, it is worth while spelling it out in a
quotable form.

For a graph R and positive integer ¢, let R(t) be the graph obtained from R by replacing
each vertex € V(R) by a set V, of ¢ independent vertices, and joining v € V, to v € V, iff
(x,y) is an edge of R. In other words, we replace the edges of R by copies of the complete
bipartite graph K ;.

Theorem 3.1 (Embedding Lemma). Given d > ¢ > 0, a graph R, and a positive integer
m, let us construct a graph G by replacing every vertex of R by m wvertices, and replacing
the edges of R with e-reqular pairs of density at least d. Let H be a subgraph of R(t) with h
vertices and mazimum degree A > 0, and let 6 = d — ¢ and g9 = 0°/(2+ A). Ife < g and
t—1<eym, then H C G. In fact,

|H — G| > (gom)".

Remark. Note that v(R) didn’t play any role here.

Remark. Often we use this for R itself (that is, for t = 1): If ¢ < 64® /(2 + A(R)) then
R C G, in fact, |R — G|| > (em)*®.

Remark. Using the fact that large subgraphs of regular pairs are still regular (with a
different value of ¢), it is easy to replace the condition H C R(gym) with the assumptions

(*) every component of H is smaller than gom,

(**) H C R((1 —&¢)m).

Most of the classical proofs using the Regularity Lemma can be simplified by the application
of the Embedding Lemma. However, this only helps presentability; the original proof ideas —
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basically building up subgraphs vertex-by-vertex — are simply summarized in the Embedding
Lemma.

One can strengthen the lemma tremendously by proving a similar statement for all bounded
degree subgraphs H of the full R(m). This provides a very powerful tool (Blow-up Lemma),
and it is described in Section 4.6.

Proof of the Embedding Lemma. We prove the following more general estimate.
If t—1<(5%—Ae)m then [|H— G| > [(6% - Ae)m —(t—1)]",

We embed the vertices vy, ..., v, of H into G' by picking them one-by-one. For each v; not
picked yet we keep track of an ever shrinking set Cj; that v; is confined to, and we only make
a final choice for the location of v; at time j. At time 0, Cp; is the full m-set v; is a priori
restricted to in the natural way. Hence |Cy;| = m for all j. The algorithm at time ¢ > 1
consists of two steps.

Step 1 - Picking v;. We pick a vertex v; € C;_; ; such that

degg(vi, Ci_15) > 6|Ci_14| forall j > suchthat {v;,v;} € E(H). (1)
Step 2. - Updating the C;’s.  We set, for each j > 1,
Cis = {Ci_l,j NN(v;) if {v;,v;} € E(H)

| Ciciy otherwise.

For 7 < j, let dij = #{E € [Z] : {Uz,Uj} € E(H)}
Fact. Ifd;; > 0 then |Cj;| > 6%im. (If d;; = 0 then |Ci;| = m.)

Thus, for all ¢ < j, |Cyj| > 82m > em, and hence, when choosing the exact location of v,
all but at most Aem vertices of C;_y; satisfy (1). Consequently, we have at least

C; 14| — Aem — (t —1) > (6% — Ae)m — (t — 1)

free choices for v;, proving the claim. 1

Remark. We did not use the full strength of e-regularity for the pairs (A, B) of m-sets
replacing the edges of H, only the following one-sided property:

X CA |X|>¢|Al,Y CB,|Y|>¢|B| imply e(X,Y)>§X]|Y].
We already mentioned that in a sense the Regularity Lemma says that all graphs can be

approximated by generalized random graphs. The following observation was used in the
paper of Simonovits and T. Sés [118] to characterize quasi-random graphs.
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Theorem 3.2. Let 6 > 0 be arbitrary, and let Vo, Vi,...,V} be a regular partition of an
arbitrary graph G, with e = §% and each cluster size less than én. Let Q,, be the random graph
obtained by replacing the edges joining the classes V; and V; (for all i # j) by independently
chosen random edges of probability p; ; == d(V;,V;), and let H be any graph with £ vertices.
If n > ny, then

|H = Qu|| — Ceont < |H — G,|| < |H = Qu| + Ceont.

almost surely, where Cy is a constant depending only on £.

Most applications start with applying the Regularity Lemma for a graph G and finding the
corresponding Reduced Graph R. Then usually a classical extremal graph theorem (like the
Konig-Hall theorem, Dirac’s theorem, Turdn’s theorem or the Hajnal-Szemerédi theorem)
is applied to the graph R. Then an argument similar to the Embedding Lemma (or its
strengthened version, the Blow-up Lemma) is used to lift the theorem back to the graph G.

3.3. Some classical extremal graph theorems

This is only a brief overview of the standard results from extremal graph theory most often
used in applications of the Regularity Lemma. For a detailed description of the field we refer
the reader to [8, 117, 64].

The field of extremal graph theory started with the historical paper of Pal Turdn in 1941, in
which he determined the minimal number of edges that guarantees the existence of a p-clique
in a graph. The following form is somewhat weaker than the original theorem of Turan, but
it is perhaps the most usable form.

Theorem 3.3 (Turdn 1941 [130]). If G, is a graph with n vertices and

1\ n?
1— — | =
e(G)>< p—l) 5
then K, C G,,.

In general, given a family £ of excluded graphs, one would like to find the maximum number
of edges a graph G, can have without containing any subgraph L € £. This maximum is
denoted by ex(n, £) and the graphs attaining the maximum are called extremal graphs.
(We will use the notation ex(n, L) for hypergraphs, too.) These problems are often called
Turan type problems, and are mostly considered for simple graphs or hypergraphs,
but there are also many results for multigraphs and digraphs of bounded edge- or arc-
multiplicity (see e.g. [13, 14, 15, 18, 114]).

Using this notation, the above form of Turdn’s theorem says that

ex(n, K,) < (1 _ L) "

p—1/ 2
The following theorem of Erdés and Stone determines ex(n, K,(t,...,t)) asymptotically.
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Theorem 3.4 (ErdGs-Stone 1946 [52] - Weak Form). For any integers p > 2 and t >

1 ex(n, K, (t,....1)) = (1 - 1%) (Z) + o(n?).

(For strengthened versions, see [25, 26].) This is, however, much more than just another
Turdn type extremal result. As Erdds and Simonovits pointed out in [46], it implies the
general asymptotic description of ex(n, £).

)

Theorem 3.5. If L is finite and ILn1£1 x(L) =p>1, then
€

ex(n, L) = (1 - Z%) (g) + o(n?).

So this theorem plays a crucial role in extremal graph theory. (For structural generalizations
for arbitrary £ see [33, 34, 115].)

The proof of the Embedding Lemma gives the following quantitative form (see also Frankl-
Pach [60], and [118]).

Theorem 3.6 (Number of copies of H). Let H be a graph with h vertices and chromatic
number p. Let 3 > 0 be given and write e = (3/6)". If a graph G, has

’I’L2

e(Gy) > (1—}&—#6)3

then

|H = G| > (Mgé)y.

It is interesting to contrast this with the following peculiar fact observed by Fiiredi. If a
graph has few copies of a sample graph (e.g., few triangles), then they can all be covered by
a few edges:

Theorem 3.7 (Covering copies of H). For every 3 > 0 and sample graph H there is a
v = (B8, H) > 0 such that if G, is a graph with at most yn*") copies of H, then by deleting
at most Bn? edges one can make G, H-free.

The above mentioned theorems can be proved directly without the Regularity Lemma, e.g.,
using sieve-type formulas, see [97, 98, 48, 18].

4. Building subgraphs

4.1. Building small subgraphs

It is well-known that a random graph G,, with fixed edge-density p > 0 contains any fixed
graph H almost surely (as n — 00). In some sense this is trivial: we can build up this H
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vertex by vertex. If we have already fixed £ vertices of H then it is easy to find an appropriate
(£ + 1-th vertex with the desired connections. The Regularity Lemma (and an application
of the Embedding Lemma) achieves the same effect for dense graphs.

4.2. Packing with small graphs

The Alon-Yuster conjecture

The conjecture of Noga Alon and Raphael Yuster [4] generalizes the Hajnal-Szemerédi the-
orem [73] from covering with cliques to covering with copies of an arbitrary graph H:

Conjecture 4.1 (Alon-Yuster). For every graph H there is a constant K such that

5(Gr) > (1 _ @) n

implies that G, contains a union of verter-disjoint copies of H covering all but at most K
vertices of G,.

A simple example in [4] shows that K = 0 cannot always be achieved even when v(H) divides
v(@). After approximate results of Alon and Yuster [4, 5], an exact solution for large n has
been given in [95].

Komlés [88] has fine-tuned these covering questions by finding a different degree condition
that is (asymptotically) necessary and sufficient. It uses the following quantity:

Definition 4.2. For an r-chromatic graph H on h vertices we write 0 = o(H) for the
smallest possible color-class size in any r-coloring of H. The critical chromatic number
of H is the number

Xer(H) = (r = 1)h/(h — 0).

Theorem 4.3 (Tiling Turdn Theorem [88]). For every graph H and € > 0 there is a
threshold ng = no(H, €) such that, if n > ng and a graph Gy, satisfies the degree condition

5(Gr) > (1 - ﬁ) n,

then G, contains an H-matching that covers all but at most en vertices.

4.3. Embedding trees

So far all embedding questions we discussed dealt with embedding bounded degree graphs
H into dense graphs G,,. General Ramsey theory tells us that this cannot be relaxed sub-
stantially without putting strong restrictions on the structure of the graph H. (Even for
bipartite H, the largest complete bipartite graph K, , that a dense graph G, can be expected
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to have is for £ = O(logn).) A frequently used structural restriction on H is that it is a tree
(or a forest). Under this strong restriction even very large graphs H can be embedded into
dense graphs G,,.

The two extremal cases are when H is a large star, and when H is a long path. Both cases
are precisely and easily handled by classical extremal graph theory (Turdn theory or Ramsey
theory). The use of the Regularity Lemma makes it possible, in a sense, to reduce the case of
general trees H to these two special cases by splitting the tree into “long” and “wide” pieces.
After an application of the Regularity Lemma one applies, as always, some classical graph
theorem, which in most cases is the Konig-Hall matching theorem, or the more sophisticated
Tutte’s theorem (more precisely, the Gallai-Edmonds decomposition).

The Erdds-Sés conjecture for trees

Conjecture 4.4 (Erd6s-So6s 1963 [50]).  Every graph on n vertices and more than
(k — 1)n/2 edges contains, as subgraphs, all trees with k edges.

In other words, if the number of edges in a graph G forces the existence of a k-star, then it
also guarantees the existence of every other subtree with k£ edges. The theorem is known for
k-paths (Erdds-Gallai 1959 [40]).

This famous conjecture spurred much activity in graph theory in the last 30 years.

Remark. The assertion is trivial if we are willing to put up with loosing a factor of 2: If G
has average degree at least 2k — 2 > 0, then it has a subgraph G’ with §(G") > k, and hence
the greedy algorithm guarantees that G’ contains all k-trees.

Using an ad hoc sparse version of the Regularity Lemma, Ajtai, Komlds, Simonovits and
Szemerédi solved the Erdds-Sés conjecture for large n. ([1], in preparation.)

The Loebl conjecture

In their paper about graph discrepancies P. Erdés, Z. Fiiredi, M. Loebl and V. T. Sés [39]
reduced some questions to the following conjecture of Martin Loebl:

Conjecture 4.5 (Loebl Conjecture). If G is a graph on n vertices, and at least n/2
vertices have degrees at least n/2, then G contains, as subgraphs, all trees with at most n/2
edges.

J. Komlés and V. T. Sés generalized Loebl’s conjecture for trees of any size. It says that
any graph G contains all trees with size not exceeding the medium degree of G.

Conjecture 4.6 (Loebl-Komlés-Sés Conjecture). If G is a graph on n vertices, and at
least n/2 vertices have degrees greater than or equal to k, then G contains, as subgraphs, all
trees with k edges.

In other words, the condition in the Erd6s-Sés conjecture that the average degree be greater
than k£ — 1, would be replaced here with a similar condition on the median degree.

This general conjecture is not easier than the Erdds-Sés conjecture. Large instances of both
problems can be attacked with similar methods.
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4.4. Embedding large bipartite subgraphs

The following theorem is implicit in Chvatal-Rédl-Szemerédi-Trotter 1983 [24] (according to
[2]).

Theorem 4.7. For any A, 3 > 0 there is a ¢ > 0 such that if e(G,) > On?, then G, contains
as subgraphs all bipartite graphs H with |V (H)| < cn and A(H) < A,

4.5. Embedding bounded degree spanning subgraphs

This is probably the most interesting class of embedding problems. Here the proofs (when
they exist) are too complicated to quote here, but they follow a general pattern. When
embedding H to G (they have the same order now!), we first prepare H by chopping it into
(a constant number of) small pieces, then prepare the host graph G by finding a regular
partition of G, throw away the usual atypical edges, and define the reduced graph R. Then
typically we apply to R the matching theorem (for bipartite H) or the Hajnal-Szemerédi
theorem (for r-partite H). At this point, we make an assignment between the small pieces
of H and the “regular r-cliques” of the partitioned R. There are two completely different
problems left. Make the connections between the r-cliques, and embed a piece of H into
an r-clique. The first one is sometimes easy, sometimes very hard, but there is no general
recipe to apply here. The second part, however, can typically be handled by referring to the
so-called Blow-up Lemma - a new general purpose embedding tool discussed below.

The Pésa-Seymour conjecture

Paul Seymour conjectured in 1973 that any graph G of order n and minimum degree at least

kLHn contains the k-th power of a Hamiltonian cycle. For k = 1, this is just Dirac’s theorem.
For k = 2, the conjecture was made by Pésa in 1962. Note that the validity of the general

conjecture would imply the notoriously hard Hajnal-Szemerédi theorem.

For partial results, see the papers [58, 54, 55, 57, 56]. (Fan and Kierstead also announced
a proof of the Pésa conjecture if the Hamilton cycle is replaced by Hamilton path.) We do
not detail the statements in these papers, since they do not employ the Regularity Lemma.

The Seymour conjecture was proved in [94] for every fixed k£ and large n.

4.6. The Blow-up Lemma

Several recent results exist about embedding spanning graphs into dense graphs. Some of
the proofs use the following new powerful tool. It basically says that regular pairs behave as
complete bipartite graphs from the point of view of embedding bounded degree subgraphs.
Note that for embedding spanning subgraphs, one needs all degrees of the host graph to be
large. That’s why using regular pairs is not sufficient any more, we need super-regular pairs.
The Blow-up Lemma plays the same role in embedding spanning graphs H into G as the
Embedding Lemma played in embedding smaller graphs H (up to v(H) < (1 — &)v(G)).
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Theorem 4.8 (Blow-up Lemma - Komlés-Sarkozy-Szemerédi 1994 [91]).

Given a graph R of order r and positive parameters 0,/\, there exists an ¢ > 0 such that
the following holds. Let ny,ns,...,n, be arbitrary positive integers and let us replace the
vertices of R with pairwise disjoint sets Vi,Va,..., V. of sizes ni,ng,...,n, (blowing up).
We construct two graphs on the same vertex-set V.= UV;. The first graph R is obtained by
replacing each edge {v;,v;} of R with the complete bipartite graph between the corresponding
vertez-sets V; and V;. A sparser graph G is constructed by replacing each edge {v;,v;} with
an (g, 0)-super-reqular pair between V; and V;. If a graph H with A(H) < A is embeddable
into R then it is already embeddable into G.

The proof of the Blow-up Lemma starts with a probabilistic greedy algorithm, and then uses
a Konig-Hall argument to finish the embedding. The proof of correctness is quite involved,
and we will not present it here.

5. Applications in Ramsey Theory

5.1. The milestone

The following theorem is central in Ramsey theory. It says that the Ramsey number of a
bounded degree graph is linear in the order of the graph. In other words, there is a function
f such that the graph-Ramsey number r(H) of any graph H satisfies r(H) < f(A(H))v(H).
This was probably the first deep application of the Regularity Lemma, and certainly a
milestone in its becoming a standard tool.

Theorem 5.1 (Chvatal-R6dl-Szemerédi-Trotter 1983 [24]). For any A > 0 there is
a ¢ > 0 such that if Gy, is any n-graph, and H is any graph with [V(H)| <cenand A(H) < A,
then either H C G,, or H C GG,,.

5.2. Graph-Ramsey

The following more recent theorems also apply the Regularity Lemma.

Theorem 5.2 (Haxell-Luczak-Tingley 1999 [79]). Let T,, be a sequence of trees with
color-class sizes ap > by, and let M, = max{2ay,, a, + 2b,} — 1 (the trivial lower bound for

the Ramsey number r(T,)). If A(T,) = o(ay,) then r(T,) = (1 + o(1)) M,.

Theorem 5.3 (Luczak 1999 [99]). R(C,,C,,C,) < (3+ 0(1))n for all even n, and
R(Cy, Cy, Cp) < (4+0(1))n for all odd n.

5.3. Random Ramsey

Given graphs Hi,..., H, and G, we write G — (Hy,..., H,) if for every r-coloring of the
edges of G there is an ¢ such that G has a subgraph of color i isomorphic to H; (‘arrow
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notation’). The typical Ramsey question for random graphs is then the following. What is
the threshold edge probability p = p(n) for which G(n,p) — (Ha,..., H,) has a probability
close to 1.

R6d] and Rucinski [110] answered this in the symmetric case G; = ... = G,. A first step
toward a general solution was taken by Kohayakawa and Kreuter [83] who used the Regularity
Lemma to find the threshold when each G; is a cycle.

6. New versions of the Regularity Lemma

6.1. The Frieze-Kannan version

Alan Frieze and Ravi Kannan [62] use a matrix decomposition that can replace the Regularity
Lemma in many instances, and creates a much smaller number of parts. The authors describe
their approximation algorithm as follows:

Given an m X n matrix A with entries between -1 and 1, say, and an error parameter &
between 0 and 1, a matrix D is found (by a probabilistic algorithm) which is the sum of
O(1/£?) simple rank 1 matrices so that the sum of entries of any submatrix (among the
2m+1) of (A — D) is at most emn in absolute value. The algorithm takes time dependent
only on ¢ and the allowed probability of failure (but not on m,n).

The rank one matrices in the Frieze-Kannan decomposition correspond to regular pairs
in the Regularity Lemma, but the global error term o(mn) is much larger than the one in
Szemerédi’s theorem. That explains the reasonable sizes (O(1/¢?) instead of tower functions).

The decomposition is applied to various standard graph algorithms such as the Max-Cut
problem, the Minimum Linear Arrangement problem, and the Maximum Acyclic Subgraph
problem, as well as to get quick approximate solutions to systems of linear equations and
systems of linear inequalities (Linear Programming feasibility).

The results are also extended from 2-dimensional matrices to r-dimensional matrices.

6.2. A sparse-graph version of the Regularity Lemma

It would be very important to find extensions of the Regularity Lemma for sparse graphs,
e.g., for graphs where we assume only that e(G,) > cn®~® for some positive constants
¢ and a. Y. Kohayakawa [81] and V. Rddl [108] independently proved a version of the
Regularity Lemma in 1993 that can be regarded as a Regularity Lemma for sparse graphs.
As Kohayakawa puts it: “Our result deals with subgraphs of pseudo-random graphs.” He
(with co-authors) has also found some interesting applications of this theorem in Ramsey
theory and in Anti-Ramsey theory, (see e.g. [75, 76, 77, 78, 84, 86, 83]).

To formulate the Kohayakawa-Rodl Regularity Lemma we need the following definitions.
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Definition 6.1. A graph G = G,, is (P, n)-uniform for a partition Py of V(G,,) if for some
p € [0,1] we have
lec(U, V) = plU[|V[| < np|U||V],

whenever |U|, |V| > nn and either P, is trivial, U,V are disjoint, or U,V belong to different
parts of Py.

Definition 6.2. A partition @ = (Cy, C1,...,Ck) of V(G,) is (g, k)-equitable if |Cy| < en
and |C] = ... =|Cyl.

Notation. _
dua(U, V) = {eH(U, V)/eq(U,V) if eg(Uj V)y>0
0 otherwise.
Definition 6.3. We call a pair (U,V) (e, H, G)-regular if for all U’ C U and W' C W with
\U'| > e|U| and |W'| > ¢|W|, we have

\ducg(UW) —dyc(U, W) <e.

Theorem 6.4 (Kohayakawa 1993 [81]). Let € and ko, ¢ > 1 be fized. Then there are
constants n > 0 and Ky > ko with the following properties. For any (P,,n)-uniform graph
G = G,, where Py = (V;)¢ is a partition of V. = V(G), if H C G is a spanning subgraph

of G, then there exists an (¢, H, G)-regular, (&, k)-equitable partition of V refining Py, with
k <ky < K,.

For more information, see Kohayakawa 1997 [82].

7. Algorithmic questions

The Regularity Lemma is used in two different ways in computer science. Firstly, it is used
to prove the existence of some special subconfigurations in given graphs of positive edge-
density. Thus by turning the lemma from an existence-theorem into an algorithm one can
transform many of the earlier existence results into relatively efficient algorithms. The first
step in this direction was made by Alon, Duke, Leffman, R6dl and Yuster [2] (see below).
Frieze and Kannan [63] offered an alternative way for constructing a regular partition based
on a simple lemma relating non-regularity and largeness of singular values.

In the second type of use, one takes advantage of the fact that the regularity lemma provides
a random-like substructure of any dense graph. We know that many algorithms fail on
randomlike objects. Thus one can use the Regularity Lemma to prove lower bounds in
complexity theory, see e.g., W. Maass and Gy. Turdn [72]. One of these randomlike objects
is the expander graph, an important structure in Theoretical Computer Science.

7.1. Two applications in computer science

A. Hajnal, W. Maass and Gy. Turan applied the Regularity Lemma to estimate the com-
municational complexity of certain graph properties [72]. We quote their abstract:
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“We prove ©(nlogn) bounds for the deterministic 2-way communication complexity of the
graph properties CONNECTIVITY, s,t-CONNECTIVITY and BIPARTITENESS. ... The
bounds imply improved lower bounds for the VLSI complexity of these decision problems
and sharp bounds for a generalized decision tree model that is related to the notion of
evasiveness.”

Another place where the Regularity Lemma is used in estimating communicational complex-
ity is an (electronic) paper of Pudlak and Sgall [102]. In fact, they only use the (6,3)-problem,
i.e., the Ruzsa-Szemerédi theorem.

7.2. An algorithmic version of the Regularity Lemma

The Regularity Lemma being so widely applicable, it is natural to ask if for a given graph G,
and given € > 0 and m one can find an e-regular partition of G in time polynomial in n. The
answer due to Alon, Duke, Lefmann Rodl and Yuster [2] is surprising, at least at first: Given
a graph G, we can find regular partitions in polynomially many steps, however, if we describe
this partition to someone else, he cannot verify in polynomial time that our partition is really
e-regular: he has better produce his own regular partition. This is formulated below:

Theorem 7.1. The following decision problem is co-NP complete: Given a graph G, with
a partition Vo, Vi,..., Vi, and an € > 0. Decide if this partition is e-reqular in the sense
guaranteed by the Regularity Lemma.

Let Mat(n) denote the time needed for the multiplication of two (0, 1) matrices of size n.

Theorem 7.2 (Constructive Regularity Lemma). For every € > 0 and every positive
integer t > 0 there exists an integer Q@ = Q(g,t) such that every graph with n > Q vertices
has an e-regular partition into k + 1 classes for some k < @ and such a partition can be
found in O(Mat(n)) sequential time. The algorithm can be made parallel on an EREW with
polynomially many parallel processors, and it will have O(logn) parallel running time.

7.3. Counting subgraphs
Duke, Lefmann and Rddl [30] used a variant of the Regularity Lemma to design an efficient
approximation algorithm which, given a labelled graph G on n vertices and a list of all the

labelled graphs on k vertices, provides for each graph H in the list an approximation to the
number of induced copies of H in G with small total error.

8. Regularity and randomness

8.1. Extremal subgraphs of random graphs

Answering a question of P. Erdés, L. Babai, M. Simonovits and J. Spencer [6] described the
Turan type extremal graphs for random graphs:
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Given an excluded graph L and a probability p, take a random graph R, of
edge-probability p (where the edges are chosen independently) and consider all
its subgraphs F;, not containing L. Find the maximum of e(F},).

Below we formulate four theorems. The first one deals with the simplest case.

We will use the expression “almost surely” in the sense “with probability 1—o(1) as n — c0”.
In this part a p-random graph means a random graph of edge-probability p where the edges
are chosen independently.

Theorem 8.1. Let p = 1/2. If R, is a p-random graph and F,, is a Ks-free subgraph of
R, containing the mazximum number of edges, and B, is a bipartite subgraph of R, having
mazimum number of edges, then e(B,) = e(F,). Moreover, F, is almost surely bipartite.

Definition 8.2 (Critical edges). Given a k-chromatic graph L, an edge e is critical if
L — e is k — 1-chromatic.

Many theorems valid for complete graphs were generalized to arbitrary L having critical
edges (see e.g., [116]). Theorem 8.1 also generalizes to every 3-chromatic L containing a
critical edge e, and for every probability p > 0.

Theorem 8.3. Let L be a fized 3-chromatic graph with a critical edge e (i.e., x(L—e) = 2).
There exists a function f(p) such that if p € (0,1) is given and R, € G(p), and if B,, is a
bipartite subgraph of R, of marimum size and F), is an L-free subgraph of mazrimum size,
then

e(By) < e(Fy) < e(By) + f(p)

almost surely, and almost surely we can delete f(p) edges of F, so that the resulting graph
is already bipartite. Furthermore, there exists a py < 1/2 such that if p > po, then F, is
bipartite: e(F,) = e(B,).

Theorem 8.3 immediately implies Theorem 8.1. The main point in Theorem 8.3 is that the
observed phenomenon is valid not just for p = 1/2, but for slightly smaller values of p as
well.

If x(L) = 3 but we do not assume that L has a critical edge, then we get similar results,
having slightly more complicated forms. Here we formulate only some weaker results.

Theorem 8.4. Let L be a given 3-chromatic graph. Let p € (0,1) be fized and let R, be a
p-random graph. Let w(n) — 0 as n — oo. If B, is a bipartite subgraph of R, of mazimum
size and F,, contains only w(n) -n* L) copies of L and has mazimum size under this condition,
then almost surely

e(B,) < e(F,) < e(By) + o(n?)

and we can delete o(n?) edges of F,, so that the resulting graph is already bipartite.

The above results also generalize to r-chromatic graphs L.

Some strongly related important results are hidden in the paper of Haxell, Kohayakawa and
Luczak [77].
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8.2. Quasirandomness

Quasi-random structures have been investigated by several authors, among others, by Thoma-
son [129], Chung, Graham, Wilson, [23]. For graphs, Simonovits and T. Sés [118] have shown
that quasi-randomness can also be characterized by using the Regularity Lemma. Fan Chung
[22] generalized their results to hypergraphs.

Let N (L) and Ng(L) denote the number of induced and not necessarily induced copies of
L in G, respectively. Let S(z,y) be the set of vertices joined to both x and y in the same
way. First we formulate a theorem of Chung, Graham, and Wilson, in a shortened form.

Theorem 8.5 (Chung-Graham-Wilson [23]). For any graph sequence (G,) the follow-
ing properties are equivalent:

Pi(v): for fixed v, for all graphs H,
Ni(H,) = (1+ o(1))nv2~ (),
Py(1): Let C; denote the cycle of length t. Let t > 4 be even.
1 2 2 ¢ t
e(Gy) > 2" + o(n”) and Ng(Cy) < (—) + o(n").

Ps:  For each subset X CV, |X|=[2] wehave e(X)= (55n+o(n?)).
Po:  Yuyev |IS(,9)| = 5| = o(n?).

Graphs satisfying these properties are called quasirandom. Simonovits and T. Sés formu-
lated a graph property which proved to be equivalent with the above properties.

Ps: For every ¢ > 0 and & there exist two integers, k(e, k) and ny(e, k) such that for
n > ng, G, has a regular partition with parameters € and x and k classes Uy, ..., Uy, with
k < k < k(e, k), so that

1
(U;,U;) is € — regular, and ‘d(Ui, U;) — 5‘ <&

holds for all but at most €k? pairs (7,7), 1 < 1,7 < k.

It is easy to see that if (G,,) is a random graph sequence of probability 1/2, then Pg holds for
(G,), almost surely. Simonovits and T. Sés [118] proved that Pg is a quasi-random property,
i.e. Ps <= P; for all the above properties P;.

8.3. Hereditarily extended properties

Randomness is a hereditary property: large subgraphs of random graphs are fairly random-
like. In [119] and [120] Simonovits and T. Sés proved that some properties which are not
quasi random, become quasirandom if one extends them to hereditary properties. This “ex-
tension” means that the properties are assumed not only for the whole graph but for all
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sufficiently large subgraphs. Their most interesting results were connected with counting
some small subgraphs L C G,,.

Obviously, P;(v) of Theorem 8.5 says that the graph G,, contains each subgraph with the
same frequency as a random graph.

Let v = v(L), E = e(L). Denote by (.(p) and v.(p) the “densities” of labelled induced
and labelled not necessarily induced copies of L in a p-random graph:

Bu(p) =p(1—p)&)F and yu(p) = p”. (1)

Theorem 8.6 (Simonovits-Sé6s). Let L, be a fized sample-graph, e(L) > 0, p € (0,1) be
fized. Let (G,) be a sequence of graphs. If (for every sufficiently large n) for every induced
Fh g Gn;

N(L, C Fy) = v(p)h” + o(n"), (2)

then (G,) is p-quasi-random.

Observe that in (2) we used o(n”) instead of o(hY), i.e., for small values of h we allow a

relatively much larger error-term. As soon as h = o(n), this condition is automatically
fulfilled.

For “Induced Copies” the situation is much more involved, because of the lack of monotonic-

ity. Below we shall always exclude e(L,) = 0 and e(L,) = 0. One would like to know if for
given (L,,p) the following is true or not:

(#) Given a sample graph L, and a probability p, if for a graph
graph sequence (G,) for every induced subgraph F}, of G,

N*(L, C Fi) = Br(p)h” + o(n”) (3)

then (G,) is p-quasi-random.

(#) is mostly false in this form, for two reasons:
e the probabilities are in conjugate pairs;
e There may occur strange algebraic coincidences.

Clearly, 8(p) (in (1)) is a function of p which is monotone increasing in [0,e(L,)/(3)],
monotone decreasing in [e(L,)/(}),1] and vanishes in p = 0 and in p = 1. For every
p € (0,e(Ly)/ (%)) there is a unique probability p € (e(L,)/(3), 1) yielding the same expected
value. Therefore the hereditarily assumed number of induced copies does not determine the
probability uniquely, unless p = e(L,)/ (g) Given a graph L,, the probabilities p and p are
called conjugate if 5, (p) = B (p). We can mix two such sequences: (G,,) obviously satisfies
(3) if

(*) (G,) is the union of a p-quasi random graph sequence and
a p-quasi random graph sequence.
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One can create such sequences for Pj or its complementary graph. Simonovits and Sés think
that there are no other real counterexamples:

Conjecture 8.7. Let L, be fized, v > 4 and p € (0,1). Let (G,) be a graph sequence
satisfying (3). Then (Gy,) is the union of two sequences, one being p-quasi-random, the
other p-quasi-random (where one of these two sequences may be finite, or even empty).

To formulate the next Simonovits-Sés theorem we use

Construction 8.8 (Two class generalized random graph). Define the graph G, =
G(WV1,Va,p,q,s) as follows: V(Gy,) = Vi U Va. We join independently the pairs in Vi with
probability p, in V, with probability q and the pairs (x,y) for x € Vi and y € Vy with
probability s.

Theorem 8.9 (Two-class counterexample). If there is a sequence (G,) which is a coun-
terezample to Conjecture 8.7 for a fizred sample graph L and a probability p € (0,1), then
there is also a 2-class generalized random counterexample graph sequence of form G, =
GV, Va,p,q,s) with |Vi| = n/2, p € (0,1), s # p. (Further, either ¢q=p or ¢ =D.)

This means that if there are counterexamples then those can be found by solving some
systems of algebraic equations. The proof of this theorem heavily uses the regularity lemma.

Theorem 8.10. If L, is regular, then Conjecture 8.7 holds for L, and any p € (0,1).

For some further results of Simonovits and T. Sés for induced subgraphs see [120].
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