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H-1053 Budapest, Reáltanoda u. 13-15., Hungary

Jozef Skokan a,c,3,6,4

c Department of Mathematics, MC-382, University of Illinois at
Urbana-Champaign, 1409 W. Green Street, Urbana, IL 61801, USA

Abstract

For graphs L1, . . . , Lk, the Ramsey number R(L1, . . . , Lk) is the minimum integer N
satisfying that for any coloring of the edges of the complete graph KN on N vertices
by k colors there exists a color i for which the corresponding color class contains Li

as a subgraph.

In 1973, Bondy and Erdős conjectured that if n is odd and Cn denotes the cy-
cle on n vertices, then R(Cn, Cn, Cn) = 4n − 3. In 1999, �Luczak proved that
R(Cn, Cn, Cn) = 4n + o(n), where o(n)/n → 0 as n → ∞. In this paper we
strengthen �Luczak’s result and verify this conjecture for n sufficiently large.
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1. Introduction

For graphs L1, . . . , Lk, the Ramsey number R(L1, . . . , Lk) is the minimum
integer N satisfying that for any coloring of the edges of the complete graph
KN by k colors there exists a color i for which the corresponding color class
contains Li as a subgraph. In the early 1970’s, the Ramsey number R(Cn, Cm)
was studied by several authors [1,3,9] (see also [6]). It is known that, for n > 4,

R(Cn, Cn) =

{
2n − 1, n is odd,

3n/2 − 1, n is even.
(1)

Around the same time, Bondy and Erdős [1] conjectured (see also [2]) that
if n is odd, then

R(Cn, Cn, Cn) = 4n − 3. (2)

This is sharp if true, as shown by the constructions below. Using the Szemerédi
Regularity Lemma [10], �Luczak [8] proved that if n is odd, then

R(Cn, Cn, Cn) = 4n + o(n), (3)

where o(n)/n → 0 as n → ∞.

We shall prove the following.

Theorem 1.1 (Sharp form) There exists an integer n0 such that if n > n0

is odd, then
R(Cn, Cn, Cn) = 4n − 3.

Remark 1.2 Recently Figaj and �Luczak [4] and slightly later, independently,
Gyárfás, Ruszinkó, G. Sárközy and Szemerédi [5] proved that for even n

R(Cn, Cn, Cn) = 2n + o(n).

The next two constructions prove the lower bound R(Cn, Cn, Cn) ≥ 4n−3
in Theorem 1.1. We will use the following notation: For a given graph G =
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(V,E) and two disjoint subsets A, B of V , denote by E(A,B) the set of all
edges with one endpoint in A and the other endpoint in B.

Construction 1.3 Split the vertices of K4n−4 into 4 groups V1, . . . , V4, of n−1
vertices each. Color the edges inside each group by GREEN, the edges in
E(V1, V3) ∪ E(V2, V4) by RED, E(V1, V2) ∪ E(V3, V4) by BLUE, and the edges
in E(V1, V4) ∪ E(V2, V3) arbitrarily, by RED and BLUE.

The special feature of the next construction is that it contains both BLUE
and GREEN complete graphs on n − 1 vertices.

Construction 1.4 Take 4 groups of n − 1 vertices, as in Construction 1.3,
color the edges in V1 and V2 by GREEN, in V3 and V4 by BLUE. Then color
the edges in E(V3, V4) by GREEN and in E(V1, V2) by BLUE. Finally, color
the edges in E((V1 ∪ V2), (V3 ∪ V4)) by RED.

It is easy to observe that if n is odd, then these constructions do not contain
monochromatic copies of Cn.

Besides the two constructions above there are other constructions that
prove the sharpness of Theorem 1.1 (for example, in Construction 1.4 change
one GREEN edge in E(V3, V4) to BLUE). However, we shall actually prove
that all the other extremal colorings can be obtained from the ones we listed
here by changing the colors of a few edges.

2. Methods

In this section we describe (without proof) the main ingredients in our proof
of Theorem 1.1: the Regularity Lemma of Szemerédi, the Decomposition
Lemma of �Luczak, and the Stability Lemma for 3-colorings with no monochro-
matic long odd cycles from [7]. We also include a brief outline of the proof
without any technical details.

2.1. Regularity lemma for graphs

The Szemerédi Regularity Lemma [10] asserts that each graph of positive edge-
density can be approximated by a union of a bounded number of random-like
bipartite graphs.

Before we state the Regularity Lemma, we must introduce the concept
of regular pairs.

Definition 2.1 Let G = (V,E) be a graph and let δ be a positive real number,
0 < δ ≤ 1. We say that a pair (A,B) of two disjoint subsets of V is δ-regular
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(with respect to G) if
|d(A′, B′) − d(A,B)| < δ

for any two subsets A′ ⊂ A, B′ ⊂ B, |A′| ≥ δ|A|, |B′| ≥ δ|B|. Here, d(A,B) =
|E(A,B)|/(|A||B|) stands for the density of the pair (A,B).

This definition states that a regular pair has uniformly distributed edges.
The Regularity Lemma of Szemerédi [10] enables us to partition the vertex
set V (G) of a graph G into t+1 sets V0 ∪V1 ∪ . . .∪Vt in such a way that most
of the pairs (Vi, Vj) satisfy Definition 2.1. The precise statement is as follows.

Theorem 2.2 (The Regularity Lemma [10]) For every δ > 0 and s, t0 ∈
N there exist two integers N0 = N0(δ, s, t0) and T0 = T0(δ, s, t0) with the
following property: for all graphs G1, . . . , Gs with the same vertex set V of size
n ≥ N0 there is a partition of V into t + 1 classes

V = V0 ∪ V1 ∪ . . . ∪ Vt

such that

(i) t0 ≤ t ≤ T0,

(ii) |V0| ≤ δn, |V1| = . . . = |Vt|, and

(iii) all but at most δ
(

t
2

)
pairs (Vi, Vj), 1 ≤ i < j ≤ t, are δ-regular with respect

to every Gk, 1 ≤ k ≤ s.

2.2. The �Luczak decomposition lemma

If an n-vertex graph G is the union of complete graphs of size at most m and
a bipartite graph, then it does not contain odd cycles Ct with t > m. The
following result of �Luczak (see Claim 7 of [8]) shows that up to some error the
converse is also true.

Lemma 2.3 (The Decomposition Lemma [8]) For every 0 < δ < 10−15,
α > 2δ and n ≥ exp(1/δ16α) the following holds. Any graph on n vertices
that contains no odd cycles longer than αn contains subgraphs G′ and G′′ such
that:

(i) V (G′) ∪ V (G′′) = V (G), V (G′) ∩ V (G′′) = ∅ and each of the sets V (G′)
and V (G′′) is either empty or contains at least αδn/2 vertices;

(ii) G′ is bipartite;

(iii) G′′ contains not more that αn|V (G′′)|/2 edges;

(iv) all except at most δn2 edges of G belong to either G′ or G′′.
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2.3. Stability of 3-colorings with no long monochromatic odd cycles

The following lemma from [7] describes the structure of 3-colorings without
long monochromatic cycles and is crucial for the proof of Theorem 1.1.

Lemma 2.4 (The Stability Lemma [7]) For every ε > 0 there exist δ1,
δ2 > 0 and n0 with the following property: for every odd n > n0, for any
graph G on N = (7/2 + ε)n vertices and with at least

(
N
2

) − δ1N
2 edges, any

3-coloring of G

(i) either contains a monochromatic odd cycle longer than n, or

(ii) one can remove δ2N
2 edges from G and obtain a 3-coloring that can be

embedded into Construction 1.3 or 1.4.

2.4. Idea of the proof

The following is a brief outline of the proof of Theorem 1.1. We refer the
interested reader to the full version [7].

Consider an arbitrary 3-coloring of the edges of G = KN , where N = 4n−3.
Let G1, G2, G3 be its color classes. We apply the Regularity Lemma and
obtain a regular partition of the vertex set V (G) into t + 1 classes V (G) =
V0 ∪ V1 ∪ . . . ∪ Vt.

We construct an auxiliary graph Γ with vertex set {1, . . . , t} and the edge
set formed by pairs {i, j} for which (Vi, Vj) is regular with respect to G1, G2,
and G3. We 3-color Γ by the majority color in the pair (Vi, Vj).

Then the graph Γ cannot contain an odd monochromatic cycle longer than
t/4 because (see [8]) that would imply the existence of a monochromatic copy
of Cn in the original 3-coloring of G. Hence, by Lemma 2.4, the 3-coloring
of Γ has a special structure which in turn yields 4 disjoint subsets V ′

1 , V
′
2 , V

′
3 , V

′
4

such that the 3-coloring induced on V ′
1∪V ′

2∪V ′
3∪V ′

4 has precisely the structure
described by Constructions 1.3 and 1.4.

The proof is concluded by showing that the remaining vertices of V (G) are
then split into four sets V ′′

1 , V ′′
2 , V ′′

3 , V ′′
4 such that all edges induced on V ′

i ∪V ′′
i

are of the same color. Since one of these four unions has size at least n, it
must contain a monochromatic copy of Cn.
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