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Abstract. We study the smallest number qJ(K) such that a given convex body K 
in R n can be cut into two parts K 1 and K 2 by a surface with an (n - 1)-dimensional 
measure ~0(K)vol(K1)- vol(K2)/vol(K). Let MI(K)  be the average distance of a 
point of K from its center of gravity. We prove for the "isoperimetric coefficient" 
that 

In 2 
~0(K) >_ - -  

M1(K) ' 

and give other upper and lower bounds. We conjecture that our upper bound is the 
exact value up to a constant. 

Our main tool is a general "Localization Lemma"  that reduces integral inequal- 
ities over the n-dimensional space to integral inequalities in a single variable. This 
lemma was first proved by two of the authors in an earlier paper, but here we give 
various extensions and variants that make its application smoother. We illustrate 
the usefulness of  the lemrna by showing how a number of well-known results can 
be proved using it. 
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1. Isoperimetry in a Convex Body 

The classical isoperimetric problem is to find a surface with minimal measure which 
encloses a set of (at least) a given volume. We consider a "relativized" version of this 
problem, where we are given a convex body K, and want to find a surface which 
divides K into two parts, and whose measure is minimum relative to the volumes of 
the two parts. 

To be more precise: 

(a) The (n - 1)-dimensional Minkowski measure of a set A ___ R n is defined as 
the limit (if it exists) of the volume of the e/2-neighborhood of A divided by 
e, when e --* 0. (Volume means Lebesgue measure.) 

Define the isoperimetric coefficient of a convex body K ___ En as the largest 
number to = t0(K) such that, for every measurable subset S _c K for which aKS (the 
boundary of S, relative to K)  has an (n - 1)-dimensional Minkowski measure, 

vol(S) �9 vol(K \ S) 
voln-l(aKS) > to vol(K) (1.1) 

Inequality (1.1) is often replaced in the definition by 

voln- I(dK S) > to min{vol(S), vol(K \ S)}. (1.2) 

Since the two values are always within a factor of 2 to each other, this does not 
influence our results in any essential way. Our  formulation is more natural when 
applying the results to Markov chains. Lower bounds on to were proved by Bokowski 
and Spencer (1979) and Bokowski (1980). 

The problem of finding sharp lower bounds on the isoperimetric coefficient arose 
(among others) in connection with randomized volume algorithms. Dyer et al. (1989) 
formulated this connection and conjectured a lower bound on to. Karzanov and 
Khachiyan (1991) and Lov~sz and Simonovits (1990) proved (by different methods) a 
lower bound of 1/d  (where d is the diameter of  K and the conductance was defined 
according to (1.2)). This result was generalized to the case when Lebesgue measure 
is replaced by any measure given by a log-concave function F (i.e., when vol(T) is 

replaced by F) by Applegate and Kannan (1990). The bound (still using (1.2)) 

was improved to to(K) > 2 /d  by Dyer and Frieze (1992), which is the best possible 
bound (even for Lebesgue measure) in terms of the diameter, as shown by a very 
thin long cylinder. 

However, the diameter may not be the best possible measure to use here. In its 
applications to volume algorithms and related questions, we need these bounds in 
the case when the body is rather " round"  (e.g., in isotropic position, see below), and 
hence the bound 2 /d  may not be sharp. In this paper we prove two improvements of 
this bound, in terms of somewhat more complicated measures of the "linear 
dimensions" of  K. In particular, denote the average distance Of a point in K from its 
center of gravity by MI(K). Note that MI(K)  may be much smaller than the 
diameter, e.g., in case of  a regular simplex S n of diameter d, MI(S n) = d/x/-n. 
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Main Theorem. For every convex body K, 

In 2 
~b(K) >_ - -  

M I ( K  ) �9 

We also formulate a conjecture that would determine the value of the isoperimet- 
ric coefficient up to a constant factor. 

We start by describing a general method for proving inequalities involving the 
volume and other measures (Localization Lemma). This method reduces high- 
dimensional integral inequalities to one-dimensional ones. In Section 3 we illustrate 
the method by giving new proofs of some important inequalities in convex geometry, 
some of which are sharper than the earlier versions. Our results on the isoperimetric 
problem are contained in Section 5. 

2. Localization Lemma 

Below we use the notion of upper and lower semicontinuous functions. 
Lower semicontinuous functions are limits of monotone increasing sequences of 

continuous functions. They can also be characterized by that 

l i m i n f f ( x )  = f ( x  0) forevery x ~ D f ,  
x - ~ x  o 

where Df is the domain of f ,  in our case mostly an open or closed convex set K or 
the whole space En. The indicator function of an open set is always lower semicon- 
tinuous but not continuous. This is the reason why we cannot restrict our considera- 
tions to continuous functions. Upper semicontinuous functions are the limits of 
monotone decreasing functions, and the indicator functions of closed sets are upper 
semicontinuous. 

Corrigendum to the Lovfisz-Simonovits Paper (1993). In our earlier paper we 
exchanged the word "upper" and "lower" in speaking of semicontinuous functions. 
Otherwise everything was correct. Here we return to the usual (correct) definitions. 

The following general tool for proving geometric inequalities was proved by 
Lovfisz and Simonovits (1993). 

Lemma 2.1. Let g and h be lower semicontinuous Lebesgue integrable functions on ~ ~ 
such that 

• g ( x )  d r > O  and f n h ( x )  d x > O .  

Then two points a, b ~ ~n and a linear function l: [0, 1] ~ ~+ exist such that 

foal(t)" lg((1 - t)a + tb) dt > 0 and fo l l ( t ) " - lh ( (1  - t )a + tb )d t  > O. 
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To formulate the conclusion informally, we may consider ( l ( t ) )n - ldA  to be the 
cross-sectional area ((n - 1) dimensional volume) of an infinitesimal cone with base 
area dA; then the conclusion of the lemma just states that the integrals of both g 
and h over this cone truncated at a, b are positive. 

In fact, it is convenient to make this precise by introducing the following 
language. By a needle we mean a segment I = [a, b] in ~ ,  together with a 
nonnegative linear function l: I --* It~+ not identically 0. If N = (L l)  is a needle 
and f is an integrable function defined on I, then we set 

fN fo~b a f =  ' - tf(a + tu)l(a + tu) n l dt, 

where u = (1/ Ib  - al)(b - a). 
It is easy to show that we could not restrict the family of these "test bodies" 

f u r t h e r - - i n  Lemma 2 .1 - - to  (untruncated) infinitesimally narrow cones, or cylinders 
(i.e., choosing l to be constant, or zero at one of the endpoints). Furthermore,  this 
theorem cannot be directly generalized to three integrals. (If the sign of k integrals 
is to be preserved, then (k - 1)-dimensional test-bodies have to be used. We do not 
elaborate on this idea here.) 

We state two corollaries of this lemma which are sometimes more convenient to 
apply. 

Corollary 2.2. Let f l ,  f2, f3,  f4 be four nonnegative continuous functions defined on 
g~', and a, ~ > O. Then the following are equivalent: 

(a) For every convex body K in ff~n, 

(b) For every needle N in g~ n, 

(j ~ (j:4) 

Proof o f  Corollary 2.2. It is clear that (a) implies (b). To prove the converse, assume 
(b) for a convex body K and assume indirectly that 

(2.1) 

By adding a small constant to f3 and ]'4, we may assume that they are positive and 

(2.1) still holds. We  may also assume that f K  fi > 0 for i = 1, 2, 3, 4. 
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Fix an A such that 

Then 

(s,,,,,)__5_" 
(s,<,D 

> 0 .  

fr(A1/t~fz - f 4 )  > 0 and fK(fl  - A l / " f 3 )  > O. 

By the Localization Lemma, we have a needle N contained in K such that 

fN(A1/afz --f4 ) > 0 and f N ( f l - A 1 / ~ f 3 )  > O. 

These inequalities imply that f N  f l  > 0 and f N  fz > 0. Clearly, 

(SNf )a(SNf ) fl (SNf3)a(SNf2) fl (SNf3)a(SNf4) fl l z > A  > , 

contradicting assumption (b). 1 []  

Remark  2.3. It is easy to see that Corollary 2.2 automatically extends to the more 
general case when f l ,  f2 are upper  semicontinuous and ]'3, ]'4 are lower semicontin- 
uous functions. Indeed, then we may choose four sequences of continuous functions, 
f !  k) so that f~l k) ,~ f l ,  f(2 k) ," f2, f~3 k) x~ f3, f(4 k) ~ f4: (b) will be trivially satisfied by 
the approximating functions. If (a) were violated by f i ,  rE, ]'3, f4, then for some 
sufficiently large k the continuous f(k), f(zk), f(3k), f(4 ~) would also violate it, contra- 
dicting the original corollary (continuous case). This observation is useful when we 
have functions defined and continuous on a subset T of R n and want to use the 
above arguments: we may extend these functions to the whole space by defining 
those outside to be zero. This continuous functions extend to upper semicontinuous 
functions if T is closed, to lower semicontinuous ones if T is open. 

Corollary 2.4. Suppose T is a bounded open convex set in • ~, g is a bounded lower 
semicontinuous function on T, and h is a continuous function on T such that 

f T g ( X ) d x > O  and f h(x)dx=O. 

Then a needle N = (I, l) with I c T exists such that 

fNg > O and fNh =0 .  

1The fact that we possibly added a small positive constant to f3 and f4 works in the right 
direction: we get a contradiction with the original f3, ]'4, too. 
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Remark  2.5. It is clear that we can replace strict inequality by > in the assumption 
and in the conclusion. 

Proof. This assertion could be proved along the lines of the original proof  of 
Lemma 2.1 (Lemma 2.5 in lov~sz  and Simonovits (1993)) bu t - -u s ing  a simple trick 
- - i t  can also be reduced to Lemma 2.1 as follows. 

Choose a 6 > 0 such that f r (g  - 6) > 0. Let e be any positive real (which will 

later tend to zero). We have 

g -  6 + - ~ h  > 0  and ( e  2 - h )  > 0 .  (2.2) 

We convert the above integrals over T into integrals over I~ n by multiplying the 
integrand by the (lower semicontinuous) indicator function of T and then we apply 
Lemma 2.1. Thus we get a needle N~ for which 

g -  6 + - ~ h  > 0  and ( e  2 - h )  > 0 .  
c 

Hence 

fN (g-- ~ + ~) > 0 

and if M is an upper  bound on g on all of T, then 

fN~h> fN( - -eg)>--Mef  N, and fNh<e2fN1. 

We construct these needles N, for e = 1/k for k = 1,2,3 . . . .  We may assume 
after scaling by a suitable positive real that the maximum of each linear function 
corresponding to the needles is 1. There is then a subsequence of these needles that 
converges (in the sense that the intervals converge to an interval and the linear 
functions to some linear function with maximum = 1). It is easy to see (using the 
continuity of  h) that, for the "l imit"  needle intersected by T, the conclusions are 
valid. [ ]  

Next we prove a version of  Corollary 2.2 involving log-concave weight functions. 
Here  exponential  needles, defined below, replace the needles. However, even if 
we are not concerned with log-concave functions, exponential  needles are easier to 
use. The loca l iza t ion  Lemma (or its corollary stated above) reduces the problem 
of proving inequalities between integrals in R n to inequalities between one- 
dimensional integrals. However, then nth powers of  linear functions in the definition 
of a "needle"  are often difficult to handle. In the case when we want to prove 
inequalities that are independent  of n (in some sense), the following theorem may 
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be  "easier to apply. To state it, we define an exponential needle E as a segment  
[a, b] c R n, toge ther  with a real  constant  3'; and  we define the integral  over  such a 
needle  by 

f E f  = foIb-aEf(a + tu)eW dt, 

where  u = ( 1 / I b  - al)(b - a). 
Recal l  tha t  a funct ion f :  ~n  ~ ~+  is log-concave if it satisfies, for all x, y ~ En 

and 0 < A < 1, 

f ( A x  + (1 - A)y)  > f ( x ) a f ( y )  0 ~) 

Equivalent ly,  a (nonnegat ive)  funct ion is log-concave if its suppor t  

K = {x ~ ~": f ( x )  > O} 

is convex, and  log f is a concave function on K. Every nonnegat ive  funct ion that  is 
concave over  a convex domain  is log-concave (we define its value to be ze ro  outs ide 
the original  domain) .  In par t icular ,  the indica tor  funct ion of  a convex body is 
log-concave.  Log-concave funct ions include many densi ty  funct ions impor t an t  in 
statistics, e.g., e -x2 and e -Ixl. If  l is a l inear  function,  then max{0, I k} is log-concave.  

W e  need a l emma  about  the one-d imens iona l  case. 

L e m m a  2.6. Let f l , f 2 , f 3 , f 4 be four nonnegative continuous functions defined on an 
interval [a, b ], and a, [3 > O. Then the following are equiualent: 

(a) For every log-concaue function F defined on R, 

( f a b F ( t ) f l ( t ) d t ) ~ ( f a b F ( t ) f 2 ( t ) d t ) t 3 < ( f a b F ( t ) f 3 ( t ) d t ) ~ ( f a b F ( t ) f 4 ( t ) d t ) ~ .  

(b) For every subinterval [a ' ,  b ' ]  _c [a, b], and every real 7, 

(fab, 'eZ'tf l(t)dt)~(fab, 'ertf2(t)dt)O< (fab,'e'tf3(t)dt)'~(fab,'ertf4(t)dt)O. 

Proof. Firs t  we note  that  if a po in t  t o ~ [a,  b] exists such that  (fl(to))~(f2(to)) t~ > 
(f3(to))~(f4(to)) ~, then  both  asser t ions fail (by consider ing a very small  interval  
conta ining t o, or the log-concave function e -C(t-t~ with a large constant  C). So we 
may  assume that,  for all a < t < b, 

f l ( t )~ f2 ( t )  t~ < f3( t )~ f4( t )  t3. (2.3) 

It  is obvious tha t  (a) implies  (b). 
(b) ~ (a). Assume  that  (a) fails for  some log-concave funct ion F .  We m a y  assume 

that  F(t)  > 0 for all a < t < b, since replac ing  F by, say, its convolut ion  with e -Ct2 
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with a very large C would still yield a counterexample: indeed, the convolution of 
log-concave functions is again log-concave (see Dinghas, 1957; Pr6kopa, 1971). By 
scaling, we may also assume that F(t )  > 1 on [a, b]. So we can write F = e ~, where 
G is a nonnegative concave function on [a, b]. 

Also, we may choose an e > 0 sufficiently small such that 

(SabF(t)fi(t)dt)"(SabF(t)f2(t)dt) ~ 

> (SabF(t)(f3(t)+e)dt)~(SabF(t)(f4(t)+~)dt) (2.4) 

For  each natural number  n, consider the convex body K n below in l~n+a: 

G ( t )  } 
K n = ( t ,  x ) :  t ~ [a,  b],  x ~ ~n,  Ilxll < 1 + - . 

n 

We also extend each fi to a function )~: ~n+ l  __, ~ by f i(t ,  x )  =f i ( t ) .  
Then, for sufficiently large n, we have (1 + G ( t ) / n )  n ~ e c~t) and (2.4) implies 

(r ,,)~ ,.)' , + 

By Corollary 2.2, a needle N n = (In, l n) in ~n+t  exists such that 

(J.s) ~ '" (J. +-0' 
If  the needle is orthogonal to the t-axis, then this inequality violates (2.3), so we 
assume this is not the case. Thus, we may project to [a, b] and assume that 
I n = [a n, b,]  _c [a, b] and that I ,  is a linear function of t ~ [ a n ,  bn] , so we have 

" l~( t )n f l ( t )  dt bn l . ( t ) n f 2 ( t )  dt 
\ an 

(z )~ )' bn n b n n 
> In(t) (f3( t )  + 6 ) d t  ln(t) (f4( t )  + ~ ) d t  

an \ an 

(2.5) 

There is a subsequence (n)  such that in the subsequence, a n ~ a o and b, ~ b 0. 
Inequali ty (2.3) implies that a 0 < b 0. We may assume that l , (a o) < l , (b  o) for 
infinitely many indices (otherwise, we may exchange a 0 and b 0 for the argument 
below). We may also assume that each I n is normalized so that ln(b o) = 1. Let 
Yn = l~(ao)" We may also assume that 3', ~ Y and (1 - yn)n -~ y '  for some 0 < y 
< 1 and 0 < y '  ~ oo, for an infinite sequence of values of n. (Note: y '  may be 
infinity.) 
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If  y 4: 1, then Inn ~ 0 for every a 0 < t < b 0 . However ,  then, dividing both sides of  

(2.5) by ( fb~ ln(t)~ dt)~+~ and letting n ~ ~, we get 

f l (bo)~fz(bo )t~ > ( f3 (b0)  + e ) '~ ( f4(bo  ) + e ) ~ ,  

which contradicts  (2.3). 

So we have 3' = 1. T h e n  l . ( t)  ~ 1 and so we have, for each a 0 < t < bo, 

l . ( t )"  = (1 - (1 - l . ( t ) ) ) "  = [(1 - (1 - ln(t)))l/(1-l"(t))] n(l-l"(t)) 

H e r e  the base (in the square brackets)  tends to 1 / e .  I f  3" = 2,  then l .( t)" --, 0 for 

t < bo, which leads to a contradic t ion as before .  If  3" is finite, then (using that  l .  is 

l inear)  we have n(1 - l .( t))  --* 3"(b o - t ) / ( b  o - ao), and so 

In(t) n ~ eT'(t-bo)/(bo-ao). 

Thus it follows that  (with 3'" = 3 " / ( b  o - ao)) 

> ~176 + e ) d t  f4(t)  + e ) d t  , 
\ a o  

and hence 

b~ ) dt b~ dt b~ dt > f ~176 dt , 
k ao ] \ ao ao J \ ao 

showing that  (b) is violated.  []  

Theo rem 2.7. Let f l, rE, f 3, f4 be four nonnegatiue continuous functions defined on 
~n, and a, fl > O. Then the following are equivalent: 

(a) For every log-concave function F defined on ~n with compact support, 

( f R F ( t ) f l ( t ) d t ) ~ ( f R F ( t ) f 2 ( t ) d t )  ~ 

< F( t  t)  dt F( t  t) dt 
n n 

(b) For every exponential needle E, 

(fEfl)Ct(SEf2)fl ~ (SEf3)a(fEf4)fl" 



550 R. Kannan, L. Lovftsz, and M. Simonovits 

Proof. The direction (a) ~ (b) is easy: Let the exponential needle E be defined by 
the segment [a,b] (a,b ~ ~ )  and constant y, and let u = ( b -  a ) / l a -  bl as 
before. Apply (a) to the log-concave function e v'x, restricted to an e-neighborhood 
of [a, b], and let e --* 0; we then get (b). 

Conversely, assume that (b) holds and consider any log-concave function F. 
Assume that (a) fails to hold. Apply Corollary 2.2 to the functions Ffi ; it follows that 
there is a segment [a, b] and a linear function l: [a, b] ---, ~+ such that 

(J0 Ib-al f l(a + tu)F(a + tu)l(a + tU) n-1 dt 

X - + tu)F(a + tu)l(a + tu) n- a dt 

( foIb-al f3(a ) '~ > + tu)F(a + tu)l(a + tu) n- 1 dt 

X(foIb-alf4(a +tu)F(a  +tu)l(a + t u ) n - l d t )  ~. 

Now here Fl n- 1 is also log-concave, and hence Lemma 2.4 implies that there is an 
exponential needle E violating (b). []  

Remark 2.8. An exponential needle consists of an interval and an exponent y. We 
may often rescale, reducing the general case to the case 3, = 1. The case 3, = 0 can 
be neglected since in our cases it always follows from the case 3' ~ 0 by going to 
limits. 

3. Applications 

As an illustration of  the use of the Localization Lemma, we derive a generalization 
of Khintchine's inequality, due to Gromov and Milman (1984); see also Milman and 
Pajor (1989). Other geometric inequalities, like the extension of Theorem 3.1 below 
to norms of polynomials of bounded degree (Bourgain, 1991), a spherical 
Brunn-Minkowski type theorem of Borell (1975), a theorem of Hensley (1980) on 
sections of isotropic bodies, or an inequality of Dinghas (1957) on log-concave 
functions can also be deduced using the Localization Lemma (see also Lovfisz and 
Simonovits, 1993). Typically, this method also enables the best constants in these 
results to be found, although (as is also illustrated below) at the cost of a tedious 
computation. 

Let K be a convex body and let f :  K ~ • be an integrable function. We define 
its Lp-norm by 

i , _  lj '  
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If 0 < p < q, then clearly [if lip ~ Nfllq; the next theorem asserts that if f is linear, 
then the following converse also holds: 

Theorem 3.1. A constant Cp, q depending only on p and q (so independent of the 
dimension and of K) exists such that, for every convex body K in R n and every linear 
function f: K ~ ~, 

[[fllq < Cp,qllfllp. (3.1) 

Proof. We write inequality (3.1) in the following form: 

l /q / pk l/p (S,<,:, (SKI) 1/q" 
By Theorem 2.7, it suffices to prove that, for every exponential needle E, 

l /q i p \  l /p 

(SElf 'q (SE1)I/P < Cp,q(SEif ' -  ) (mE1) l/q" 
Translating this into one-dimensional integrals, we must prove (for every fixed 
0 < p  < q) that a constant Cp, q exists such that, for every linear function f ,  every 
a < b, and every real 3', 

fa b eVtlf(t)l q dt 

fa b e yt dt 

l /q i be'dtl 
Cp. q fab e vt dt " 

Without loss of generality, we may assume that f ( t )  = t and 3' = 1 (this implies the 
case 3' ~ 0 by substitution, and then the cases 3' = 0 and f ( t )  = c also follow by 
going to the limits). Let 

w ( a , b ) : =  

( fabetlf(t )l q d t /  fabet dt ) 1/q 

( fabetlf(t)l p dt// fabet dt) 1/p " 

So we have Cp, q = supa < b ~(a,  b), provided this is finite. However ~0(a, b) is contin- 
uous for a < b, and we can extend it to a < b continuously, putting ~p(a, a) = 1 
(since, for every a, ~(a,b) tends to 1 if a < b and a , b  ~ a )  2 and ~ ( a , b )  ~ 1 
uniformly in a if b ~ ~, and a < b is arbitrary. Moreover,  ~(a,  b) remains bounded 
if b is bounded and a ~ - ~ .  This implies that ~ ( a , b )  remains bounded.  To 
determine the best value of  the constant, the supremum has to be found numeri-  
cally, which is tedious but rather straightforward. For  example, Cl, 2 < 2.5 is ob- 
tained. [ ]  

2 The case a = 0 should be handled with some extra care. 
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4. lsotropy 

Given a convex body K ___ ~n and a function f :  K ~ ~r~, we denote b y E / c ( f )  the 
"average of f over K," i.e., 

1 
E/c( f )  vol(K) f / c f (x )  dx. 

We denote by b = b(K)  = E/c(x) the center of gravity (baricenter) of K. We also let 
A ( K )  denote the n • n matrix of "inertia" about b(K): 

EK((X -- b ) ( x  - b)T), 

where superscript T denotes the transpose. The p th  moment (p  >_>_ 0) of a convex 
body K is defined by 

M p ( g )  = E/c(Ix - blP). 

The second moment is just the trace of A(K) .  It is easy to see that the average 
square distance between points in K is 2M2(K): 

1 
vol(K) 2 fK f/clx _ y[2 dxdy = 2M2(K).  

It is clear that Mp(K)  (1/p) tends to max{Ix - bl: x ~ K} monotone increasing, as 

A body K c ~n is in isotropic position if b(K)  = 0 and A ( K )  = I, the identity 
matrix. Clearly, if K is in isotropic position, then its second moment is n. (This 
definition is somewhat different from that in Milman and Pajor (1989), where it is 
assumed that vol(K) = 1 and A ( K )  = A/c/. We have found our definition to be 
more convenient to use, in particular in probabilistic applications. It is known that 
A/c is bounded from below by an absolute constant, and it is a major conjecture that 
A/c is bounded from above by an absolute constant.) 

We start with a lemma which is, in a sense, folklore. For centrally symmetric 
bodies, the corresponding result (in which case the bounds are somewhat sharper, 
but only by absolute constants) was proved by Milman and Pajor (1989). For 
the nonsymmetric case, the inequality, up to absolute constants, was proved by 
Sonnevend (1989). 

Theorem 4.1. I f  K is in isotropic position and B is the unit ball about zero, then 

- - B c K c  n v ~ + 2 ) B .  (4.1) 

(Note the slightly weaker but simpler inequalities B ___ K __. (n + 1)B. The inequali- 
ties as stated are tight for the regular simplex. Also, they imply the theorem of John 
(1948) on the inscribed and circumscribed ellipsoid of a convex body.) 
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Proof. To prove the first containment, we use Corollary 2.4. Assume that 

~/(n + 2) /nB ~ K. Now, choosing the coordinate system appropriately, K is con- 

tained in the half-space x a > -~/(n + 2) /n .  By hypothesis, 

fK Xl = O and fK(X~ -- 1 ) = 0 .  

Applying Remark 2.5 (extending Corollary 2.4) we get a needle N = ([a, b],/) 
contained in K, which we may assume is not orthogonal to the x I axis. Hence we 
may assume it is contained in the x 1 axis, such that 

fabxl(l(Xl)) n-1 = 0  and fabX2(l(Xl)) n-1 > fa b(l(xl)) n-I 

Our indirect hypothesis implies that a > -~/(n + 2) /n .  It is easy to see that l must 
be decreasing and then we may assume that l(x) = t - x for some t _> b. Then the 
integrals in both conditions can be evaluated explicitly, and a contradiction can be 
obtained by a tedious but rather straightforward computation. 

The proof of  the second inequality does not need the Localization Lemma. Let v 
be the point of K farthest from 0. We have to show that I vb < x / ~  + 2).  Let 
e = (1/Ivl)v. For each u ~ ~ with lul = 1, let ~b(u) denote the largest real number 
t with v + tu E K. Then we have 

vol(K) = JOB f JOfCb(u)t n-1 dtdu = 1 fOB~J(U) n du. 

Moreover, 

1 fr  1 fo f6(u)t~_l(er(v vol(K) (erx)  2 dx vol(K) B "0 
+ tu)) 2 dtdu 

6(u)"+ 1 
4~(u)" 1 

- /" Iv[ 2 + 2 [v[eru + 
vol(K) JaB n n + 1 

~(u).+2 
+-~ (eru) 2) du. 

The integrand can be written as 

ok(u)"( n ~ C h ( u ) e r U + - n  
~/n~/~ + 2) ) 

+ 
1 

n(n + 1) 2~b(u)"[v[2" (4.2) 

Here the first term is nonnegative, which gives the inequality 

1 > _ - -  
1 1 Iol 2 

v o l ( g )  rjaB n(n + 1) 2 ~b(u)"lvl2 (n + 1) 2,  
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and hence Ivl -< n + 1. To get the slightly stronger right-hand side inequality of 
(4.1), we give a positive lower bound on the first term in (4.2). Similarly as above, we 
have 

1 qS(u) n+l  

0 = b ( K )  vol(K)I fo. fo d~(u)tn-l(v + t u )d tdu  = v +  --vol(K) fob n +  1 udu ,  

and hence 

(~ (U )  n 1 ( n ~ n  ~ /n(n+2)  ) 
f,~ ch(u)eru + n-+--1 Iv[ du vol(K) B n 

(n + 1 ) ~ +  2) 
Ivl. 

Thus, by Cauchy-Schwarz, 

6(u)" 1 fo r + n +- f Ivl du vol(K) B n 

> 
1 

Ivl 2. 
n(n  + 2)(n + 1) 2 

Thus 

1 1 ) 1 
1 >_ + - -  Iv] 2 Iv[ 2, 

n(n  + 2)(n + 1) 2 (F/ + 1) 2 n(n  + 2) 

which proves the assertion. []  

5. I s o p e r i m e t r i c  I n e q u a l i t i e s  

Now we state the main theorem of this paper. 

Theorem 5.1. For every convex body K, 

~O(K) > - -  
In 2 

M1(K ) " 

Generally surfaces are difficult to handle. Therefore, in the definition of the 
isoperimetric coefficient, in (1.1), we replace the original surface OS by its open 
e/2-neighborhood intersected by K, whose closure we denote by K 3 . Further, we 
replace S by K I : = S \ K  3 and K \ S  by K 2 : = ( K \ S ) \ K  3. So we prove the 
following theorem, which implies Theorem 5.1 by letting 8 ~ 0. 
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Theorem 5.2. Let K be a convex body and K = K 1 U K 2 U K 3 , a decomposition of  K 
into three measurable sets such that the distance of  K 1 and K 2 is ~ > O. Then 

MI (K)  
vol(K 1) vo l (K 2) < vo l (K)  vol(K3).  

ln2  

Proof. The general case of measurable partition can be reduced to the case when 
K 1 and K 2 are closed: replacing K by its closure we do not change vol(K); 
replacing the original K~ and K 2 by their closure we decrease neither  vol(K 1) nor 
vol(K2); putting K 3 := K \ ( K  1 U g'2) we do not increase vol (K3) .  Hence Theorem 
5.2 for this new partit ion will imply Theorem 5.2 for the o ld  one. 

We assume that b(K)  = O. Let fi be the indicator function of Ki (i = 1, 2, 3) and 
f4(x) = Ix[/(e In 2). Then the assertion of the theorem is equivalent to 

Theorem 2.7 can be applied and says that we only have to prove that 

for every exponential needle E contained in K. 
Now let E be defined by the segment [a, b] and y. We may assume that the 

segment intersects both K 1 and K 2. We may also assume that the origin corre- 
sponds to a point u on the segment [a, b], since otherwise we can move it to the 
nearest point on the segment and the function f4 would only decrease while the 
other three would remain the same. We can rescale so that 7 = 1. 

This reduces the problem to the following inequality concerning one-dimensional 
integrals. Let a < 0 < b and y = 1. Let [a, b] = Ja U J2 U J3 be a partit ion of  [a, b] 
into three measurable sets, so that the distance of J1 and J2 is at least 6. Then we 
want 

fj  f, 1 fj3e t f b l t _ u l e t d t .  e tdt  e t d t < _ -  dt (5.1) 
J2 e In 2 

We first prove the assertion in the (intuitively) most difficult case when J1, J2,  

and J3 a r e  intervals (naturally, [c, d] = J3 is in the middle and has length at least e). 
Dividing by e c, we have to prove the inequality 

C b-Cet l f o e f a b  f e t d t f  d t < - -  e tdt  I t - u l e t d t .  
Ja Je e ln2  

One way to prove this elementary inequality is to notice that the left-hand side is 
maximized when c = (a + b - e ) / 2 ,  while the right-hand side is minimized when 
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u = ln((e a + eb)/2) .  Substituting these values, and simplifying, we get that we have 
to prove 

( e  ~ b + l  
1 e " -  1 - I n  

( e ( b - a ) / 2  - -  ee /2 )2  ~ In 2 e 2 
) (eb 

- -  e b-a + In 2 " 

If we decrease e, then the left-hand side increases while (e ~ - 1 ) / e  decreases, so it 
suffices to prove the inequality in the limit case e = 0. Substituting z = e (b-")/2, we 
get that  we have to prove 

(z2+1) 
( l n2 ) ( z  - 1) 2 + Z 2 In 2 -- In ~ _< 0 

for z > 1. The function f on the left-hand side satisfies 

d f ' ( z )  4(Z 3 - - z )  + 2(ln 2)(Z 2 + 1) 

dz z z2(1 q.- Z2) 2 
> 0  

for z > 1, which implies that f ' ( z ) / z  is monotone increasing. Since f ' ( z ) / z  ~ 0 as 
z ~ 0% this implies that  f ' ( z ) <  O, i.e., f is monotone decreasing. Now since 
f(1) = 0, this implies that  f ( z )  < 0 for z > 1. 

Thus we know that (5.1) holds when J l ,  J2, and J3 are  intervals. From this the 
assertion follows by a general  trick from Lovfisz and Simonovits (1993). We  may 
assume that J3 is open, since replacing Jx and J2 by their  closures would only make 
the inequality tighter. So J3 is the union of disjoint open intervals; we may assume 
that these are of length at least s ,  since the shorter intervals must have both 
endpoints in J1 or both endpoints in J2, and then accordingly we can add them to J1 
or J2 and make the inequality tighter. 

Now let (c i, d i) (1 < i < k)  be all maximal intervals contained in J3" Then, by the 
argument  above, 

�9 1 f d i e t d t f b l t _ u l e t d l .  f C ' e t  dt fbe  'dt  < - -  
~ Jd, e In2 ci a 

Summing this for all i, we obtain 

k 
~ fC'et dt fbet  dt < - -  

i=1 a d, 
1 fj3e t dtfablt--uletdt.  

e ln2 

Since every point  of J1 and every point  of J2 are  separated by at least one of the 
intervals (ci, di) , we have 

k 

i = 1 di  J2 

This proves the  theorem. []  
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Let K be an arbitrary convex body and let, for each x ~ K, X(X) denote the 
length of the longest segment contained in K with midpoint x. (Equivalently, X(X) 
is the diameter of K n (2x - K).) Define 

1 
x(K)  vol (K)  fK g(x)  dx. 

Theorem 5.3. For every convex body K, 

1 
~,( K )  >_ - -  

x(K) " 

Proof. We prove, for every partition K = K 1 t) Kz U K 3 of K into three measur- 
able sets such that the distance of K 1 and K 3 is 8 > 0, the inequality 

1 
v o l ( K j ) v o l ( K  2) < -~vol(K3)fKX(X)dx. 

Similarly as before, Theorem 2.7 can be applied to reduce the problem to an 
assertion about one-dimensional integration: for every interval [a, b] on the line, and 
every partition [a, b] = J1 u J2 w J3 into three measurable sets (J1, J2 are closed, J3 

is open in [a, b]) such that the distance of J~ and J2 is at least e, 

f e t dtf e' dt <_ 1 f e t dtfbmin(t_ a,b - t)e t dt. 
J1 J2 8 J3 a 

Again as before, it suffices to prove this in the case when J3 is a single interval 
(c, c + e). As before, we evaluate these integrals and simplify to get the inequality 

( e ( b - a ) / 2 - - e ~ / 2 ) 2 <  ( e ~ l ) ( e ( b - a ) / 2 - -  1)2 ' 

which is clearly true. []  

The two lower bounds on ~ ( K )  in Theorems 5.1 and 5.3 are not comparable. The 
first theorem gives tp >_ tq(n -~/2) for every isotropic body. The second theorem 
gives ~b >_ fK1) for the isotropic ball, but only the trivial 6 >_ I~(1/n)  for the 
isotropic simplex. 

We present below an upper  bound on 6 (K) .  We conjecture that this upper 
bound is always within a constant factor to the truth. This is equivalent to the 
conjecture that there is hyperplane cut which is within a constant of the "best"  cut. 

Let K be a convex body in R n, and let a ( K )  be the largest eigenvalue of A(K). 

Conjecture. ~b(K) = 0 ( 1 / a ( ~ - ~ ) .  

Theorem 5.4. For every convex body K in ~n, 

10 
t~(K) _< ~ .  
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The  p roo f  is immed ia t e  f rom the fol lowing lemma,  which can be p roved  e i ther  

using the local izat ion l e m m a  or  (if the  best  constant  is not  impor tan t )  a s tandard 
log-concavity argument .  

L e m m a  5.5. Let  K be a convex body in R n and assume that b ( K )  = O. Le t  u be any 
vector in R n o f  length 1, and fl := EK((uTx)2).  Then 

v o l ( K  n {x: uTx < 0 } ) v o l ( K  n {x: u~x > 0}) 

1 
> O " l  ---~ v /~  v ~  n {x: uTx = O})vo l (K) .  

W e  no te  that  it could also be  shown easily a long the  same lines that  cuts by 

hyperplanes  do not  provide  a coun te rexample  to the conjecture .  
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