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P. Turban has asked the following question: 
Let Z12 be the graph determined by the vertices and edges of an icosahedron. 

What is the maximum number of edges of a graph G” of n vertices if G” does not 
contain Zle as a subgraph? 

We shall answer this question by proving that if n is sufficiently large, then 
there exists only one graph having maximum number of edges among the 
graphs of n vertices and not containing Z Ia. This graph H” can be defined in the 
following way: 

Let us divide n - 2 vertices into 3 classes each of which contains [(n - 2)/3] 
or [(n - 2)/3] + 1 vertices. Join two vertices i f f  they are in different classes. 
Join two vertices outside of these classes to each other and to every vertex 
of these three classes. 

NOTATIONS 

The graphs considered in this paper have neither loops nor multiple 
edges, they will be denoted by capital letters, and the upper indices will 
always denote the number of their vertices. The vertices will be denoted by 
x, y ,..., the edges by (x, v) ,... . The number of vertices, edges, and the 
chromatic number of the graph G will be denoted by v(G), e(G), and x(G), 
respectively. If x E G, stx denotes the star of x, i.e., the set of vertices, 
joined to X. The cardinal&y of stx, i.e., the valence of x, will be denoted 
by u(x). The cardinality of the set E will be denoted by I E 1. 

To simplify the definitions of some special graphs, we introduce the 
following operations: 

Sum, product. Let us suppose that GI ,..., Gd are graphs without 
common vertices. Their disjoint union will be called their sum and denoted 
by C G, ; joining each vertex of Gi to each one of Gi for every 
1 < i c j < d, we get their product denoted by X G, . If GI x G, is a 
subgraph of G, i.e., each vertex of GI C G is joined to each one of G, C G, 
then we shall say that GI is completely joined to G2 (in G). 
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Dz@rence. If G, is a subgraph of G or simply a set of vertices and edges 
of G, then G - G1 denotes the graph obtained from G by omitting all the 
edges and vertices of G, and all the edges at least one endpoint of which 
belongs to G, . 

Special graphs. Kd(rl , . . ., rd) is the complete d-partite graph with r, 
vertices in itspth class. In particular, &(l,..., 1) = Kd is the complete graph 
of d vertices and K,(d) is its complementer: d independent vertices. 
Pk and Ck denote the path and circuit of k vertices, respectively. 

1. INTR~OUCTI~N 

A well-known theorem ofP. Turin [l] (1941) asserts that for givenp and 
n >, p, there exists exactly one graph Son having maximum number of 
edges among the graphs G” not containing K, . Further: 

where 

Cn,=n and n 

-FJ <l. I (1”) 

(The integers ni are uniquely determined by (I*) apart from a permutation, 
therefore (I) and (I*) determine S,” uniquely.) 

One can replace K,, in Tursin’s problem by any given graph and ask: 
For given L, what is the maximum number of edges a graph Gn can have 
if it does not contain L as a subgraph? P. Erdiis and the author have fairly 
general results in this case, the most important of which is 

THEOREM A. If x(L) = p, then every extremal graph S” for L, i.e., 
every graph having maximum number of edges among graphs of n vertices 
not containing L, can be obtained from Son (defined by (1) and (l*)) by 
omitting o(n2) edges and adding o(n”) new edges. 

Theorem A gives quite a lot of information about the extremal graphs; 
however, if we wish to find the exact structure of the extremal graphs, 
we need more information than the chromatic number of L. The problems 
we meet are often hopeless. 

P. Turan asked (Erd& published [Kj) the following question: What is the 
maximum number of edges and what are the extremal graphs in the case 
if L is a graph determined by the vertices and edges of a regular polyhedron. 
The tetrahedron-graph is just K4 , therefore the answer in this case is 
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given by Turin’s theorem. In the case of the octahedron and cube, 
P. ErdGs and the author have some results [3,4]. Let 

where 

xn,=n--s+l and ln,-n-~+lI<l. (2*) 

According to [5], if Iz > n, , ZZ(n, 2, 6) is the only extremal graph for the 
dodecahedron-graph. Let P2 be the icosahedron-graph. 

The main purpose of this paper is to prove the following result: 

THEOREM 1. There exists an n, such that n > n, , then H(n, 3, 3) is the 
only extremal graph for P2. 

Remark. One can conjecture that for n > 17, H(n, 3,3) is always an 
extremal graph for Zr2 and that there are no other extremal graphs for P2 
if n > 20. However, for IZ = 16, H(n, 3, 3) is not an extremal graph, since 
K5 x K2(6, 5) does not contain Zi2 and has more edges than H(16, 3, 3). 
For n = 19, ZZ(19, 3, 3) cannot be the only extremal graph (if it is an 
extremal graph at all) because 

(KS + &) X K2(6 6) 

has the same number of edges and does not contain P2 either. (Theorem 1 
was first stated in the Ph.D. thesis of the author [9].) 

2. GRAPHS CONTAINING P2 

Since the structure of Z12 is rather complicated, it would be difficult to 
verify directly that a graph Gn contains Pa. Therefore we shall define 
three graphs W, , W, , and W, having simpler structure and containing Z12. 
In our arguments, wishing to prove something about the extremal graph S” 
(for p”), we shall suppose the contrary, prove that in this case S” contains 
one of WI, W, , W, and therefore Pa as well, and this will be a contra- 
diction. 

Let us have a look at Fig. I., Both graphs are the same, Z12. The reader 
can easily check that Pa does not contain 4 independent vertices. Therefore, 
x(P2) > 12/3 = 4. On Fig. 2 we give a coloring of Z12 with 4 colors. 
This shows that x(Z”3 = 4. 

At the same time the coloring given on Fig. 2 proves that 

p2cPs X K,(3,3) = wl. (3) 



72 MIKL6.S SIMONOVITS 

FIGURE 1 

FIGURE 2 

Indeed, on Fig. 3 a solid line indicates the edges joining vertices of color I 
to vertices of color 2 (on Fig. 2). We can see that these edges determine 
a Ps. Since each color is used 3 times, (3) is proved. 

We prove that 
FIGURE 3 

P2C(PS + P2) x (Kz +K,(2)) x K,(3) = w,. (4) 

Indeed, if we change the color of the vertex a (see Fig. 3) from the original 
1 to 4, then the graph spanned by the vertices of color 1 and 2 will be just 
the union of a P3 and an edge, the graph spanned by the vertices of color 4 
will become a graph of 4 vertices and 1 edge, and finally, the vertices of 
color 3 will remain independent. This proves (4). 

Omitting the vertices of two opposite triangles of P2 (see Fig. 4), we 
obtain just a circuit of length 6. Therefore 

PC& +iQ x i&(3,3) = w,. (5) 

3. FWOFOFTHEOREM 1 

There are several ways to prove Theorem 1 but none of those which 
I know is simple. After long hesitation, I decided to publish the shortest 



THE ICOSAHEDRON 73 

one which is based on Theorems 1 and 2 of [5]. However, the proof of 
these theorems (of [5]) are rather long and involved; therefore the proof 
given here cannot be called elementary. 

First, I will define a class of “very symmetrical” graphs, then formulate 
Theorem B, which is a weakened form of Theorems 1 and 2 of [5]. 

DEFINITION 1. Symmetric subgraphs. Let Tl and T, be connected 
spanned subgraphs of G. They are called symmetric if either Tl = T2 or 

(i) T,nT, = @,and 

(ii) (x,y)$GifxET1,yET2,and 

(iii) there exists an isomorphism w,: Tl -+ T2 such that for every 
XET~,UEG-T1--TTz,xisjoinedtouifandonlyifo,(x) 
is joined to U. 

T 1 >***, Tk are symmetric if for every 1 < i < j < k, TB and Ti are 
symmetric. 

Remarks. The transitivity of our relation is the consequence of the 
connectedness of the considered graphs. 

Speaking about a family of symmetric graphs we always suppose that 
the isomorphisms wi: Tl + Ti are fixed, even if they are not uniquely 
determined. The vertices x and wz(x) will be called corresponding vertices. 

DEFINITION 2. A?(n, r, 6) is the class of graphs Gn having the following 
properties: 

(i) It is possible to omit <r vertices of G” so that the remaining 
graph G* is a product: 

where 

(ii) For everyp 6 d, there exist connected graphs H,,, C G”D and 
isomorphisms wDsi: H,,, + H,,, such that v(H,,,) 9 r and 
HD,j (j = l,..., pD) are symmetric subgraphs of G” and 
G”‘p = xi H,,, . 
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THEOREM B. Let x(L) = d + 1 and v(L) = T. If 

L c P’ x K&T )...) 7), (6) 

then there exists a constant r = r(L) such that for every n, 9(n, r, d) 
contains an extremal graph for L. Furthermore, if there exists an n, such that 
for every n > n, 9(n, r, d) contains only one extremal graph, then for 
suficiently large values of n this is the only extremal graph. 

Proof of Theorem 1. We apply Theorem B to the icosahedron with 
d = 3. This is allowed according to (3). Now the only thing we have to 
prove is that for every r if S” E S(n, r, 3) is an extremal graph for P and 
n > n,,(r), then S” = H(n, 3, 3). Since S” E 9(n, r, 3), we can omit a set U 
of vertices of S” such that the remaining 

S” - U = X c HBSi, 
P i 

where u(H& < r and 1 U j < r and for every p < 3 the family H,,j is 
symmetric in S”. We may suppose that 

v(H1.3 2 WLd > Wd (7) 

Let B, be the set of vertices of xi H,,, (p = 1, 2, 3). Clearly, if m = n/3, 
then 

I & I = m, = n/3 + O(1) = m + O(1). (8) 

(A) First we give an upper bound of e(P). Let x, ,..., x, be the 
vertices of U having valence >2m. Let 6, = q - 2m. Then 

0 f 4W - e(H(n, 3,3)) < c 6, - 2m + c c e(f&) + O(1). (9) 
2, j 

To prove (9) let us omit all the edges of x C HD,i from S” and also all the 
edges starting from U. Then, let us join each vertex of U to each one of 
B2 u B3 . Finally, select two vertices from BI and join them to all the other 
vertices of BI . Thus we increased the number of edges of Sn by at least 

The obtained graph G” has the following property: 

It is possible to omit two vertices of Gn so that the resulting graph be 
3-chromatic. (11) 

It is easy to check that among all the graphs of n vertices satisfying (1 l), 
there exists exactly one having maximum number of edges, namely 
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H(n, 3, 3). Therefore, 

e(G”) < eW(n, 3, 3)). 

This and (10) prove the right-hand side of (9). To prove the left-hand side 
of (9), it is enough to prove that 

ZZ(n, 3, 3) does not contain P2. m 

Omitting any two vertices of P2, we obtain a graph of 10 vertices 
which does not contain 4 independent vertices. Therefore, this obtained 
graph is (at least) Cchromatic, i.e., P does not satisfy (11). On the other 
hand, ZZ(n, 3,3) satisfies (11) and thus every subgraph of it must also 
satisfy (11). Hence, P2 $ H(n, 3, 3), which proves that 

e(P) 3 e(H(n, 3, 3)). 

(B) Our next purpose is to prove that 

dH2.1) = 4H3.1) = 1. 

Let us suppose the contrary. Then (because of (7)), 

Trivially, 
Wl,,) 3 Gf2.1) 3 2. 

s* 1 (Hl.1 + Hl,,) x w2.1 + H2.2) x G(3) 

1 (f&,1 + f&,3) x (K3 + K(2)) x G(3). 

(13) 

(14) 

Since Sn does not contain P2, it does not contain W, either (see (4)) and 
therefore HI,, + Hl,2 does not contain P3 + P2, i.e., HI,, does not contain 
P3. H,,, is connected, thus t)(H& < 2. According to (7) v(ZZ2,,) and 
u(H3J are also at most 2. Hence, 

cc eW,,J G 342 + W). (15) 

Hence at least one 6i is > m/2r. But this can happen only if the corre- 
sponding xi is joined to, say, all the vertices of Bz and B3 and at least one 
vertex of HI,, (since the graphs HD,j are symmetric and therefore any 
vertex is joined either to all the vertices of B, or to the half of them or to 
none of them). But in this case x1, HI,, , and Hl,2 would determine a 
P3 + P2 completely joined to H2.j . This P3 + Pa, H,,, , Hze2, and 3 
arbitrary vertices from B3 would determine a W, in P. This contradiction 
proves (13). 
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(C) We prove that 

(4 GLd = 1, 
(b) U contains two vertices completely joined to S” - U; 

the other vertices are joined to all the vertices of two of 
III, Bz, I$, and to none of the third one. 

We shall need the following lemma, which is a particular case of a theorem 
of P. ErdSs and T. Gallai (Theorem 2.6 of [7]). 

LEMMA. If Gq does not contain P”, then 

e(G*) < &, 

and the equality holds z$ GQ is the union of disjoint K,‘s. In particular, the 
strict inequality holds if K3 0 Gq. 

(This case of the Erdos-Gallai Theorem can be proved much easier than 
the general one.) S” does not contain P2, therefore it does not contain W, 
or W, either, and hence H,,, cannot contain a K3 or a P6. Thus, according 
to the Lemma, 

CC 4L5) G (2 - +) m + O(1). 

Hence in (9) at least one ai is larger than cm if c = (2r)-2. Because of (13), 
the corresponding xi has to be joined to B, and B3 and to at least cm 
vertices of Bl . Let a5 f H,,i be corresponding vertices of the symmetric 
graphs HI,j joined to xi. Each edge of & must contain aj, otherwise 
HIsi would contain a path (cj , bj , aJ and 

(~1, h , al , xi , a2 , b2 , c2) = P7 

would be a path completely joined to B, and B3 . Thus S” would contain a 
W, which is a contradiction. Therefore, aj really is contained by each edge 
of f&,5 * 

(C,) First we prove that there exists at least another vertex in U 
joined to every vertex of B, and B3 and to some vertices of H,,, . Let us 
suppose the contrary. Since each edge of HI,, contains a,, HI,, is a tree. 
Therefore 

cc e(fL3 + 1% < m (1 - -j-) + m + O(1). WI 

This contradicts (9). Therefore there exists another xk joined to some 
vertices of Hr., and to all the vertices of B, and B, . 
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(C,) Let a, and b1 be distinct vertices of H,,, , and let us suppose 
that a, is joined to xi , b1 is joined to xlc . Then there exists a P6 in B1 u U 

completely joined to B, u B3 . Indeed, let us go from a, to b1 in H,,, 
and denote this path by P*. Let P** be the path determined by the 
corresponding vertices of H1,2 . If a2 and b, correspond to a, and b1 , 
respectively, then 

(a,P*blxkb,P* *a,xi) 

is a path of at least 6 vertices completely joined to B2 and B3 . But this 
means that S” contains a W, , a contradiction. This proves that a, and 6, 
cannot be distinct, i.e., both xi and xlc are joined to the same (and to 
only one) vertex of H,,, . If there were a third vertex x, joined to all the 
vertices of B, and B3 and to some vertices of H,,, , then it would be joined 
to the same vertex of H,,, and Bl u U would contain a K,(3,3) completely 
joined to each vertex of B, and B3 : Because of P6 C K,(3,3), Sn would 
again contain a FV1. This contradiction proves that there exist exactly 
two vertices of U joined to every vertex of BE and B, and to some vertices 
of Bl . These vertices are joined to exactly one vertex of &I . 

(C,) Again, if u(H,,,) > 2 held, then (16) would be valid, contra- 
dicting (9). Therefore v(H,,,) = 1. 

(C,) We have to show that if x E U - {xi, xlc}, then x is joined to 
exactly two of Bl , B, and B3 . We know that it can be joined to at most 
two of them. On the other hand, if x were joined, e.g., only to B3, then its 
valence would be m + O(1). According to the general theorems of [2b,c], 
the minimum valence in Sn is 2n/3 + o(n). This proves our assertion. 
(If we wish to avoid using this latest theorem, we can modify (9) by taking 
6, not only for those vertices, for which 6, is positive. Now, if there were 
a vertex of valence m + U(1) in U, then the middle of (9) would decrease 
by m + O(l), leading to a contradiction.) 

(D) Let now C, be the class of vertices of U - {xi, x3 not joined 
to B, (but joined to B, ifp # q). Let A, = B, u C, and 1 A, ( = n, . Let 
H” = K, x K&z, , n2, Q). Since Hn satisfies (1 l), 

eW(n, 3, 3)) 3 eW>, (17) 

and the equality holds iff Hn = H(n, 3, 3). Let D, be the set of vertices 
of A, not joined either to Xi or xk . We show that a vertex of A, cannot 
be joined to a vertex of A, - D, . Indeed, if a E A, were joined to 
a b E A, - D, , then each vertex of the path (a, b, Xi, b*, xk , b**) would 
be joined to each vertex of B, if q # p, where b* and b** are two arbitrary 
vertices of B, . This would assure a WI in S*. Therefore the vertices of A, 
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really cannot be joined to A, - D, . Let G(D,) denote the graph spanned 
by the vertices of D, , and let M denote the number of pairs (u, U) such that 
u and 21 belong to different A,s and are not joined. (These pairs will be 
called missing edges.) Now we prove that 

e(W < eWn) - c (2 I D, i - 4WJ)) - M; (18) 

equality holds iff xi and xk are joined in S* and every vertex joined to at 
least one of xi and xk is also joined to the other. Indeed, if we omit all the 
edges of G(D,) for p = 1, 2, 3, and join the vertices of D, to xi and xk , 
further join all the M pairs of vertices, called missing edges, then we 
obtain from P, Hn or Hn - (xi , x,J. 

Because of the Lemma, 2 1 D, ( - e(G(D,)) is always nonnegative. 
Hence 

e(P) < e(H”) < e(H(n, 3, 3)). (1% 

Since e(,!P) > e(H(n, 3, 3)), in (19) we have in both cases the equality. 
Therefore, 

(a) H” = H(n, 3, 3), and 
(b) (xi , xk) E S*, M = 0, and in the lemma we also have equality. 

The equality in the lemma implies that either D, = 0 or G(D,) is the 
union of disjoint Ks’s. The latest case is excluded, since, if G(D3 contained 
a K3 , then this K3 and KS = (xi, xk , b) (with a b from B1) would form a 
W, with 3 vertices from each of Bz and B3 . Therefore D, = 0. This means 
that Sn = Hn and, consequently, S” = H(n, 3, 3). Thus the proof of 
Theorem 1 is complete. 

In fact, we have proved the following result, which is somewhat stronger 
than Theorem 1. 

THEOREM 2. If n is large enough, then H(n, 3, 3) has more edges than 
any other graph G” not containing either of the graphs W, , W, , and W, . 

With a little more care we could prove a more general theorem but its 
formulation is too complicated, therefore we did not deal with it. 
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